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Moving on: Sensory systems
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Auditory periphery




Pressure

What is sound?

Snapshot in time

Position
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- Note the periodic nature present....

Pulkki & Karjalainen (2015)



Zweig et al. (1976)
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Aside: Fourier analysis
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—> Time and frequency
are “separated”




Fourier series

> Intuitive connection back to Taylor series:
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Taylor series > Expand a function as a (infinite) sum of polynomials

Different Idea: Fourier series - Expand function as a (infinite) sum of sinusoids

Hobbie & Roth (2007)



Fourier series

‘Waveform’ (temporal)
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Aside: Fourier analysis

Frequency (Hz)
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Aside: Fourier analysis

EXspectrogram.m
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“Physics 2030 Computational methods for physicists and engineers”

- Try making a spectrogram of your own speech!



Hair cell = ‘Mechano-electro’ transducer
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Putting it all together....

Biological Basis of Hearing-Aid Design

MURRAY B. SACHS,' IAN C. BRUCE,! ROGER L. MILLER,” and ERIC D. YOUNG'
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nals of Biomedical Engineering, Vol. 30, pp. 157-168, 2002

FIGURE 1. (A) Summary of the transduction process in the
mammalian cochlea. Sound (air-pressure fluctuations) cause
mechanical vibrations of the eardrum and middle ear bones;
these couple the vibrations to the inner ear, where they pro-
duce vibration of the basilar membrane (BM). BM vibrations,
in turn, displace the cilia of hair cells which transduce the
vibration into electrical potentials that excite action poten-
tials in auditory-nerve fibers. (B) lllustration of the tonotopic
organization of the cochlea. The BM vibrations are tuned, so
that energy at a given frequency causes a vibration which
peaks at one point along the membrane. The scale at left
shows the mapping of frequencies of maximum displace-
ment (or best frequencies) into place along the BM for the
cat cochlea. Auditory-nerve fibers innervate one hair cell,
and so are sensitive to the BM vibration at that point [(B)
redrawn from Zweig et al. (Ref. 44)].



Neural coding of sound

Voltage
Note: Responses shown here are from a single auditory nerve fiber
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Neural coding of speech

Fig. 1. Neurogram and spectrogram for a speech utterance produced by a female speaker.
A. Neurogram display of the activity of the cat auditory nerve in response to the utterance.
Each trace represents the average post-stimulus-time histogram for 2-7 auditory-nerve
fibers whose CFs are located in a 1/2 octave band centered at the vertical ordinate. All
histograms were computed with a bin width of 1 msec, and have been normalized to the
same maximum in order to emphasize temporal patterns. The stimulus level was such that
the most intense vowels were at 50 dB SPL. B. Broadband spectrogram of the utterance.
Filled arrows point to rapid increases in amplitude in the low frequencies (and their neural
correlates on top), while open arrows point to rapid increases in amplitude in the high
frequencies. The ovals show the second-formant movement in "green" and its neural

correlate.
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Neural coding of speech
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- Temporal variation within a single nerve
fiber across different repetitions (noisy?)

FIG. 1. Responses of a single auditory-nerve fiber to a speech
stimulus. At the top is shown the waveform for the utterance
“SHOO CAT.” Below is a display in which each dot means that
there was at least one spike discharge in a 10-ms interval

(bin) represented by the width of the dot. Each row of 180 bins
covers a time interval of 1.8 s during which the taped ‘“SHOO
CAT” stimulus is presented beginning at the first bin. The
stimulus is presented 64 times, and the resulting discharge
patterns are displayed in the 64 consecutive rows of dots. The
stimulus level was approximately 80dB p—p 7e 0. 0002 dyn/cm?
during the “00”. A post-stimulus-time histogram showing the
average response pattern was computed from these data and is
displayed in Fig. 4.

Kiang (JASA, 1980)



Biomechanics of speech

Lorynx | & Airways below the lorynx:
3 trachea,bronchi, lungs
7\
CRICOIC 3
CARTILAGE CARTILAGE 55cm
'\
2.5¢cm
TH R
CANTURGE (0)  COMMSSURE  (b) ©

1.0cm

ARD

Stevens (2000)



Biomechanics of speech

Vocal folds
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Key idea:
Spectrum

> X-axis is
frequency [Hz]

(i.e., Fourier transform)

- Vibrating vocal folds give off ‘buzzy’ sound due to harmonics
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Biomechanics of speech

Pressure source
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- Complex acoustic process is boiled down to a relatively
simple/tractable framework of ‘sources’ and tubes!

Stevens (2000)



Biomechanics of speech

Figure 3.1 Sketches indicating components of the output spectrum |p,(f)| for a vowel and a
fricative consonant. The output spectrum is the product of a source spectrum S(f), a transfer
function T(f), and a radiation characteristic R(f). The source spectra are similar to those derived
in figures 2.10 and 2.33 in chapter 2. For the periodic source, S(f) represents the amplitudes of
spectral components; for the noise source, S(f) is amplitude in a specified bandwidth. See text.

> Most easily described in spectral
domain (i.e., via Fourier transforms)

> Vocal folds (S) act as a (noisy) source,

sometimes vibrating

> Vocal tract shapes that sound (T),
creating “formants” for vowel

sounds
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Frequency (Hz)
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Zweig et al. (1976)

'
W

i

Traveling wave

IC FTIS

Basilar membrane

.
wn
D)
@)
O

<C
C

<C




Q

N
LLl

Q
C
—

B SN L8

o

x|
=
o

el

-
'x/
AT
J

i)

L4

(Al-Hasan ibn al-Haitham 1083)

JJ_‘_:}‘ 3,90 o,m_)




Vision

Choroid

Ciliary body

Fig. 1.1. A drawing of a section through the human eye
with a schematic enlargement of the retina.

WebVision (Utah)



Vision: Phototransduction
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Vision: Phototransduction
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Vision: Phototransduction

Dissolution Transport Transport Carrier- Pumps
and diffusion through through mediated
through water gated ion transport

A B lipid bilayer channels channels
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Figure 5.3. (A) Diagram of rod photoreceptor showing dark-current path and ion
transporters and pumps. (Reprinted from G. L. Fain and H. R. Marchews: Calcium
and the mechanism of light adapration in vertebrate photoreceptors. Trends in
Neurosciences 13:378 -84, 1990, with permission of Elsevier Trends Journals.) (B)
Intracellular recordings from a toad rod showing hyperpolarizing responses to a
light flash (arrow). Numbers to left show stimulus intensity in unics of log quanta Rod Rod

per square millimeter per flash. (Reprinted from G. L. Fain, G. H. Gold, and J. E. inner inner
Dowling: Receptor coupling in the toad retina. Cold Spring Harbor Symposium on segment segment
Quantitative Biology 40:547-61, 1975, with permission of the Cold Spring Harbor

Laboratory.)
Mcllwain (1996)

http://openwetware.org/wiki/BIO254:Phototransduction

In a nutshell: Light causes channels in cell membrane to close,
thereby triggering an electrical response




Vision: Phototransduction
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Figure 5.5. Diagram of a photopigment complex composed of a molecule of ret-
inaldehyde nestled within the seven membrane-spanning elements of the opsin.
The photopigment is an integral part of the cell membrane and is surrounded by N
the lipid bilayer. (Adapted from E. A. Dratz and P. A. Hargrave: The structure of

rhodopsin and the rod outer segment disk membrane. Trends in Biochemical Sciences

8:128-31, 1983, with permission of Elsevier Trends Journals.)

Mcllwain (1996)

—> Biochemical/molecular viewpoint...
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Vision: Neural processing
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Vision: Neural processing
STRIATE CORTEX

Geniculo-striate
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Figure 4.9. Schematic representation of the retino-geniculo-striate and retino-tectal
projections and the return projections from the visual cortex.
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106 J. Physiol. (1962), 160, pp. 106-154
With 2 plates and 20 text-figures

Printed in Great Britain

RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT’S VISUAL CORTEX

By D. H. HUBEL axp T. N. WIESEL

From the Neurophysiolosy Laboratory, Department of Pharmacology
Harvard Medical School, Boston, Massachusetts, U.S.A.

Note: This work on the neural basis of
“receptive fields” led to Hubel & Wiesel —
winning the 1981 Nobel Prize

Voltage

Time



Vision: Receptive fields

Light Spot i TR,

Membrane
Potential

Receptive Field

Tigure 6.4. Receprive field of an on-center bipolar cell. B, bipolar cell; I, hori-
contal cell; R, recepror. Small light spots projected on the retina cause depolari-
zation when they illuminate receprors contacting the bipolar cell directly. Hori-
zonral cells appear to mediare the hyperpolarizing effects of surround stimulacion.

Mcllwain (1996)
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Figure 6.1. Diagram of the retinal layers showing the laminar locations of the
principal types of cells. This diagram follows the anatomic convention of orienting

the retina with the vitreous side down.
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Olfaction (i.e., smell)
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Gustaoception (i.e., taste)
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Wikipedia (taste)



Tactioception (i.e., touch)

- N i
‘ ﬁ cuticula » ‘
= MEC-1
extracellular MEC-5
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sl MEC-10
membrane MEC-6
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The mechanosensitive protein complex of C. elegans. Left:
nine diVerent MEC proteins co-assemble to form an ion channel in the
plasma membrane of a mechanosensory neuron. The channel is formed
by MEC-4, MEC-6,and MEC-10. Other MEC proteins tether the chan-
nel to the cuticula and to the cytoskeleton. Right: when the cuticula is
shifted by gentle touch, the channel is pulled open, and cation inXux
generates a receptor potential

Frings (2009)



Cortical Homunculus
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Summary

Dissolution Transport Transport Carrier- Pumps
and diffusion through through mediated
through water gated ion transport

lipid bilayer channels channels A
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Extracellular v v

Figure 2.19

Intracellular

- All these aspects relates directly back to our picture of what is/moves
across the cell membrane and how such affects electrodynamics



Summary
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—> This “story” is continued in (much
more detail) in BPHS 4080....
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