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Question: So how can we tell the difference between passive and active?
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< x2 >= Dt often indicates partially or fully directed motion

(e.g., for transport along a substrate) (11).

MacKintosh (PNAS 2012)



Computational aside

> Notion of “mean squared distance” (MSD)

<x?> - Mean-squared distance
< x2 >= Dt D — ‘diffusion’ constant
¢t —time allowed before ‘checking’ <x?>

» We can do thisin 1-D, 2-D, 3-D, B Y v X
i = I 1 | |
or higher.... o
» Imagine a grid, upon which we take Tt < v
a step in a random direction. We — ° e
can then trace out a path as time v = . .

goes on

> If we consider an ‘ensemble’ of random walkers, each starting at the origin and
independent of one another, computationally it’s easy for us to keep track of the average
net movement (Mean Squared Distance, MSD)



Computational aside
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Figure 7.10: Left: x versus step number (that is, time) for two random walks in one dimension. Here
the steps were of random lengths in the range —1 to 1. Right: < x? > as a function of time for a collection
of these one-dimensional random walks. The results for 500 walks were averaged.

= So while each individual walker is random, the basic idea is that in an
ensemble average, a repeatable/consistent trend emerges

Giordano (1997)



Computational aside

> Want some sort of
programmable interface
(take PHYS 2030!)

> Matlab is one option
which we will use here....

> ... but there are many options available
(e.g., Mathematica, Maple, Python,
Octave, C, Java, etc....)



EXrandomWalk1D.m

% ### EXrandomWalklD.m ### 11.15.14

clear;

Y

N= 200; % Total # of (independent) walkers (each starts at x=0)

M= 100; % Total # of steps for each walker

K= 3; % # of walkers to show individual traces for [3]

bias= 0.5; % number between [0,1] to indicate bias for left vs right (0.5= equal prob.)
Y

% +++

step number= zeros(1l,M);
x2ave= zeros(1l,M);
step_number_array= [1l:1:M];
% +++
%
% NOTE: the loop is set up in such a way to average x2ave across walkers
for r= 1:N
x=0; % initialize position for r'th walker
position(r,1)= 0;
% loop to go through M steps for r'th walker
for nn=1:M;
% conditional determines whether step is to the left or right
if (rand<bias), =x=x+1;

allocate array to stored (suquentially averaged) MSD

o0 00 oe

else x=x-1; end;
x2ave(nn)=x2ave(nn)+x"2; % store squared displacement (handles averging across r)
position(r,nn+l)= x; % store displacment for each walker and step
end;
end;
x2ave= x2ave/N; % Divide by number of walkers
% plot MSD
fig:reél); . , e horg = Ensemble of N (independent) walkers
ot (step number arra x2ave ; ho on; .
Eitlé( .Mgg for 1-D raﬁéom walk'); ) = Each takes M total steps, each step either
xlabel('Step number'); ylabel('Mean-Squared Distance (x"2)'); |eft()rr1ght
% plot a subset of individual traces .
figure(2); clf; hold on; grid on; = Note that the for loop averages as it goes

for nn=1:K
shade= 1-(nn-1)/K;
plot(position(nn,:), 'Color',[1 1 1]-shade);
end
xlabel('Step number'); ylabel('Position'); title( 'Representative traces');
plot ([0 M],[1l 1]*sqgrt(x2ave(end)), 'g--', 'LineWidth',2) % include MSD bounds at step M
plot([0 M],[-1 -1]*sqgrt(x2ave(end)), ' 'g--"', 'LineWidth',2)
plot(M,sqrt(mean(position(:,end).”2)), 'ro'); % reality check (another way to compute final MSD)
disp([ 'Final mean (non-squared) distance = ',num2str(mean(position(:,end)))]);



Position

, , EXrandomWalk1D.m
Computational aside

MSD for 1-D random walk (average from 200 walkers)
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_ _ EXwalker2D.m
Computational aside

> Can also compute in 2-D with a boundary (and maybe a bias) in place
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### EXwalker2D.m ### 07.15.15 CB EXwalker2D.m

%

% Simulates a 2-D Brownian walker

% - polar coords. for computing a step

% - step size is unit value with normally distrib. val.

% - direction-wise, allows for either (via A.Pbias):

% o step direction is uniformally distributed over circle

% o Gaussian-like directional bias (kinda kludgy, but works)
% - [IN PROGRESS] allow for a (circular) boundary condition (via A.Pbound)
% that either reflects or is periodic

clear

g =======

walkerNum= 200; % # of walkers to compute
steps= 500; % # of steps to take by walker

A0= 0.1; % limiting stochastic factor (re 1) for unit step size (A0=0 --> unit radial steps, A0>0 introduce Gaussian variance)
PR—

A.Pbias= 0; % boolean to create a directional bias

A.alpha= 0.2; % bias factor [0,1] --> small (~0.1 means stronger bias)

A.offset= 0.75; % offset direction for bias[cyc]

P——

A.forcelD= 0; % boolean to force angle to be 0 or pi (thus making this 1-D)

[

A.Pbound= 1; % boolean to create circular boundary (i.e., walkers constrained)

A.bndR= 20; % radius of bounding wall (re origin)

A.boundType= 0; % boundary condtion (req. A.Pbound=1): 0-"hard" (reflecting), l-periodic
PR—

axLim= 25; % bounds for plotting (Fig.66)
kk= 1; % particle ID to visualize a single walker (Fig.66)

animate= 1; % boolean to turn on/off movie for an individual walker (Fig.66)
numWplot= 5; $ # of walkers to plot individual (r"2) paths (Fig.4)

g =======

PR—

% if a constrained walk, force bounding condition (A.bndR) to be much
% larger than mean unit step size (helps avoid some coding headaches below)
if (A.Pbound==1 && A.bndR <= 5), disp('Make larger bounding condition'); end

for m= l:walkerNum
% walker m initially at origin [i.e., cartesian (0,0)]

P(m).coord(l,:)= [0 0];

for nn=2:steps

PR
P(m).A(nn)= 1+ AO*randn(l); % (radial) size of nn'th step for m'th walker
if (P(m).A(nn)<0), P(m).A(nn)=0; end % make zero size step if negative (introduces bias?)
g e
% direction of nn'th step for m'th walker (allows possibility of bias)
if A.Pbias==
P(m).theta(nn)= rand(1l)*2*pi; % no bias
else
if (m==1 && nn==2), disp('Radial bias in effect'); end
P(m).theta(nn)= (A.offset + A.alpha.*randn(1l))*2*pi; % w/ radial bias

end



EXwalker2D.m

S —mem
% constrain angle such that movement is essentially 1-D
if A.forcelD==
P(m).theta(nn)= round(P(m).theta(nn)/(2*pi))*pi;
end
S —mem
% update re last position and store away in Cartesian and radial coords.
P(m).coord(nn,:)= [P(m).coord(nn-1,1)+P(m).A(nn)*cos(P(m).theta(nn)) P(m).coord(nn-1,2)+P(m).A(nn)*sin(P(m).theta(nn))];
P(m).rsq(nn)= P(m).coord(nn,1)"2 + P(m).coord(nn,2)"2; % new radial position (squared)
P(m).phi(nn)= atan2(P(m).coord(nn,2),P(m).coord(nn,1l)); % angle of new position re origin
¥ ————
% if constrained, check that new coords. aren't past wall (otherwise "reflect")
if A.Pbound==
if (m==1 && nn==2 && A.boundType==0), disp('Circular hard/reflecting boundary in effect'); end
if (m==1 && nn==2 && A.boundType==0), disp('Circular periodic boundary in effect'); end
templ= sqrt(P(m).rsqg(nn)); % dummy to reduce re-computation
if templ >= A.bndR
if A.boundType==
% ### HARD REFLECTION ###
% angle stays the same, only radius changes (and in a simple way)
temp2= 2*A.bndR- templ; % reflected radial length
%disp([templ P(m).A(nn) P(m).theta(nn) P(m).phi(nn) temp2]); % for debugging
elseif A.boundType==
% ### PERIODIC B.C. ###
% both radius changes and angle flips 180
temp2= 2*A.bndR- templ; % reflected radial length
P(m).phi(nn)= mod(P(m).phi(nn)+pi,2*pi);
end
P(m).rsg(nn)= temp2”2; % squared version
% revised Cartesian version
P(m).coord(nn,l)= temp2*cos(P(m).phi(nn));
P(m).coord(nn,2)= temp2*sin(P(m).phi(nn));
end
end
% e
% determine MSD
P(m).time(nn)= nn; % "time" is simply the step number (can rescale as needed)
%P (m).MSD(nn)= sqgrt(P(m).coord(nn,1)”2 + P(m).coord(nn,2)"2); % radial position (not squared)
$P(m).MSD(nn)= P(m).coord(nn,1)"2 + P(m).coord(nn,2)"2; % squared to get the "S" in MSD
P(m).MSD(nn)= P(m).rsqg(nn); % note that this is the radial position squared (hence "S" in MSD)
end
end
[,
% compute mean MSD (across all walkers) --> KLUDGE (better way to do this sans loops??)

for nn=l:steps
for m= l:walkerNum
val(m)= P(m).MSD(nn);
end
meanMSD(nn)= mean(val);
end



9 e
% plot vals. for a (specified) individual walker
if 1==

figure(l); clf;

subplot(211); plot(P(kk).coord(:,1),P(kk).coord(:,2), 'k.-");
xlabel('x'); ylabel('y'); grid on; hold on; title('Walker position')
axis([-axLim axLim -axLim axLim])

% -—- (plot a bounding circle)

if A.Pbound==

th= 0:pi/50:2*pi; xunit= A.bndR*cos(th); yunit= A.bndR*sin(th); h66= plot(xunit, yunit,'

end

% —-- (plot MSD for an individual walker)

subplot(212); plot(P(kk).time,P(kk).MSD, 'k-");

xlabel('Time'); ylabel('Radial displacement (squared)'); grid on; hold on;

% plot MSD for the ensemble

figure(2); clf;

plot(P(m).time,meanMsSD, 'k-");

xlabel('Time'); ylabel('MSD'); grid on; hold on;

% if constrained, visualize effective bounding limit

if (A.Pbound==1), h2B= stem(A.bndR"2,max(meanMSD), 'r--', 'LineWidth',1);
legend(h2B, 'Bounding radius (squared)', 'Location', 'SouthEast'); end

A
% plot distribution of angular values (polar histogram)
if 1==

figure(3); clf;

% == (single walker) directions taken for each step for an individual walker

subplot(221); h3= rose(P(kk).theta,30);
set(h3, 'Linewidth',1.5); x = get(h3, 'Xdata'); y = get(h3,'Ydata'); g=patch(x,y,'v');
title('All steps for a single walker'); grid on; hold on;
== (all walkers) directions taken for all steps of all walkers
subplot(223); h3= rose([P(:).theta],30);
set(h3, 'LinewWidth',1.5); x = get(h3, 'Xdata'); y = get(h3,'Ydata'); g=patch(x,y,'v"');
title('All steps for all walkers'); grid on; hold on;
% == (all walkers) final position for all walkers [KLUDGE: not sure how to do sans loop]
for mm=1:numel(P) bank(mm)= P(mm).phi(end); end
subplot(224); h3= rose(bank,floor(numel(P)/15));
set(h3, 'LinewWidth',1.5); x = get(h3, 'Xdata'); y = get(h3,'Ydata'); g=patch(x,y,'v");
title('Final ang. position of all walkers'); grid on; hold on;
end

EXwalker2D.m



% plot time course (or r"2) for several walkers? (see also Fig.1B)
if 1==

figure(4); clf;
for n=1:numWplot
hh= 0.8*n/numWplot; % shading factor (to discern different traces)
plot(P(n).time,P(n).MSD, '-', 'Color',hh*[1 1 1]); grid on; hold on;
end
leg= plot(P(m).time,meanMSD, 'r--', 'LineWidth',2); % also plot ensemble MSD
xlabel('Time'); ylabel('Radial displacement (squared)');
title([ 'Bounding limit= ',num2str(A.bndR), ' (squared= ',num2str(A.bndR"2),"')"']);
legend(leg, 'ensemble MSD', 'Location’', 'NorthWest');

% movie for an individual walker
if animate==

end

figure(66); clf; axis([-axLim axLim -axLim axLim]); grid on; hold on;
for nn=2:steps

% —---— (plot a bounding circle)

if A.Pbound==1

th= 0:pi/50:2*pi; xunit= A.bndR*cos(th); yunit= A.bndR*sin(th); h66= plot(xunit, yunit,'r-');

end
% —--- (plot/update the track)

$plot(P(kk).coord(nn,1l),P(kk).coord(nn,2), 'ko-");
plot([P(kk).coord(nn-1,1) P(kk).coord(nn,1)],[P(kk).coord(nn-1,2) P(kk).coord(nn,2)], 'k.-");
pause(0.04); % {0.04}

end

EXwalker2D.m
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EXwalker2D.m

> Introducing a bias.....
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So “why” might a bacteria move itself?

> Chemical environment may matter = chemotaxis

“Ooh, food over that
way! Let’s go!”

“Ugh, poison! Let’s get
out of here!”

The physics of eukaryotic chemotaxis (Levine & Rappel; Physics Today, 2013)



Case study: Chemotaxis

Figure 1. Chemotaxis in a nutshell. This illustration shows a cell moving to the right in response to a
chemical gradient indicated by the gray-scaled background. The white lines show the outline of the cell
membrane at earlier times. The motion-inducing gradient is detected by the cell through the binding of
chemoattractants, shown as green balls in the inset, to receptors bound to the cell membrane. Changes
in the shape of the receptors trigger internal signaling pathways; some pathway components are local-
ized at the front of the membrane (red), others congregate at the back (green). Called pseudopods,
membrane protrusions (orange) self-organize at the front of the cell. The inset also shows the branched
actin network (light blue) that pushes the membrane forward, with several individual filaments
highlighted in red.

b Pseudopod

S — binding const. (0 or 1)

Chemoattract%nt

Receptor %e

o The receptor distribution conveys information
about the gradient’s direction. To see how, imagine
a two-dimensional circular cell of diameter d with
receptors located at equidistant angles 6. and con-
sider the cell placed in a linearly varying field. The
statistic ® defined through

1
Idea: Sum together various contributions to get a ©=Arg (ﬁgf"”’sf) @

net effective directional ity acts as an estimator of the gradient direction. (“Arg”
stands for “argument,” the phase of the complex
number that follows the term.) That is because, in
the sum on the right-hand side of equation 2, the S
values on the higher-concentration side of the cell
are more likely to be 1 than those on the lower-
concentration side; hence the phases on the higher-
concentration side are weighted more heavily.

The physics of eukaryotic chemotaxis (Levine & Rappel; Physics Today, 2013)



Case study: Chemotaxis

Figure 3. Cell tracks. The colored lines, whose
origins have been brought to a common point,
depict the observed paths of Dictyostelium
discoideum cells through a chemical solution
whose concentration changes by 10% across the
10-um distance typical of a cell diameter. The
tracks exhibit considerable motile variability; even
for gradients steeper than those pertinent to the
figure, a typical maximal chemotactic index,
defined as the ratio of the distance traveled in the
gradient direction to the total distance traveled, . :
is at most about 0.7. The arrow indicates the 180 rtEhgeiy 0
direction of increasing chemoattractant
concentration. (Adapted from ref. 4.)
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sics of eukaryotic chemotaxis (Levine & Rappel; Physics Today, 2013)



Case study: Chemotaxis

Life at low Reynolds number

E. M. Purcell

Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 12 June 1976)
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American Journal of Physics, Vol. 45, No. 1, January 1977

Note: Purcell (1912-1997) won the 1952
Nobel Prize for discovering NMR

> How far does a bacteria
need to swim?

> Answer depends upon its
speed relative to diffusion



Case study: Chemotaxis
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- Explains some of the structure
we saw in Berg’s E. coli tracks....

American Journal of Physics, Vol. 45, No. 1, January 1977



Collective dynamics

> Bacteria swimming alone versus.....

> ... lots of (interacting) bacteria
swimming together

- Swarming
BacterioLocicaL REviEws, Dec. 1972, p. 478-503 Vol. 36, No. 4
Copyright © 1972 American Society for Microbiology Printed in U.S.A.

Bacterial Surface Translocation: a Survey and a

Classification
JORGEN HENRICHSEN

Department of Diagnostic Bacteriology, Statens Seruminstitut, Copenhagen, Denmark

Metzler & Klafter (2000)



Case study: Swarming

Bacteria of the species Bacillus subﬁlis%ge 4
inoculated at the center of a dish with gelo\se\
containing nutrients. The bacteria start mass- -
migrating outwards about twelve hours after
inoculation, forming dendrites which reach

the border of the dish

wikipedia (swarming motility)




Case study: Swarming

> Key idea here is that the
swimmers can interact

> Notion of collective
dynamics

- The “whole” is more/
different from the sum of
the parts

Statistical mechanics for natural flocks of birds

William Bialek?, Andrea Cavagna®, Irene Giardina®<', Thierry Mora?, Edmondo Silvestri®<,
Massimiliano Viale®<, and Aleksandra M. Walczak®

\S

~

= 4786-4791 | PNAS | March 27, 2012 | vol. 109 | no. 13

PN /

Flocking is a typical example of emergent collective behavior,
where interactions between individuals produce collective pat-
terns on the large scale. Here we show how a quantitative micro-
scopic theory for directional ordering in a flock can be derived
directly from field data. We construct the minimally structured
(maximum entropy) model consistent with experimental correla-
tions in large flocks of starlings. The maximum entropy model
shows that local, pairwise interactions between birds are sufficient
to correctly predict the propagation of order throughout entire
flocks of starlings, with no free parameters. We also find that
the number of interacting neighbors is independent of flock den-
sity, confirming that interactions are ruled by topological rather
than metric distance. Finally, by comparing flocks of different sizes,
the model correctly accounts for the observed scale invariance of
long-range correlations among the fluctuations in flight direction.

animal groups | statistical inference



Case study: Flocking

A swarm-like flock of starlings

wikipedia (flocking)



Case study: Flocking

Fig. 1. The raw data. (A) One snapshot from flocking event 28 — 10,
N = 1,246 birds (see S/ Appendix, Table S1). (B) Instantaneous vector velocities
of all the individuals in this snapshot, normalized as s; = v;/|Vj|.

The maximum entropy distribution consistent with the direc-
tional correlations C;; is

B, Il - -
P({s;}) = mexp [52 ZJijSi 'Sj], [1]

4786-4791 | PNAS | March 27, 2012 | vol. 109 | no. 13



Case study: Flocking
A R B

Fig. 1. The raw data. (A) One snapshot from flocking event 28 — 10,
N = 1,246 birds (see S/ Appendix, Table S1). (B) Instantaneous vector velocities
of all the individuals in this snapshot, normalized as s; = V;/|Vj|.

We consider flocks of European starlings, Sturnus vulgaris, as in
Fig. 14. At any given instant of time, following refs. 11-13, we can
attach to each bird i a vector velocity v; and define the normalized
velocity s; = v;/|v;| (Fig. 1B). On the hypothesis that flocks have
statistically stationary states, we can think of all these normalized
velocities as being drawn (jointly) from a probability distribution
P({s;}). It is not possible to infer this full distribution directly
from experiments, because the space of states specified by {s;}
is too large. However, what we can measure from field data is
the matrix of correlations between the normalized velocities,
C;; = (5; - 5;). There are infinitely many distributions P({s;}) that
are consistent with the measured correlations, but out of all these
distributions, there is one that has minimal structure: It describes
a system that is as random as it can be while still matching the
experimental data. This distribution is the one with maximum
entropy (10).

e The maximum entropy distribution consistent with the direc-
tional correlations Cj; is

[E—

N
PN = e L 26 m

i=1 j=1

It should be emphasized that the maximum entropy principle
is not a “modeling assumption;” rather it is the absence of
assumptions. Any other model that accounts for the observed
correlations will have more structure and hence (explicitly or im-
plicitly) assumes something about the nature of the interactions
in the flock beyond what is required to match the data. Of course
the fact that the maximum entropy model is minimally structured
does not make it correct. It could be, for example, that individual
birds set their flight direction by computing a complicated non-
linear combination of the velocities from multiple neighbors,
in which case correlations among pairs of birds would be insuffi-
cient to capture the essence of the ordering mechanism. We view
the maximum entropy model as a powerful starting point, from
which, as we will see, we can generate detailed and testable pre-
dictions.

4786-4791 | PNAS | March 27, 2012 | vol. 109 | no. 13



Moving on....

Question:
What differences are there for micro- vs. macro-scopic motors?

w=8
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Life at low Reynolds number

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 12 June 1976) )
American Journal of Physics, Vol. 45, No. 1, January 1977

But I want to take you into the
world of very low Reynolds number—a world which is in-
habited by the overwhelming majority of the organisms in
this room. This world is quite different from the one that
we have developed our intuitions in.

Note: Purcell (1912-1997) won
the 1952 Nobel Prize for his
work on NMR



Reynolds #

BIOLOGICAL
PHYSICS

WITH NEW ART BY DAVID GOODSELI

Chapter 5

Life in the slow lane: the low

Reynolds-number world

Philip Nelson

The Focus Question for this chapter is:
Biological question: Why do bacteria swim differently from fish?
Physical idea: The equations of motion appropriate to the nanoworld behave differently under time

reversal from those of the macroworld.

Nelson (2004)
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> Reynolds number (R) is a
dimension-less number that
indicates the ratio of inertial to
viscous forces

inertial forces aVv j°

viscousr forces 7
R= p _ av

7/V
=/52cm' Ar water

Sec

\\\%\\\\
i

American Journal of Physics, Vol. 45, No. 1, January 1977



Aside: Viscosity

Water Qil Maple syrup

> Viscosity (1) deals how a liquid “deforms” due to stress (i.e., forces) applied to it

> Tied to how individual fluid molecules interact and friction arising from such

Table 5.1: Density, viscosity and viscous critical force for some common fluids at 25°C.

Fluid pm (kgm™3) n (Pa-s)  fuis (N)
Air 1 21075 4-10710
Water 1000 0.0009 8-10719
Olive oil 900 0.080  4-107°
Glycerine 1300 1 0.0008

Corn syrup 1000 5 0.03




Aside: Viscosity

“Laminar shear of fluid between two
plates. Friction between the fluid and the
moving boundaries causes the fluid to
shear. The force required for this action is
a measure of the fluid's viscosity.”

Let’s firm this up a bit more....

h

boundary plate 4

(2D, moving)
>

y dimension

velocity, u

fluid

shear stress, 1

>

du

gradient, -

dy

boundary plate (2D, stationary)

———
Yy DR
Emana o

v (y)

o///7/f7///////////77]7717f7/////lf

X

Fig. 4.2. A viscous fluid contained between flat plates at y = 0 and
y = h. The area of each plate is A. The bottom plate is fixed. The top
one is propelled to the right by a force in the x direction, F,. Arrows
show the velocity of the fluid relative to the bottom plate at different

distances from this plate, y.

wikipedia (viscosity)
Berg (1993)



Aside: Viscosity

Let’s firm this up a bit more....

h > £
e
y —— v (y)
e
O S i a7 S B U S i S B S T B A G G S R i A A Gy 4 ST T A S
4
" Ux( h) Linear relationship in fluid velocity
Ux(y) e h B 4 (i.e., fluid flows in “layers” = laminar flow)
Shear “force”
v,

F,=nA
dv,/dy T

= Viscosity (n) is the constant of proportionality
between applied force and shear

Berg (1993)



