PHYS 1420 (Fall 2019) - Midterm Exam (C)

Name: SOLS

Student Number:

Instructions:

- Read all instructions carefully.
- Clearly write your name and student number above **BEFORE** you start the exam. Also, have your student ID out and on your desk (you may be asked for an invigilator to see it before/during/after the exam).
- Once the test begins, the instructor and invigilators will not be able to answer questions. You will need to interpret things as best you can and answer accordingly.
- Show all work clearly in order to get full credit. Points can be taken off if it is not clear to see how you arrived at your answer (even if the final answer is correct).
- Calculators can be used for this exam. Use of phones/tablets/computers/smart watches/etc... is not permitted.
- Sketch all relevant graphs and explain all relevant mathematics. Circle/box your final answers.
- Please keep your written answers brief; be clear and to the point.
- Feel free to use scratch paper (some is included at the back, feel free to detach it). You will not be graded upon what is on the scratch paper, though you must turn it in with your exam.
- You are allowed a formula sheet (8.5x11 in) to bring with you. It must be a single hard copy sheet of paper (though you can write on front and back). You must turn such in with your exam.
- This test has 3 problems (plus an extra credit problem) and is worth 100 points. It is your responsibility to make sure that you have done all the problems!
- Make sure to turn your test in as requested at the end of the exam period. Failure to do such can lead to a failing grade.

1. (30 points)

For the following questions, circle the appropriate choice for True or False. No explanation in necessary.

- True or False If the rate of change of a function is proportional to itself, then the function is exponential.
- True or False For uniform circular motion, the acceleration vectors all point in the same direction.
- True or False A feather and a rock both move towards Earth with the same acceleration.
- True or False If a plane flying at constant velocity drops a package, it will be directly over the package when it hits the ground.
- True or False Velocity is the integral of displacement with respect to time.
- True or False Newton's 2nd law is $\mathbf{F} = \frac{d\mathbf{p}}{dt}$ where p is momentum.
- True or False Speed and velocity are the same thing.
- True or False Centripetal acceleration (a) is related to the square of the angular velocity.
- $True \ or \ (False)$ Parabolas are related to cubic functions.
- True or False Einstein's theory of general relativity is an approximation of Newton's law of gravity.
- True or False A ball dropped versus throw up both move towards Earth with the same acceleration.
- True or $\overline{|False|}$ Arc length is $r\theta^2$, where r is the radius and θ is the angle extended.
- True or False The basic idea underlying rocket thrust is a. reduction of mass and b. conservation of momentum.
- True or False Stiction refers to the friction of sliding bodies.
- True or False Kinetic friction tends to be greater than static friction.
- True or False A falling cylinder would feel a larger drag force than a sphere.
- True or False A cylinder falling "end down" and another falling "side down" will have the same drag coefficients.
- True or | False | Work is the energy transferred between systems via a continuous force.
- True or False A falling body can asymptotically approach a terminal velocity.
- True or False A change in energy is always positive.
- True or False For a thrown ball, it is possible to have the velocity and acceleration vectors to point in the same direction at the instant the ball is thrown.

- True or False Uniform motion can effectively be described as "unchanging change".
- True on False The product of two vectors is always a scalar.
- True or False Work has the same units as energy.
- True or False When compressing a spring, the work done on the spring is positive.
- True or False Integrals can arise from Riemann sums when the rectangles get infinitesimally large.
- True or False A ball rolling on a curved track is a 1-D problem.
- True or False The First Law of Thermodynamics embodies the distinction between "good" versus "bad" energy.
- True or False Rolling friction tends to be larger than kinetic or static friction, thus giving tires their "grip".
- True or False Drag forces can only be proportional to velocity or its square.

2. (35 points)

The 1000 kg steel beam in is hanging from the ceiling at height h as shown below. It is supported by two ropes.

a. Draw the associated free-body diagram. Make sure to clearly label all relevant forces.

) b. What is the tension in each rope?

$$T_{1y} + T_{2y} + W_{s} = 0 \longrightarrow T_{1y} + T_{2y} = W$$
 (2)

$$T_2 = \frac{9800}{\left[\frac{(51n30)}{51n20}\cos 20 + \cos 30\right]} \simeq 4376 \text{ N}$$

- 3. (35 points) Consider the scanning part of a the drive motor and spinning disk of a confocal microscope. Suppose the disk has radius R and is initially at rest. It then speeds up with angular acceleration α .
- a. Determine an expression for the tangential velocity after the disk has rotated through an angle $\Delta \phi$.

@ We know: disk radius (R), const. angular accel. (a) and intially at rest (us=0)

a Angular valocity: w = 5 ddt = dt + wo = dt / let this = ofer

I Ang. position: 0 = Swdt = Sdtdt = 2dt2+0= = DQ

So DQ = \frac{1}{2} Q+2 -> + = \frac{200}{200}

- Now w = dt = d 200 = 1200
- W= V = RVZQAP
- b. Similarly, determine an expression (in terms of $\Delta \phi$ and any other relevant quantities) for the centripetal acceleration.

a = V = 2RDAD

Extra Credit (10 Points):

Two blocks are connected to each other by a massless string over a frictionless pulley. The mass of the block on the left incline ($\equiv m_L$) is 6.00 kg. Assuming the coefficient of static friction μ_S equals 0.542 for all surfaces, find the range of values of the mass of the block on the right incline ($\equiv m_R$) so that the system is in equilibrium.

79 (cont)	
11 (64)	\widetilde{a}
fs, = ms N, = (0.5) (1.0) (-9.8) sin30 = 4.9 N RTs	N.
	E WELD
This tells is that me is heavy enough to will	W, SIND
The state of the s	
(because 19.6 > 4.9 N) and thus The will	
move downwards while M, moves upwards to the left.	
Further, the rope tension (+) is not To and determ	ining
T (via consideration of all not force will reveal a,	
1) Since this is effectively a 1-D problem, let's	
create a coord, system (x) so that all "vector"	B
Since this is effectively a 1-D problem, let's create a coord, system (x) so that all "vector" aspects are dealt w/ via a t or - sign	X
	12
$\overline{W}_2 = m_2 q \hat{x}$ (where $g = 9.8 \% 2$)	
Will = - migsin DX	
$\overline{W}_{2} = m_{2}g\widehat{X} (\text{where } g = 9.8 \% 2)$ $\overline{W}_{11} = -m_{1}g\sin\theta\widehat{X}$ $\overline{F}_{RI} = -H_{R}N_{1}\widehat{X} = -H_{R}M_{1}g\cos\theta$	
	2
I ok, so now we can put the pieces together:	
	both blocks will
net forces of m_2 : $\overline{W}_2 - \overline{T} = m_2 q$ on m_1 : $\overline{T} - m_1 g \sin \theta - m_2 m_1 g \cos \theta = m_1 q$	- have the same
on m, = T-m, gsin D-h, m, g cos D = m, q	acceleration
Now add both egns. together to cancel out I (and al	lare refere x

a (m,+m2) = W2 - m, gsin - Mk m, gcos D

 $\frac{(2.0)(9.8) - 9.8[51030 + (04)(0530)]}{3}$ $\frac{2}{3.8} \frac{3.8}{5^2}$

K+5 82 (cont)

ZFm = Wisinch + Miswicosop - WHISIND + MISWINGOSO = 0

Wat = Mang -> Wat (sinch + his cosa) = mang (sin & - his cosa)

m_{2H} = m₁ Sind + Mscos P sind - Mscos D

E So $m_2 \in [m_{2L}, m_{2H}]$ (i.e. $m_2 = m_{2L}$ through m_{2H}) would represent the mass range over which no maximant takes place. We can plug in numerical values at this point

M21 = (6.00) Sin 35 + 0.542. cos 60 2 3.51 kg

MZH = (6.00) 51x 60 + 0,542 cos 60 ~ 52.6 kg

=> Relevant range of m2 masses here is m2 & [3.51, 52.6] kg