
ISCI Integrated Assignment I (Fall 2016) SOLUTIONS 1 PROBLEMS

York University
ISCI Integrated Assignment I: Rocket Science SOLUTIONS

1 Problems
1. (6 pts) An important consideration in launching a rocket is escaping the gravitational potential energy

of earth.

(a) Briefly explain what gravitational potential energy is, and what the escape speed (v
esc

) represents.
SOL: Gravitational potential energy (⌘ U

G

) stems from the attractive force due to gravity between
two bodies. For a given pair of masses (m1 and m2) separated by distance r, the typical definition
(stemming from Newton’s Law of Gravitation and the general definition of potential energy as the
integral of work over distance) is

U
G

= �Gm1m2

r
(1)

with the convention that it is negative (in that it is “stored” energy): Consider that as an object
approaches a planet, gravity does positive work on that object. U

G

= 0 represents the case when
r = 1 (i.e., when the masses have been infinitely separated). v

esc

represents the condition when
kinetic energy of one of the objects (say, m1) is equal to U

G

. That is, it has enough energy to
escape the bound state due to the gravitational attraction. Carrying that calculation through, one
finds v

esc

=
q
2Gm2/r (note that this does not explicitly depend upon m1).

(b) Consider a rocket that is launched vertically upward at
p
2v

esc

from planet Earth, whose mass is
M

E

and approximate radius is R
E

. Derive an expression for its speed as a function of the distance
from the planet [i.e. v(r)]. [Hint: Remember conservation of energy!.]
SOL: Neglecting air resistance, energy will be conserved, meaning that K0+U0 = K(v)+U(r).
Here we know K0 [=1

2m(
p
2v

esc

)2, since v0 =
p
2v

esc

], U0 (=�GMEm

RE
, where m is the mass of the

rocket), and U(r) [=�GMEm

r

], so we can readily solve for the velocity v [since K(v) = 1
2mv2]:

v(r) = ±
s

v20 + 2GM
E

✓
1

r
� 1

R
E

◆
= ±

s

2GM
E

✓
1

r
+

1

R
E

◆
(2)

Note that if r = R
E

, this reduces to v(R
E

) =
p
2v

esc

as expected.

(c) Find numerical values for M
E

and R
E

, and write a Matlab script to plot v(r). Make sure to clearly
comment your code, and that your plot is clearly labeled.
SOL: Sample code is included at end of the document. Plot included below.

(d) Like the above problem, Example 8.5 (pg.136) of your physics text (Wolfson) states “A rocket
is launched vertically upward at 3.1 km/s”. Briefly explain conceptually what is wrong with the
basis of these problems.
SOL: A rocket starts with zero velocity and is accelerated to some velocity. So one can have a
rocket moving at that stated speed, but technically it is “launched” from rest (launch is defined as
to “start or set in motion”).
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Figure 1: Answer to Q.1c. See code at end of document.
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[Hint: Concepts from Wolfson ch.8 will likely be useful here.]

2. (8 pts) Estimate the energy required to send a rocket of mass M
o

to Mars. Clearly state assumptions
made and outline all the relevant calculations in detail.

[Hint: This is a “Fermi-type” problem. There are many paths one could take and possible considera-
tions to make, such as gravitational potential energy tied to Earth/Mars/Moon/Sun, engine efficiency,
etc. Wolfson ch.8.4 will also be useful (e.g., Eqn.8.6 in particular).]

SOL: Many different ways to approach this problem. Let’s focus on the change in gravitational po-
tential energy, where what we seek we will call �U . A simple approach would be as follows, though
we first introduce several variables: R

E

is the radius of the Earth, M
E

is the mass of the Earth, R
EM

is the distance between the surfaces of Earth and Mars, R
M

is the radius of the Mars, and M
M

is the
mass of the Mars.

• Let U
E

represent the gravitational potential energy binding the rocket to Earth. This is

U
E

= �GM
E

M
o

R
E

(3)

• Now ultimately this needs to be changed by

�U
E

⌘ U
EM

� U
E

(4)

where
U
EM

= � GM
E

M
o

R
E

+R
EM

(5)

That is, �U
EM

represents the amount of energy we need to give the rocket to move it distance
R

EM

due to Earth’s gravitational potential. Note that �U
E

> 0.

• This energy is in part offset somewhat⇤ by the gain in potential due to Mars (�U
M

). That is

�U
M

⌘ U
M

� U
ME

= �GM
M

M
o

✓
1

R
M

� 1

R
M

+R
EM

◆
(6)

Note that �U
ME

< 0. Also, |�U
ME

| < |�U
EM

|, since M
E

> M
M

and R
E

> R
M

.

• It is also worth noting that R
EM

>> R
M

, R
E

such that 1/R
M

� 1/(R
M

+R
EM

) ⇡ 1/R
M

(ditto
for Earth). This yields

�U = �U
E

+�U
M

⇡ GM
o

✓
M

E

R
E

� M
M

R
M

◆
(7)

So to first order, we have a rough ballpark estimate.
⇤Practically speaking, there is no obvious means to “harvest” the gain in gravitational potential energy due to moving closer to

Mars. But it is fun to include here nonetheless!
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• Extending further, this is (obviously) not the whole story. When leaving Earth and entering Mars,
there are atmospheric conditions that will give rise to drag. That is, we will need to impart a
kinetic energy greater than predicted from �U alone. How much so? Put another way, how might
one estimate the relative contribution of drag forces? Additionally, engines are not 100% efficient.
That is, they burn more energy than they output. So such would also need to be factored in to
revised estimates.

3. (4 pts) Rockets move about via thrust. That is, say in outer space, there is nothing to “push against”
so to induce an external force and thereby accelerate something else is required. So the relevant forces
have to come from “inside” the system (and hence thrust). A fundamental principle underlying thrust
is the conservation of momentum (COM).

(a) State the law of COM†. Identify several different interdisciplinary scenarios where COM plays an
important role (e.g., kinesiology, car crashes, etc.).
SOL: COM states that in a closed system not subject to external forces, the total momentum is a
constant. COM arises in an enormous variety of situations. A salient interdisciplinary example
is that of optical tweezers, where diffraction of incident light cause a spring-like (i.e., restorative)
force that allows one to “trap” microscopic objects. Such allows one to measure biologically-
relevant forces such as those tied to molecular motors such as kinesin (e.g., http://www.
nature.com/nature/journal/v400/n6740/abs/400184a0.html) and the forces
that hold DNA together
(e.g., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184516/).

(b) Explain conceptually why COM is relevant for rockets. For example, the momentum of what?
Does a rocket’s mass change with time? How is such related back to COM? Feel free to use
equations as needed.
SOL: A rocket, to first order, can be considered a closed system. By expelling propellant, prefer-
ably at some high (exhaust) velocity in an oppositely oriented direction, COM dictates that the
rocket must be propelled forward as a result. Same basic idea with a balloon that deflates and
flies about the room. Correspondingly, a rocket’s mass does change with time. We can firm this
up analytically a bit more. Consider a rocket whose mass (including fuel) is m. At some instant,
moves with velocity v0. At a later time, it has expelled some fraction of fuel (of mass �m) in the
opposite direction at velocity v

p

and as a result now moves forward with velocity v
R

. From COM,
we have:

(m+�m)v0 = �mv
p

+ (m��m)v
R

(8)

Note that while the ejected fuel moves opposite relative to the rocket, it can still move in the same
direction as viewed by a stationary observer. So its possible v

p

and v
R

have the same sign (though
the sign of the difference between them is key!).

(c) Examine Figs.1a and 1b. Outline what parallels there are between the two different scenarios
shown there. Additionally, what differences are there?

†Mastering Physics has a useful module along these lines entitled “Momentum Module 10: Linear Momentum Dynamic Study
Module”
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SOL: The two scenarios are directly analogous. A main difference is that the bullets come out in
discrete “chunks”, as opposed to a more continuous exhaust in the case of the rocket (and hence
the factor of n that arises in the figure).

4. (12 pts) Consider a rocket in deep space (like that in Fig.1b), where there are negligible external forces
such as gravity or drag. The mass of the entire rocket (i.e., including unused fuel) is M and it burns
fuel (i.e., expels the fuel in an opposite direction) at a constant rate µ until all the fuel is used up (call
that the burnout time, or t

B

). Assume that the velocity vrel of the ejected gas particles relative to the
rocket is constant.

(a) Draw a free-body diagram and set up the equation of motion via Newton’s 2nd law). Specifically,
you should find that

M
dv

dt
= F

T

(9)

where F
T

is the thrust force. How does F
T

depend upon the prescribed variables?
SOL: Free-body diagram is similar to that shown in the previous figure (i.e., rocket along w/
machine gun atop train car). The thrust force is directly tied to the ejected gas and the changing
mass of the rocket. Putting the pieces together, we have:

F
T

= �dM

dt
vrel (10)

where dM/dt describes the change in the rocket’s mass and vrel the relative velocity by which
that mass is ejected. Note that the units of dM/dt are mass per unit time and vrel distance per unit
time. Also note that given the assumptions made (chiefly that µ is a constant), dM/dt is just a
linear function of time.

(b) Determine the change of the velocity [i.e., v
tB

�v0] of the rocket during the time interval t 2 [0, t
B

]
as a function of the change of the rocket’s mass during that interval. Note that your answer does
not have an explicit time dependence and velocity depends upon the mass ratio (a useful measure
of time into the burn of a rocket). A common approach to solving this is to use integrals, but you
should try to solve it without integrals. Use only your knowledge of derivatives and solutions to
the (differential) equation of the form x0 = a+ bx (which you saw earlier in the semester). [Hint:
Your answer should be the so-called rocket equation.]‡

SOL: For simplicity, we will assume the rocket starts from rest (i.e., v0 = 0) and that we’ll
take the “integral” approach here. Let M be the mass of the rocket (and fuel) at some time t.
From the last part, we have

M
dv

dt
= �dM

dt
vrel (11)

Rearranging and “cancelling” the dt, we have:

dv = �dM

M
vrel (12)

‡Kudos if you didn’t Google this! But since you likely did, who was Konstantin Tsiolkovsky?
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Svstem
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Freaction = vr", dMldt
= -Vrctmn

Fis. 9-I t (o) Exarnple ll. A rrrachine gun is {ixed to a car t}rat rolis with negligible
friction. The gun fires builets of mass re at a rate (nurnber per unit time) n, the velocity
of ttre bullets rvith respect to the gun being rr - v. At the instant sholvn some bullets
have already left the systcrn. 'l'he velocitics indicated for the car and the bullets are
those that r.ould bc rneesured by an observel in a reference frame fixcd to the rails as
sholn. The reaction forcc on the system is F: -nt,nvrer: (dM/dt)v,.r. (b) A
rocket noves througli space r,r,ith negligible extcrnal forces. (ias particles are ejectetl
florn thc exhaust, the particles having a velocity u - v s'ith respect to the rocket. The
rate at u'hich mass is expelled at the exhaust is -dXI/dt. 'l'he reaction force on thtr
rocket is F : (i,M /tlt)v,,,r. The velocities indicated for the rocket and exhaust gases
are relative to the ground.

Figure 2: From Resnick and Halliday (1966).
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Now for simplicity, to integrate we assume vrel is a constant and that at t = 0, the rocket has zero
velocity and mass M0. Furthermore, we do not explicitly consider time (e.g., v = v(t)):

Z
v

0
dv = �vrel

Z
M

M0

dM

M
(13)

Solving through, we obtain:

v = vrel ln
✓
M0

M

◆
(14)

While time (e.g., t
B

) is not explicitly included here, implicitly it is (see next part). As long as the
fuel is being burned and is done so at a constant rate, Eqn.14 is valid. The velocity at t

B

would
simply just be vrel ln (M0/Mfinal

) Note that Eqn.14 indicates that the speed of the rocket can
increase to any value provided that the rocket expels enough propellant so that the final remaining
mass is sufficiently small. However, relativistic mechanics tells us that there ultimately is an upper
limit: c (the speed of light).

(c) Comment briefly on how time factors into your answer to the last part. How does the thrust change
as a function of time?
SOL: In our last equation, we implicitly have v = v(t) and M = M(t). Furthermore, the thrust
is assumed to be constant here.

(d) Rearrange your answer to the last part to express the rocket’s mass as a function of its velocity.
SOL:

M = M0e
�v/vrel (15)

(e) A rocket, weighing 30000 lbs. before liftoff, is fired vertically upward. At burnout, it weighs
10000 lbs. Gases are exhausted at a rate of 10 slugs/s, at a velocity of 5000 ft/s (relative to the
rocket). Assume both those two quantities are constant. What is the thrust force? Additionally,
what is the rocket’s speed and kinetic energy at t

B

?
SOL: Here we will neglect all external forces (e.g., gravity, air resistance). Relating back to the
rocket equation we derived, M0 = 30000 lbs., M = 10000 lbs, vrel = 5000 ft/s, and dM/dt = 10
slugs/s. The thrust force is just vreldM/dt = 50000 lbs. (since 1 lb of force equals 1 slug
ft/s2). The resulting velocity at burnout is 5493 ft/s ⇡ 3800 miles/hour. The kinetic energy is
1/2Mv2 = (0.5)(10000)(5493)2 = 1.51⇥ 1011 foot pounds (⇡ 2.11⇥ 1011 J). Presumably if air
resistance and/or gravity were factored in, these values would be smaller.

(f) At what mass ratio is the kinetic energy (T ) of the rocket, including fuel, maximal? Calculate
the velocity, mass, kinetic energy of the rocket, and the time at which that occurs [assuming
v(0) = 0].
SOL: Let’s make a change of variables. From earlier, we had

F
T

= �dM

dt
vrel ⌘ µ� (16)

We just made the change µ ⌘ �Ṁ (the diacritical dot indicates a time derivative) and � ⌘ vrel.
Now assuming no external forces (like gravity), we simply have from Newton’s 2nd Law:

Mv̇ = µ� (17)
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which leads to the familiar rocket equation we derived:

v = � ln
✓
M

o

M

◆
(18)

Now the kinetic energy (T ) is

T =
1

2
Mv2 (19)

where both M and v implicitly depend upon t. Let us determine the time that T is maximal:

dT

dt
=

1

2
(Ṁv2 + 2Mvv̇) = 0 (20)

Recall that Ṁ = �µ and Mv̇ = µ�, allowing us to rewrite the last equation as

µv

2
(�v + 2�) = 0 (21)

This indicates the velocity is maximal when v = 2�. Back to the rocket equation, the kinetic
energy is maximal at:

2� = � ln
✓
M

o

M

◆
! M

o

M
= e2 (22)

Note that we can also explicitly solve for the time at which this occurs. Since the exhaust rate (µ)
is constant, M(t) = M0 � µt (i.e., just a linear function, w/ the caveat that M cannot become
negative). Solving then for t

T

(i.e., the time at which T is maximal), we find

2 = ln

 
M0

M0 � µt
T

!

! t
T

=
M0

µ
(1� e�2) (23)

Correspondingly:

T (t
T

) = 2M0

✓
�

e

◆2

(24)

To visualize this, consider the output of the code appended to the solutions. To summarize, note
that a more generally, given the assumptions made, the rocket equation can be written with time-
dependence as

v(t) = � ln

 
M0

M0 � µt

!

(25)

(g) In terms of mass ratios, is a rocket like a car? Why or why not?
SOL: Not really. The mass of the car is far greater than that of the gasoline it carries. Such is
unlike a rocket, where a significant fraction of the total mass (at launch) is fuel.

(h) Now consider the rocket in the constant gravity field near Earth, where the goal is to get off
the surface. Draw the relevant free-body diagram. Set up the equation of motion (i.e., what
modifications to Eqn.9 need to be made?). Which condition has to be satisfied to allow the rocket
to take off?
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Figure 3: Kinetic energy as a function of mass ratio. Assumes that g = 0 m/s2. Note the maximum occurs
when the mass ratio is e2.
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SOL: Thrust is no longer the only relevant force. Consider inclusion of gravity for example (your
free-body diagram should indicate that it acts opposite to thrust and hence):

M
dv

dt
= F

T

�Mg (26)

where g is the acceleration due to Earth’s gravitational field. In order for take-off to occur, there
must a positive acceleration (i.e., F

T

= µ� > M0g; see previous parts for variable definitions).

[Hint: Ch.7.8 of Hawkes (Physics for Scientists and Engineers: An Interactive Approach) might be
helpful! Try heading over to Steacie!]

5. (6 pts) This question builds off your derivation of the rocket equation in the last part and asks you to
computationally explore several aspects via Matlab. Along with your answers, you should turn in any
relevant code. Make sure it is concise and commented (so to make clear what is what).

(a) Write a code that plots the velocity of the rocket as a function of the mass ratio for several different
exhaust velocities (vrel).
SOL: Sample code is included at end of the document. Figure for one choice of exhaust velocity
(vrel = 5000 m/s) is shown here. Lower velocities can be observed to not allow the rocket to
achieve escape velocity.

(b) Pick a set of parameters (e.g., vrel) and determine at what point the rocket’s velocity exceeds that
of the exhaust velocity. Comment (e.g., How does such depend upon vrel? Do the relevant values
seem special in some way?). Additionally, how would such appear to an observer on the ground?
SOL: From the upper panel in the figure shown for the last part, one can observe that the mass
ratio is approximately e when the rocket velocity surpasses the exhaust velocity (it is precisely e
when g = 0 m/s2). This should make sense as the rocket equation (neglecting gravity) states that
the rocket velocity (V ) is

V = vrel ln
M0

M
(27)

and the natural log of e is just 1. At that point, a stationary observer on Earth would see both
exhaust and rocket moving in the same direction, but the rocket moving relatively faster.

[Hint: A book entitled Rocket and Spacecraft Propulsion by Martin J.L. Turner might be helpful. You
should be able to find a soft copy via York’s subscription to SpringerLink (if you have trouble, ask a
librarian in Steacie!).]

6. (10 pts) The Rocketdyne F1 is NASAs most powerful liquid fueled rocket engine. It was the engine
that propelled the Saturn V rocket to the moon. The F1 burns a mixture of kerosene and liquid oxygen.
Kerosene is a mixture of hydrocarbons, but it can be represented as primarily C14H30. The combustion
temperature is 3545 K.

The mixture is sprayed into the combustion chamber at a rate of 3521 kg/s (788 kg s�1 of kerosene,
2733 kg s�1 of liquid oxygen). Combustion occurs so rapidly that you can assume the gaseous products
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Figure 4: Figure computed via EXrocketM1.m (see code appended to end). Here it was assumed that vrel =
5000 m/s and that g = 9.8 m/s2 (constant).
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are produced instantaneously. Given the law of conservation of mass, dm/dt must therefore be 3521
kg s�1. The exhaust gases exit through a 1.23 m diameter nozzle at a desired exhaust velocity, C (note
the different variable name relative to previous problems), of 340 m s�1.

You can assume that the pressure at the nozzle is constant and equal to the pressure in the chamber.
Thus, the exhaust gas is expanding through the nozzle under constant pressure, and hence doing work
on the surroundings.

(a) Write a balanced chemical equation for the combustion reaction at 3545 K. Dont forget to include
states of all reactants and products.
SOL: See attachment at end for all parts of this question.

(b) What is the molar mass of the exhaust gas mixture?

(c) Does the engine need oxygen in the (external) air to function?

(d) Derive an equation expressing the pressure of the gas mixture in the combustion chamber to C,
T , A (nozzle cross-sectional area), M , and m0 (which is dm/dt). Assume the exhaust gas mixture
behaves ideally (a very good assumption at such high temperature).

(e) Using the equation you derived along with the parameters given in this problem, calculate the
pressure in the combustion chamber required to produce the desired exhaust velocity.

(f) Derive an equation that relates the power (time derivative of work) of the exhaust gases to C.
Avoid using the symbol P for power since it can be confused for pressure. Use the Greek letter �.

(g) Use your equation to calculate the power (in megawatts) of the F1 rocket engine.

7. (5 pts) Watch video of a classic rocket launch (Apollo 8):
https://www.youtube.com/watch?v=FzCsDVfPQqk.

(a) Describe from a interdisciplinary point-on-view the various phenomena you see throughout the
video. Concisely describe several aspects that are or are not consistent with your preceding anal-
ysis (e.g., the twisting of the gases about the rocket around the 41 s point).
SOL: Many aspects from biology, chemistry, and physics are obvious here. Another key “disci-
pline” at work here is engineering. Note that the analysis above is relatively highly simplified. For
example, there was no explanation tied to the “sideways shaking” (our treatment was strictly 1-D)
nor the associated “vibration”. Notice too all the various gaseous plumes around the rocket (not
tied to thrust), presumably tied to air resistance. Lastly, the multi-stage nature was not accounted
for in our analysis.
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(b) Comment on certain quotes (e.g., “The sideways shaking was unbelievable. The vibration was
so intense, you couldn’t see the instrument panel.”) and how they are or are not consistent with
assumptions made in the preceding problems. Put another way, comment upon the simplifying
assumptions made throughout your analysis.
SOL: See comments in the last part. In short, we treated the problem as 1-D and neglected air
resistance. Furthermore, the “vibration” aspect is suggestive of resonant modes present in the
rocket mechanics. Other simplifying assumptions include: the exhaust velocity (c) is constant,
and the force due to gravity is constant (i.e., g = 9.8 m/s2).
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Sample Matlab code for Q.1c that plots the velocity as a function of distance from Earth:

% code to produce plot to ISCI F16 IA1 Q1c (12.20.16)

clear
% -----
RE= 6.371* 10ˆ(6); % approx. radius of Earth [m]
ME= 5.97* 10ˆ(24); % approx. mass of Earth [kg]
G= 6.67* 10ˆ(-11); % Gravitational const. [mˆ3 kgˆ-1 sˆ-2]
% -----
r=linspace(RE,1000*RE,500);
v= sqrt(2*G*ME*(1./r + 1/RE));
figure(1); clf;
h1= semilogx(r,v,'LineWidth',2); grid on; hold on;
h2= plot([r(1) r(end)],sqrt(2*G*ME/RE)*[1 1],'r--','LineWidth',2);
h3= plot([r(1) r(end)],sqrt(2)*sqrt(2*G*ME/RE)*[1 1],'g--','LineWidth',2);
legend([h1 h2 h3],'Velocity of object','Escape velocity','initial velocity')
xlabel('Distance from Earths center [m]'); ylabel('Velocity [m/s]');
title('Solution to Q1.c from ISCI 1301 IA1');
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Sample Matlab code for Q.5a that plots the velocity of the rocket as a function of the mass ratio for a
specified exhaust velocity:

% ### EXrocketM1.m ### [08.10.16 CB]

% NOTE: Not sure if this code is correct for g \neq 0 (i.e., the
% time-dependent aspect needs to be handled more carefully)

% Simple code to demonstrate 1-D "dynamics" tied back to a rocket launch.
% Governing eqn. (assumed 1-D here) is as follows:
% m*dv/dt = F + c*dm/dt
% v is the rocket's velocity and m the total mass at any given instant
% o left-hand term is just Newton's 2nd law
% o the term c*dm/dt (=T) is the "thrust" due to gas expulsion, c is const.
% and assumed to be parallel and opposite v; dm/dt <0 (i.e., mass is lost
% due to rocket burning fuel)
% o F represents any additional external forces such gravity and/or drag

% NOTE: In some texts, the thrust force is written as c*dm/dt = v_e* mR
% where v_e (=c) is the "effective exhaust velocity" and mR (=dm/dt) is the "mass flow
% rate", with the notion that mR= dM/dt (M is the total instantaneous mass
% of the rocket, i.e., that of rocket + fuel). Presumbaly done because both of these are
% assumed to be constant?; see note below re "mass ratio"

% Here we assume:
% - c is constant
% - v0=0 (i.e., rocket starts from rest) and t0=0
% - the time at which the rocket burns all its fuel is called "time of burn" (t= tB)

% Several different cases:
% 1. No external forces
% dv/dt = -c* (1/m)* dm/dt
% SOL: m= m0* exp(-deltaV/c)
% + conversely: v= v0+ c* ln(m0/m) (commonly known as the "rocket equation")
% + m0/m is called the "mass ratio" (>= 1) and is sometime called R
% + obtained via integrating between initial time t0 and final time t
% + here deltaV = v-v0 the change in velocity over the interval t-t0
% + m=m(t) and m0= m(t0)
% + rearrange to bring in time-depend.: v(t)= v0- c*ln[1+ t*(dm/dt)/m0]
% + propellant mass (massF) equals m0-m= m0(1- exp(-deltaV/c))
% + from an engineering POV, one can control c; dm/dt<0
% 2. Gravity present
% m*dv/dt = -c* (1/m)* dm/dt - g
% SOL: v= v0+ c*ln(m0/m)- g*tB = v0+ c*ln(m0/m)- g*[(m-m0)/(dm/dt)]
% + conversely: m= m0* exp[-(deltaV+g*tB)/c]
% + *** assumes c*(dm/dt) > m0*g at t=0 (otherwise rocket won't take off;
% it will sit on launch pad burning fuel until this req. is met)
% 3. Gravity and drag present (NOT CONSIDERED numerically by this code)
% m*dv/dt = -c* (1/m)* dm/dt - g - D/m
% SOL: {see note below; hard since D is a function of t}
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% + here D is the drag force
% + D= (1/2)* rho* vˆ2* A* Cd
% + rho is the density of air, A the effective area, Cd drag coefficient
% + rho is a function of the rocket's height (call it z) and can be
% approximated by rho= rho0* exp(-z/H) where rho0 is the density at
% sea-level and H the "scale height" (~8000 m)
% + hard to determine an explicit analytic solution and the ODE needs to
% be integrated numerically
% + realisitcally, the relative difference between the drag force and
% gravity is quite small (~2%)

% =========================================================
% From Turner (pg.16)
% "The rocket equation shows that the final speed depends upon only two numbers:
% the final mass ratio, and the exhaust velocity. It does not depend on the thrust,
% rather surprisingly, or the size of the rocket engine, or the time the rocket burns,
% or any other parameter. Clearly, a higher exhaust velocity produces a higher rocket
% velocity, and much of the effort in rocket design goes into increasing the exhaust
% velocity. [...] To achieve a high rocket velocity, the mass ratio has to be large."

% =========================================================
% QUESTIONS (for students)

% o When using the escape velocity as a benchmark, does it matter that the
% rocket's mass is changing as it rises? Or that the distance is changing
% as it accelerates?
% o How might we change our approach here if the exhaust velocity (c or
% v_e) is not a constant?
% o How would you modify the code below to bring in explicit time
% dependence?
% o The exhaust has some mass (otherwise the rocket wouldn't move!). Can
% you plot that as some sort of mass flow rate?
% o At what point does the rocket speed exceeds the exhaust speed? (Hint:
% DOes the mass ratio equal a special number? Why?)

% Ref. (see eqns.12ff)
% o [Peraire & Widnall] http://ocw.mit.edu/courses/aeronautics-and-astronautics/
% 16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec14.pdf
% o book by Turner (Rocket and Spacecraft Propulsion)

clear
% --------------------
% User params.

m0= 300000; % initial total rocket mass [kg] {300000}
massfrac= 0.07; % fraction of rocket's mass not fuel {0.07}
c= 4000; % exhaust velocity [m/s] {4000}

g= 9.8; % acceleration due to gravity [m/sˆ2] {0}
tB= 20; % time of burn [s]
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G= 6.67*10ˆ(-11); % Gravitational const. [mˆ3/(kg*sˆ2)]
rE= 6.37*10ˆ(6); % Earth's radius [m]
massE= 5.97*10ˆ(24); % Earth's mass [kg]

% --------------------

% [derived quantities]
Isp= c/g; % "specific impulse" [s]
massRO= m0*massfrac; % rocket's total mass (const) [kg]
massF= m0- massRO; % mass of rocket's fuel at launch [kg]
massR= linspace(1,1/massfrac,100); % mass ratio (as a function between liftoff and burnout)
mass= m0./massR; % rocket's total mass for a given mass ratio [kg]
vE= sqrt(2*G*massE/rE); % escape velocity from Earth [m/s]
mrBO= m0/massRO; % mass ratio at time of burnout [same as massR(end)]

mdot= massF/tB; % mass flow rate [kg/s]
time= -(mass-m0)/mdot; % proxy for time (see P&W eqn.16)
vt= c*log(1+ time*mdot/m0); % velocity as function of time (assumes g=0!)

% determine relevant quantities (see notes above)
v= c*log(massR)- g*tB; % velocity versus mass ratio
m= m0- mdot*time; % mass as a function of time
T= 0.5* m.*v.ˆ2; % kinetic energy of rocket
%T= 0.5* (m0./massR).*v.ˆ2; % equivalent to the last line

exFlow= (massF-massRO)/tB;

% plot
figure(1); clf;
subplot(211)
h1= plot(massR,v,'LineWidth',2); grid on; hold on;
h2= plot([massR(1) massR(end)],[vE vE],'r--','LineWidth',2);
h3= stem(mrBO,v(end),'k');
xlabel('Mass ratio (m0/m \equiv R)'); ylabel('Velocity [m/s]');
legend([h1 h2 h3],'Rocket velocity','Escape velocity',...

'mass ratio at burnout','Location','West');
subplot(212)
plot(v,m0./m,'LineWidth',2); grid on; hold on;
xlabel('delta V'); ylabel('Mass ratio');

figure(2); clf;
k1= plot(massR,T,'LineWidth',2); grid on; hold on;
xlabel('Mass ratio'); ylabel('Kinetic energy [J]');
k2= plot([exp(2) exp(2)],[0 max(T)],'r--','LineWidth',2);
legend([k1 k2],'Kinetic energy','eˆ2','Location','SouthEast');
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Integrated Assignment 1 (Chemistry) 
 
6.1 
 

C14H30(l) + !"!  O2(l) ! 14 CO2(g) + 15 H2O(g) 
 
6.2 
 

!!"# =
14
29 44.011!!!!"#!! + 1529 18.016!!!!"#!! = 50.57!!!!"#!! 

 
6.3 No oxygen from the air is needed 
 
6.4 
 

!" = !"# 
 

! = !" 
 

!"# = !!! !" 
 

!
!" !"# = !

!"
!
! !"  

 
Assuming P and T are constant, 
 

!" !"!" =
!"
!
!"
!"  

 

!"# = !"#′
!  

 

! = !"#′
!"#  

 
6.5 

! = 8.314!!!!!!"#!! 3545! 3521!!"!!!!
1.188!!! 340!!!!!! 30.57!10!!!"!!"#!!  

 
! = 8.40!10!!!" = 82.9!!"# 

 
6.6 

!" = !"# = !"#$ 
 



∅ = !"
!" = !" !"!" = !"# 

 
∅ = 8.40!10!!!"!! 1.188!!! 340!!"!!  

 
∅ = 3.39!10!!!"#!! = 3390!!" 


