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E Effects of confinement on models of intracellular

macromolecular dynamics

Edmond Chow®" and Jeffrey Skolnick®
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The motions of particles in a viscous fluid confined within a spherical
cell have been simulated using Brownian and Stokesian dynamics
simulations. High volume fractions mimicking the crowded interior
of biological cells were used. Importantly, although confinement
yields an overall slowdown in motion, the qualitative effects of
motion in the interior of the cell can be effectively modeled as if the
system were an infinite periodic system. However, we observe
layering of particles at the cell wall due to steric interactions in the
confined space. Motions of nearby particles are also strongly correlated
at the cell wall, and these correlations increase when hydrodynamic
interactions are modeled. Further, particles near the cell wall have
a tendency to remain near the cell wall. A consequence of these
effects is that the mean contact time between particles is longer at
the cell wall than in the interior of the cell. These findings identify
a specific way that confinement affects the interactions between
particles and points to a previously unidentified mechanism that
may play a role in signal transduction and other processes near the
membrane of biological cells.

confinement | cell wall | Brownian dynamics | Stokesian dynamics |
hydrodynamic interactions
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Significance

We use Brownian and Stokesian dynamics simulations to ex-
plore diffusion processes within an idealized biological cell.
Although most studies assume processes occurring in an infinite
medium, we focus on the effect that confinement within a cellular
membrane may have on intracellular dynamics. One finding is that
model proteins near the membrane tend to diffuse along the
membrane; this may give additional time for signal transduction
across the membrane to occur. We also observe more strongly
correlated motions near the membrane than in the cell’s interior,
potentially facilitating interactions between proteins there.
Finally, we find that deep in the interior of the model cell, the
confining effects of the finite size of a cell on the dynamics can
be neglected.

www.pnas.org/cgi/doi/10.1073/pnas.1514757112
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Fig. 1. Configuration for a simulation with 1,000 cytoplasm particles (in
blue) and 841 wall particles (in pink). A hemisphere of the wall particles is
removed to show the interior of the model.

www.pnas.org/cgi/doi/10.1073/pnas.1514757112
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Fig. 2. MSD for 1,000 particles under periodic and confined conditions, the
latter in a spherical cell of radius 14.4. (A) For BD with HI, there is a slow-
down of particles in the confined case compared with the periodic case. This
slowdown is also observed, but is very small, for particles in the interior of
the cell that never encounter the boundary. (B) For independent but con-
fined Brownian particles, the artificial slowdown of diffusion compared with
diffusion in periodic simulations is very small over a time interval of 0.3.
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Fig. 1. Configuration for a simulation with 1,000 cytoplasm particles (in
blue) and 841 wall particles (in pink). A hemisphere of the wall particles is
removed to show the interior of the model.

Effects of confinement on models of intracellular
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Fig. 6. Particle distribution after a time interval of 10 for the case of 20,000
cytoplasm particles in BD simulations with HIl. Results are plotted on a por-
tion of a semicircular disk of radius 40 and centered on the plane at (40,0).
(A) When the particle is initially at the wall, the particle has a tendency to
stay near the wall. (B) For a particle initially away from the wall, at (10,0), the
particle has a tendency to diffuse relatively uniformly.

Fig. 1. Configuration for a simulation with 1,000 cytoplasm particles (in
blue) and 841 wall particles (in pink). A hemisphere of the wall particles is
removed to show the interior of the model.

www.pnas.org/cgi/doi/10.1073/pnas.1514757112



Moving on: Nervous system Brain
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Neurons

Human brain contains ~10*! (100 billion) neurons!
(with 100 trillion+ connections inbetween)

National Geographic



Action potentials
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Electrical excitability

Decremental conduction
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Action potentials = Encoding

stimulus signal

Question:

How is a stimulus (i.e., “signal”)

encoded in spike patterns? response trains

sparse

dense

W M

Estimation in sparse and dense spike trains. An important factor determining the suc-
cess of the estimation process of Fig. 2.18 is the mean interval between spikes relative
to the correlation time of the input signal. If the spikes are sparse, as in the top spike
train, the stimulus correlation time divided by the mean interval between spikes pro-
vides a small parameter which can be used to construct a systematic approach to es-
timation, as described in more detail in the text. If, as in the lower response train, the
number of spikes per correlation time becomes of order one, or bigger, this condition is
not fulfilled and a perturbative approach to reconstruction is not feasible.

Rieke et al (1996)
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Action potentials EKD—\ /7Jr(t)
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Figure 1.2 §
All-or-none coding by action potentials. Each action potential generated by the cell =
has a similar shape. Thus action potentials are the elementary units of the neural code.
The top panel shows the difference between the voltage recorded with a fine tungsten
wire placed near a cell in the fly’s brain and that recorded with a reference electrode
placed in the body fluid. The middle panel shows the same voltage after band-pass
filtering to separate the relatively high frequency components in the action potential L
from low frequency noise; after filtering, the shapes of individual action potentials are c
quite similar. At the right, five action potentials are shown overlaid on an expanded E 'g
. . . g tqc - C ol
time scale. This gives an impression of the shape and of the reproducibility of the time 0
course. The bottom panel shows timing pulses generated electronically by a threshold | I T 1
discriminator circuit. 0.00 0.05 0.10 0.15 0.20

time (s)

Rieke et al (1996)



. . CENTRAL CLAIMS OF THIS BOOK
Action potentials

Nearly seventy years ago, Adrian summarized the first generation of experi-
ments on neural coding (Adrian 1928). We have argued that, even today, this
classic work contains a large fraction of what we know about the language of
the brain. Forty years later, Perkel and Bullock (1968) provided an encyclope-
dic summary of the state of the field, a handbook of diverse candidate coding
strategies in different systems. What can we add after all these years?

We believe that there has been substantial progress in both the formulation
K E S and the resolution of three major issues regarding coding by single neurons.

These three points form the core of our presentation:
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IFXPLORING THE NEURAL CODE
1. Representation of time-dependent signals. In a variety of sensory systems,

single neurons produce on the order of one spike per characteristic time of
stimulus variations—a sparse temporal representation. This is in direct contra-
diction to a simple, intuitive implementation of the rate coding idea, since the
rate is an average quantity not available from a single spike. Sparse temporal
codes can be decoded by simple algorithms, even when the encoding is a com-
plex nonlinear process. Thus the problem of decoding—the problem solved by
our homunculus—may be simpler than the classical problem of encoding.

2. Information rates and coding efficiency. The focus on signals with realistic
time dependencies leads to the demonstration that single neurons can transmit
large amounts of information, on the order of several bits per spike. In at
least one case, signals with more natural temporal correlations are coded more
efficiently, so that the spike train provides more information with roughly
the same number of spikes. These high rates come close to saturating the
fundamental physical limits to information transmission.
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3. Reliability of computation. Understanding the reliability of the nervous
system requires that we understand the code which the system uses to rep-
resent the answers to its computational problems; the study of neural coding
is thus tied to much broader issues of neural computation. In several systems
there is agreement between at least two of three fundamental quantities: The
reliability of behavior, the reliability of single neurons, and the fundamental
physical limits to reliability imposed by noise in the sense data itself. It is clear
that the approach to the physical limits is closest for the more natural tasks of
processing time-dependent signals.

gy ighdad Mataria



Action potentials
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Reliability of Spike Timing in Neocortical Neurons

Zachary F. Mainen* and Terrence J. SejnowskKi

It is not known whether the variability of neural activity in the cerebral cortex carries
information or reflects noisy underlying mechanisms. In an examination of the reliability
of spike generation using recordings from neurons in rat neocortical slices, the precision
of spike timing was found to depend on stimulus transients. Constant stimuli led to
imprecise spike trains, whereas stimuli with fluctuations resembling synaptic activity
produced spike trains with timing reproducible to less than 1 millisecond. These data
suggest a low intrinsic noise level in spike generation, which could allow cortical neurons
to accurately transform synaptic input into spike sequences, supporting a possible role
for spike timing in the processing of cortical information by the neocortex.

SCIENCE ¢ VOL. 268 ¢ 9 JUNE 1995
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Fig. 1. Reliability of firing patterns of cortical neurons evoked by constant and fluctuating current. (A) In
this example, a superthreshold dc current pulse (150 pA, 900 ms; middle) evoked trains of action
potentials (approximately 14 Hz) in a regular-firing layer-5 neuron. Responses are shown superimposed
(first 10 trials, top) and as a raster plot of spike times over spike times (25 consecutive trials, bottom). (B)
The same cell as in (A) was again stimulated repeatedly, but this time with a fluctuating stimulus [Gaussian

white noise, p, = 150 pA, o, = 100 pA, 7, = 3 ms; see (74)].
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Action potentials
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Figure 2.1
Variability of neural responses and construction of the average response. The top panel
shows a raster plot of 50 individual spike trains in response to a stimulus at 7 = 0.
200 — Each dot in the raster plot marks the time of occurrence of a single spike. In this
case, spikes are recorded extracellularly from the movement sensitive neuron Hl in
the fly visual system, as in figure 1.2. The visual pattern seen by the fly makes a step
motion at ¢ = 0, creating a brief impulse of nonzero angular velocity. We see that the
spike trains in response to repeated presentations of the same stimulus are not identical.
A count of the average number of spikes in each bin (10 ms in this case) following
stimulus presentation, and normalization to the number of presentations and the bin
100 — é size, produces the post-stimulus time histogram, or psth, shown in the bottom panel.
Normalized in this way, the psth gives the firing rate—or probability per unit time of
firing, r (t)—as a function of time. The delay before the peak in the firing rate is due to
delays in the visual receptors and in the synapses between the receptors and HI.
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Rieke et al (1996)



