PHYS 6204 1.0: Elements of Quantum Scattering Theory (Winter 2016)

Assignment

Due: April 18, 6:00 p.m.

1. (10 marks) Consider the asymptotic form of the stationary wave function for potential scattering

$$
\begin{equation*}
\psi(\mathbf{r}) \xrightarrow{r \rightarrow \infty} e^{i k z}+f(\theta, \phi) \frac{e^{i k r}}{r} . \tag{1}
\end{equation*}
$$

The total current density associated with Eq. (1) can be cast into the form

$$
\mathbf{j}(\mathbf{r})=\mathbf{j}_{\mathrm{inc}}(\mathbf{r})+\mathbf{j}_{\mathrm{sc}}(\mathbf{r})+\mathbf{j}_{\mathrm{int}}(\mathbf{r})
$$

with

$$
\begin{aligned}
\mathbf{j}_{\mathrm{inc}}(\mathbf{r}) & =\frac{\hbar k}{m} \hat{z} \\
\mathbf{j}_{\mathrm{sc}}(\mathbf{r}) & =\frac{\hbar k|f(\theta, \phi)|^{2}}{m r^{2}} \hat{r}
\end{aligned}
$$

Determine $\mathbf{j}_{\text {int }}(\mathbf{r})$ (at large r) and show that

$$
\oiint \mathbf{j}_{\mathrm{jint}}(\mathbf{r}) \cdot d \mathbf{S}=-\frac{4 \pi \hbar}{m} \operatorname{Im} f(\theta=0) .
$$

Use this result to prove the optical theorem

$$
\sigma_{\mathrm{tot}}=\frac{4 \pi}{k} \operatorname{Im} f(\theta=0)
$$

2. (10 marks) Calculate the electrostatic potential

$$
\Phi(r)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}
$$

for the charge density associated with a hydrogen atom in the ground state ${ }^{1}$. Show that

$$
\Phi(r) \xrightarrow{r \rightarrow 0} \frac{1}{4 \pi \epsilon_{0} r} .
$$

Discuss the usefulness and the limitations of the potential energy function

$$
\begin{equation*}
V(r)=-e \Phi(r) \tag{2}
\end{equation*}
$$

to describe elastic electron-hydrogen scattering.

[^0]3. (20 marks) Consider the spherical potential well
\[

V= $$
\begin{cases}-V_{0} & r<R \tag{3}\\ 0 & r>R\end{cases}
$$
\]

with $V_{0}>0$.
(a) For S-wave scattering one can show that

$$
\tan \delta_{0} \xrightarrow{k \rightarrow 0}-k a \quad \text { with } \quad a=\frac{R L(R)-1}{L(R)},
$$

where $L(R)=\frac{K \cos K R}{\sin K R}$ with $K=\sqrt{k^{2}+\frac{2 m}{\hbar^{2}} V_{0}}$, and δ_{0} and a being the S wave scattering phase shift and scattering length, respectively. Show that for $k R \ll 1$ and $K R \ll 1$ one obtains the scattering amplitude

$$
f(\theta) \approx-a \approx \frac{K^{2} R^{3}}{3} \approx \frac{2 m V_{0} R^{3}}{3 \hbar^{2}}
$$

and the total cross section

$$
\begin{equation*}
\sigma_{\mathrm{tot}} \approx \frac{16 \pi}{9} \frac{m^{2} V_{0}^{2} R^{6}}{\hbar^{4}} \tag{4}
\end{equation*}
$$

(b) In the Born approximation one has

$$
f(\theta)=-\frac{m}{2 \pi \hbar^{2}} \tilde{V}(\mathbf{q}) \quad \text { with } \quad \tilde{V}(\mathbf{q})=\int V(r) e^{-i \mathbf{q} \cdot \mathbf{r}} d^{3} r
$$

where $\mathbf{q}=\mathbf{k}_{f}-\mathbf{k}_{i}$ is the momentum transfer, whose magnitude is related to the scattering angle by $q=2 k \sin \frac{\theta}{2}\left(k=\left|\mathbf{k}_{i}\right|=\left|\mathbf{k}_{f}\right|\right)$. Show for the potential well (3) by direct integration using spherical coordinates ${ }^{2}$ that

$$
\tilde{V}(\mathbf{q})=\tilde{V}(q)=\frac{4 \pi}{q} \int_{0}^{\infty} r V(r) \sin q r d r=-\frac{4 \pi V_{0}}{q}\left(\frac{\sin q R}{q^{2}}-\frac{R \cos q R}{q}\right) .
$$

Reobtain (4) for $q R \ll 1$.
(c) (Bonus) Along similar lines, calculate the Born scattering amplitude for the potential (2).
4. (10 marks) Consider elastic scattering from a central potential in the Born approximation. We have seen in class that the T-matrix can be written in the form

$$
\begin{equation*}
T_{f i}^{B 1}=\frac{\alpha}{q^{2}} \int \rho(r) e^{-i \mathbf{q} \cdot \mathbf{r}} d^{3} r \tag{5}
\end{equation*}
$$

where α is a constant and $\rho(r)$ the radially symmetric charge density of the target.
(a) Assume a small momentum transfer such that the exponential in Eq. (5) can be Taylor-expanded. Find and interpret the lowest-order contribution to the T-matrix (5).
(b) Find and interpret the next contributing term to the T-matrix (5).

[^1]
[^0]: ${ }^{1}$ You can use atomic units if you prefer.

[^1]: ${ }^{2}$ You may find the integral $\int x \sin a x d x=(\sin a x) /\left(a^{2}\right)-(x \cos a x) /(a)$ useful.

