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Abstract

This paper extends three Lasso inferential methods, Debiased Lasso, C(α) and

Selective Inference to a survey environment. We establish the asymptotic validity

of the inference procedures in generalized linear models with survey weights and/or

heteroskedasticity. Moreover, we generalize the methods to inference on nonlinear

parameter functions e.g. the average marginal effect in survey logit models. We

illustrate the effectiveness of the approach in simulated data and Canadian Internet

Use Survey 2020 data.

Keywords: Survey data, Survey weights, Lasso, Logit, Average Marginal Effect,

Post-Selection Inference

1 Introduction

Survey data are widely used in many disciplines of social sciences. The statistical methodol-

ogy for survey samples has been well-developed and culminated in a large body of literature

(see e.g. Cameron and Trivedi, 2009; Wooldridge, 2010; Fuller, 2011; Thompson, 2012).
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Despite the rapid development of machine learning/high-dimensional econometrics and

the increasing availability of big datasets in recent years, the research on how to adapt/apply

these high-dimensional statistical methods to survey data has been lagging. This paper

aims to fill this gap in the literature by providing extensions of Lasso inference methods to

survey environment. Our hope is to enrich the toolbox of practitioners who want to apply

the high-dimensional regression methods to survey data.

Most prediction-oriented methods, including the Lasso, trade off bias and variance,

and consequently, deliver a biased estimate that is not suitable for making inference on

the model coefficients. Several post-Lasso-selection inference methods that mitigate this

shortcoming have been proposed in the literature. Among others, Zhang and Zhang (2014)

and Javanmard and Montanari (2014) propose a debiased Lasso (DB) method which is

based on one-step iteration of the initial Lasso estimator. Belloni et al. (2016) propose

double selection and C(α)-type methods in a generalized linear model (GLM) that satisfies

sparsity assumptions. The latter is based on an estimating equation orthogonalized against

the nuisance parameter “score” function.

Lee et al. (2016) propose a selective inference (SI) method for the parameters in a

linear model selected by the Lasso. The method is extended to a homoskedastic GLM

by Taylor and Tibshirani (2018). In SI, the target parameters are determined from the

data as opposed to being fixed before the the selection events. This feature makes the

post-selection method conceptually different from the C(α) and DB methods, where the

target parameters are the population parameters.

This paper presents two rather straightforward results. We first extend the C(α),

DB and SI methods to a GLM estimated by the Lasso to accommodate survey weights

and/or heteroskedasticity. The survey framework we adopt is similar to that of Wooldridge

(2001). Accounting for survey weights naturally leads to conditional heteroskedasticity

which, in turn, brings about an extra challenge because the active and inactive constraints

of the Karush-Kuhn-Tucker condition for the Lasso problem are no longer asymptotically

independent, and conditioning only on the active constraints as considered by Taylor and

Tibshirani (2018) for a homoskedastic GLM may lead to invalid inference.

Second, we establish the asymptotic validity of the above three methods for inference
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on nonlinear parameter functions such as the average marginal effects (AMEs) in a survey

logit model.

There exist very few studies on the application of Lasso methods to survey data. Mc-

Conville et al. (2017) consider a survey-weighted linear Lasso regression and develop a

finite population asymptotic theory for Lasso estimators with a fixed number of regressors.

In contrast, we consider a survey-weighted GLM and establish the asymptotic validity

inference procedures under the usual infinite population framework, see e.g. Wooldridge

(2001, 2010) and Cameron and Trivedi (2009) for the latter. Additionally, we allow for

a growing number of covariates in the survey extensions of the debiased Lasso and C(α)

methods.

The paper is organized as follows. Section 2 lays out the model framework. We propose

extensions of the selective inference, debiased Lasso and C(α)/orthogonalization methods

in Section 3. Section 4 applies the proposed methods to inference on AMEs in a survey

logit model. Section 5 provides a simulation evidence on the properties of the proposed

methods and Section 6 presents an empirical application to Canadian Internet Use Survey

2020 data. We conclude in Section 7.

Notations and terminology Let 1(·) denote the indicator function, and λmin(A) and

λmax(A) denote the smallest and the largest eigenvalue of a symmetric matrix A, respec-

tively. For a k × 1 vector a = (a1, . . . , ak)′, we define ‖a‖0 ≡ supp(a) (the number of

nonzero components of the vector a) and ‖a‖1 ≡
∑k
i=1 |aj|. For a real matrix A = (aij),

let ‖A‖∞ ≡ maxi,j |aij|, and ‖A‖ =
√

tr(A′A) and ‖A‖2 =
√
λmax(A′A) denote its Frobe-

nius and spectral norms, respectively. The sub-Gaussian norm of a random variable X is

defined as

‖X‖ψ2 ≡ sup
m≥1

m−1/2(E[|X|m])1/m. (1.1)

A random variable X is called sub-Gaussian if ‖X‖ψ2 ≤ C < ∞ for a constant C > 0.

A random vector X ∈ Rp is called sub-Gaussian if the one-dimensional marginals X ′b are

sub-gaussian random variables for all b ∈ Rp. The sub-Gaussian norm for the random

vector is defined as ‖X‖ψ2 ≡ sup‖b‖=1 ‖X ′b‖ψ2 . The sub-exponential norm of a random
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variable X ∈ R is

‖X‖ψ1 ≡ inf{t > 0 : E[exp(|X|/t)] ≤ 2}. (1.2)

Moreover, let 1m = (1, . . . , 1)′ and 0m = (0, . . . , 0)′ denote the m × 1 vector of ones and

zeros, respectively, and ejm denote the m× 1 unit vector whose j-th element is 1 and the

remaining elements are 0.

Let F (x;µ, σ2, a, b) denote the CDF of a N(µ, σ2) random variable truncated on the

interval [a, b], that is,

F (x;µ, σ2, a, b) ≡ Φ((x− µ)/σ)− Φ((a− µ)/σ)
Φ((b− µ)/σ)− Φ((a− µ)/σ) ,

where Φ(·) is the CDF of a N(0, 1) random variable. Also, let Λ(z) ≡ exp(z)/(1 + exp(z))

denote the CDF of logistic distribution.

We abbreviate central limit theorem and continuous mapping theorem as CLT and

CMT, respectively.

2 Model

We consider a GLM that specifies the conditional density of a scalar outcome variable yi
given a (p+ 1)× 1 vector of covariates xi which includes a constant as

f(yi|xi, θ0) = exp(yix′iθ0 − a(x′iθ0))c(yi), i = 1, . . . , n,

where θ0 is the true value of the parameter vector θ ∈ Rp+1, and a(·) and c(·) are known

functions. To each vector of observations (yi, x′i)′, i = 1, . . . , n, there corresponds a positive,

bounded survey weight denoted as wi, i = 1, . . . , n.1 Let g(y, x′θ) ≡ − log f(y, x′θ) and

define the weighted log-likelihood function as follows:

L(θ) ≡ −n−1
n∑
i=1

wig(yi, x′iθ). (2.1)

1In our framework, {(yi, x
′
i, wi)′}n

i=1 actually forms a triangular array {{(yni, x
′
ni, wni)′}n

i=1. We drop
the index n for notational simplicity.
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As is well known, the weighted likelihood framework is commonly used in survey data

analysis (Manski and Lerman, 1977; Cameron and Trivedi, 2009; Wooldridge, 2010), and

accommodates, among others, the following stratification schemes.

Example 1 (Standard stratified sampling). Let Z be the population for z = (y, x′)′ which

is assumed to be infinite (or contain a large number of units). Z is stratified into J ,

nonempty, mutually exclusive and exhaustive strata such that Z = ⋃J
j=1Zj. nj observa-

tions {zij}nji=1 = {(yij, x′ij)′}
nj
i=1 are sampled randomly from each stratum Zj, j = 1, . . . , J .

The strata sample sizes, njs, are non-random, and the population frequencies qj = P [z ∈

Zj] > 0, j = 1, . . . , J, are assumed to be known. The weights on the observations from the

j-th stratum are given by wn0+···+nj−1+1 = · · · = wn0+···+nj−1+nj = qj/(nj/n), j = 1, . . . , J,

with n0 = 0 and n = ∑J
j=1 nj. Let us re-label the observations as zij = zn0+···+nj−1+i, i =

1, . . . , nj, j = 1, . . . , J . The corresponding likelihood function is then

L(θ) = −
J∑
j=1

qj

(
n−1
j

nj∑
i=1

g(yij, x′ijθ)
)

= −n−1
n∑
i=1

wig(yi, x′iθ). (2.2)

Example 2 (Exogenous stratification). Let Z = Y × X , where Y and X are the sample

spaces for y and x. The population is stratified into J strata according to a deterministic

function of xi: X = ∪Jj=1Xj, where Xj, j = 1 . . . , J, are mutually exclusive. The pop-

ulation frequencies qj = P [z ∈ Zj] = P [x ∈ Xj] > 0, j = 1, . . . , J, are assumed to be

known. Given n = ∑J
j=1 nj observations {zij}i=1,...,nj , j=1,...,J = {(yij, x′ij)′}i=1,...,nj , j=1,...,J ,

where {zij}nji=1 = {(yij, x′ij)′}
nj
i=1 sampled randomly from each stratum Zj, j = 1, . . . , J , the

likelihood function can be formulated as in (2.2).

Wooldridge (2001) established the asymptotic properties of M -estimator under the above

two sampling schemes. We use the same sampling schemes to establish the asymptotic

validity of the Lasso-based inference methods described below.

The score function, the sample information and negative Hessian matrices correspond-
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ing to (2.1) are defined as

S(θ) ≡ ∂L(θ)
∂θ

= −n−1
n∑
i=1

wixiġ(yi, x′iθ), ġ(y, t) ≡ ∂g(y, t)
∂t

, (2.3)

Î(θ) ≡ n−1
n∑
i=1

w2
i xix

′
iġ(yi, x′iθ)2, (2.4)

Ĥ(θ) ≡ −∂
2L(θ)
∂θ∂θ′

= n−1
n∑
i=1

wixix
′
ig̈(yi, x′iθ), g̈(y, t) ≡ ∂2g(y, t)

∂t2
. (2.5)

Moreover, we define H(θ0) ≡ E[Ĥ(θ0)] and I(θ0) ≡ E[Î(θ0)].

Let us partition xi = (1, x̃′i)′ ∈ Rp+1 and θ = (α, β′)′ ∈ Rp+1, where x̃i = (x̃i1, . . . , x̃ip)′ ∈

Rp, α ∈ R and β ∈ Rp so that x′iθ = α + x̃′iβ.

In this paper, the variable selection, estimation and inference are performed using a

survey-weighted Lasso where the negative of the weighted log-likelihood function (2.1) is

minimized subject to `1 penalty on the slope parameters:

min
θ=(α,β′)′∈Rp+1

(−L(θ) + λ‖β‖1) , (2.6)

where λ ≥ 0 is a tuning parameter. Note here that, as it is standard in the Lasso literature,

only the “slope” parameters in β = (β1, . . . , βp)′ are penalized. The j-th elements of θ and

θ0 are denoted as θ(j) and θ0(j), respectively.

Hereafter, M ⊆ {1, . . . , p+1} denotes the subset of regressors that includes the constant

term and non-constant regressors with a vector of (non-zero) Lasso estimates β̂M ∈ R|M |−1

and ŝM ≡ sign(β̂M) ∈ {−1, 1}|M |−1. Also, let βM ∈ R|M |−1 be the subvector of β corre-

sponding to M , θM = (α, β′M)′ and θ̂M = (α̂, β̂′M)′.

The Lasso solution in (2.6), with λ fixed, returns a random subset of regressors M̂ ⊂

{1, . . . , p + 1}. Since the intercept α is not penalized, M̂ always includes the constant

term. The target parameter vector in the selective inference considered in Section 3.1 is

θM0 = (α0, β
′
M0)′, the true value of θM in the selected model M̂ = M . In contrast, the DB

and C(α) in Sections 3.2–3.3 target the entire vector θ0.

Let sM ≡ sign(βM0) ∈ {−1, 1}|M |−1, and denote by m0 ≡ ‖θ0‖0 the number of nonzero

elements of θ0. Moreover, let θ−M ∈ Rp+1−|M | be the subvector of parameters other than θM
and LM(θM) be the weighted log-likelihood function for the selected model with parameters
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θM . It is clear that LM(θM) can be obtained by evaluating L(θ) at θ∗ whose non-zero

elements are θM and remaining p + 1 − |M | elements are 0. We partition (2.3)-(2.5) as

follows:

S(θ) = [SM(θ)′, S−M(θ)′]′, SM(θ) ∈ R|M |, S−M(θ) ∈ Rp+1−|M |,

Ĥ(θ) =

 ĤM(θM) ĤM(−M)(θM)

Ĥ−MM(θM) Ĥ−M(θM)

 ,

Î(θ) =

 ÎM(θM) ÎM(−M)(θM)

Î−MM(θM) Î−M(θM)

 ,

where ĤM(θM) ∈ R|M |×|M | and SM(θM) ∈ R|M | denote the negative Hessian matrix and

score functions corresponding to θM , respectively.

With the partitioning above, Lee et al. (2016) and Taylor and Tibshirani (2018) show

that the event {M̂ = M, ŝM̂ = sM} holds if and only if there exist random vectors θ̂M ∈

R|M | and u ∈ Rp+1−|M | in the Karush-Kuhn-Tucker condition for the problem (2.6) such

that

∂LM(θ̂M)
∂θM

− (0, λ s′M)′ = SM(θ̂M)− (0, λ s′M)′ = 0, sM = sign(β̂M) ∈ {−1, 1}|M |−1,

(2.7)

∂LM(θ̂M)
∂θ−M

− λu = S−M(θ̂M)− λu = 0, u ∈ Rp+1−|M |, ‖u‖∞ < 1. (2.8)

3 Post-Lasso selection inference

We establish the asymptotic validity of the three inference methods under the following as-

sumptions imposed directly on the loss function g(y, t) which are similar to the assumptions

employed in van de Geer et al. (2014) and Xia et al. (2021).

Assumption 1 (Asymptotic validity).

(a) {(yi, x′i)′}ni=1 are independent with max1≤i≤n ai < Cu <∞ a.s. where

ai ∈ {‖xi‖ψ2 , ‖xi‖∞, ‖Xθ0‖∞}.
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Moreover, wi is non-random with 0 < Cl < wi < Cu for all n, i.

(b) For A ∈ {H(θ0), I(θ0),E[n−1X ′X]}, there exist positive constants λl and λu such that

0 < λl ≤ λmin(A) ≤ λmax(A) ≤ λu <∞.

(c) The function g(y, t) ≡ a(t) − yt − log c(y) is convex in t ∈ R for all y, and twice

differentiable with ġ(y, t) ≡ ∂g(y, t)/∂t and g̈(y, t) ≡ ∂2g(y, t)/∂t2 for all (y, t). There

exist a positive definite matrix H and η > 0 such that λmin(H) > λl > 0 and

n−1
n∑
i=1

E[wi(g(yi, x′iθ)− g(yi, x′iθ0))] ≥ ‖H1/2(θ − θ0)‖2 (3.1)

for all ‖X(θ − θ0)‖∞ < η. Furthermore, g̈(y, t) is Lipschitz with some constant

L0 > 0:

max
t0∈{x′iθ0}

sup
max(|t−t0|,|t̃−t0|)≤η

sup
y∈Y

|g̈(y, t)− g̈(y, t̃)|
|t− t̃|

≤ L0, (3.2)

and

max
t0∈{x′iθ0}

sup
y∈Y
|ġ(y, t0)| ≤ Cu, (3.3)

max
t0∈{x′iθ0}

sup
|t−t0|≤η

sup
y∈Y
|g̈(y, t)| ≤ Cu. (3.4)

The boundedness of the variables stated in Assumption 1(a) is employed frequently

in the literature, see Negahban et al. (2012), van de Geer et al. (2014) and Xia et al.

(2021). To deal with survey samples, we relax the i.i.d. assumption used in these papers,

and although the proofs of validity of the inference procedures considered below are quite

standard, much of the effort of the proof goes into verifying that the same results that hold

in an i.i.d. setup carries over to independent non-identically distributed (i.n.i.d.) samples.

The weight wi is deterministic but we require that it is bounded from above and below

away from 0, so it rules out strata that become asymptotically degenerate. Moreover, the

weights do not need to sum to 1. In the R package glmnet, the weights are rescaled to sum

to n.

Assumption 1(b) is a mild condition that ensures nonsingularity of the Hessian and

information matrices in the case of slowly diverging number of covariates considered below.
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Assumption 1(c) is standard and requires the convexity and boundedness of the first two

derivatives and Lipschitz continuity of the second derivative of g(y, t) with respect to t

uniformly in a neighborhood of x′iθ0 (see van de Geer et al. (2014) and Xia et al. (2021)).

The condition (3.1) is essentially the the Quadratic Margin Condition needed for the

consistency of the Lasso (Bühlmann and van de Geer, 2011) and see also Negahban et al.

(2012) for a related (stochastic) Restricted Strong Convexity condition. A sufficient con-

dition for (3.1) is that g̈(y, x′θ) is bounded away from zero locally around x′iθ0 for all

i = 1, . . . , n.

3.1 Selective inference

In this section, we extend the selective inference argument of Taylor and Tibshirani (2018)

for a homoskedastic GLM to a GLM with survey weights and/or heteroskedasticity. In the

SI, the target parameters are the coefficients selected by the Lasso. As a result, they are

random before the selection, but not so conditional on the Lassso selection events. This

feature distinguishes the selective inference method from the C(α) and debiased Lasso

inference where the target parameters are the population parameters. See Lee et al. (2016)

for further discussions about the difference between the SI and other inference methods.

As in Taylor and Tibshirani (2018), we fix λ > 0 and consider the following one-step

estimator

θ̃M ≡ θ̂M + ĤM(θ̂M)−1SM(θ̂M), (3.5)

where SM(θ̂M) = (0, λ s′M)′, from which we obtain the one-step estimator of βM0:

β̃M = β̂M + [0|M |−1, I|M |−1]ĤM(θ̂M)−1SM(θ̂M). (3.6)

The SI is based on the asymptotic distribution of β̃M conditional on the selection event

M̂ = M and ŝM̂ = sM .2 From (2.7) and (3.6), it follows that

sM = sign
(
β̃M − [0|M |−1, I|M |−1]ĤM(θ̂M)−1(0, λ s′M)′

)
,

2Lee et al. (2016) also propose a test statistic which is conditional on M̂ = M only by taking the union
of the events characterized by polyhedral constraints over all possible combinations of the signs of the
selected coefficients.
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hence

diag(sM)
(
β̃M − [0|M |−1, I|M |−1]ĤM(θ̂M)−1(0, λ s′M)′

)
≥ 0. (3.7)

As argued by Taylor and Tibshirani (2018) (see Equation (21) therein), in a homoskedastic

GLM, the random quantities appearing in the active and inactive constraints (2.7) and (2.8)

are asymptotically independent (after suitable normalizations). However, this no longer

holds in our setup because the covariance matrix of the limiting Gaussian random variables

is not block-diagonal in the presence of survey weights and heteroskedasticity. This entails

conditioning not only on the active constraints, but also on the inactive constraints. In

light of this, we next derive an affine constraint corresponding to (2.8). Let

S̃−M(θ̂M) ≡ S−M(θ̂M)− Ĥ−MM(θ̂M)ĤM(θ̂M)−1SM(θ̂M). (3.8)

By the fact that ‖u‖∞ < 1, and after some algebra, we can express the inactive constraints

in (2.8) as follows:

S̃−M(θ̂M) ≤ λ(1p+1−|M | − Ĥ−MM(θ̂M)ĤM(θ̂M)−1(0, s′M)′), (3.9)

−S̃−M(θ̂M) ≤ λ(1p+1−|M | + Ĥ−MM(θ̂M)ĤM(θ̂M)−1(0, sM)′), (3.10)

where the inequalities hold element-wise. The Lasso selection events in (3.7), (3.9) and

(3.10) can be rewritten in a compact form as

{AZ ≤ b}, (3.11)

where

A ≡


−diag(sM) 0(|M |−1)×(p+1−|M |)

0(p+1−|M |)×(|M |−1) Ip+1−|M |

0(p+1−|M |)×(|M |−1) −Ip+1−|M |

 ∈ R(2p+1−|M |)×p, Z ≡ n1/2

 β̃M

S̃−M(θ̂M)

 ∈ Rp,

b ≡ n1/2


−diag(sM)[0|M |−1, I|M |−1]ĤM(θ̂M)−1(0, λ s′M)′

λ(1p+1−|M | − Ĥ−MM(θ̂M)ĤM(θ̂M)−1(0, s′M)′)

λ(1p+1−|M | + Ĥ−MM(θ̂M)ĤM(θ̂M)−1(0, s′M)′)

 ∈ R2p+1−|M |. (3.12)
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Assuming that the number of non-constant regressors, p, is fixed, one can establish the

asymptotic normality of the one-step estimators before the Lasso selection (see Section

A.1): n1/2(β̃M − βM0)

n1/2S̃−M(θ̂M)

 d−→ N(0,Σ), (3.13)

where Σ is a p× p asymptotic covariance matrix. The estimator of Σ is

Σ̂ =

Σ̂ββ Σ̂βs

Σ̂′βs Σ̂ss

 , (3.14)

where

Σ̂ββ ≡ [0|M |−1, I|M |−1]ĤM(θ̂M)−1ÎM(θ̂M)ĤM(θ̂M)−1[0|M |−1, I|M |−1]′,

Σ̂βs ≡ [0|M |−1, I|M |−1]
[
ĤM(θ̂M)−1ÎM(−M)(θ̂M)− ĤM(θ̂M)−1ÎM(θ̂M)ĤM(θ̂M)−1ĤM(−M)(θ̂M)

]
,

Σ̂ss ≡ [Ip+1−|M |,−Ĥ−MM(θ̂M)ĤM(θ̂M)−1]

 Î−M(θ̂M) Î−MM(θ̂M)

ÎM(−M)(θ̂M) ÎM(θ̂M)


[Ip+1−|M |,−Ĥ−MM(θ̂M)ĤM(θ̂M)−1]′. (3.15)

From (3.13), we have the distributional approximation for Z

Z
a∼ N(µ,Σ), µ ≡ n1/2[β′M0, 0′p+1−|M |]′. (3.16)

The latter combined with the affine constraints {AZ ≤ b} in (3.11), is now amenable to

application of Lemma 3.1 below, which summarizes two key results of Lee et al. (2016)

(Lemma 5.1 and Theorem 5.2). To describe the lemma, we define the following quantities
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for a general k × 1 random vector Z, and A ∈ Rk×k, b ∈ Rk and η ∈ Rk:

c = c(Σ, η) ≡ Ση(η′Ση)−1, r = r(Z,Σ, η) ≡ (Ik − cη′)Z, (3.17)

V−(r) ≡ max
j:(Ac)j<0

bj − (Ar)j
(Ac)j

, (3.18)

V+(r) ≡ min
j:(Ac)j>0

bj − (Ar)j
(Ac)j

, (3.19)

V0(r) ≡ min
j:(Ac)j=0

bj − (Ar)j, (3.20)

where (Ac)j denotes the j-th element of Ac. Lee et al. (2016) show the following the result.

Lemma 3.1 (Polyhedral lemma and truncated Gaussian pivot (Lee et al., 2016)). Let

Z ∼ N(µ,Σ) and A ∈ Rk×k, b ∈ Rk and η ∈ Rk be fixed quantities. If c, r,V−(r),V+(r)

and V0(r) are defined as in (3.17)-(3.20), then

(a) η′z is independent of V−(r), V+(r) and V0(r), and the following events are equivalent:

{AZ ≤ b} = {V−(r) ≤ η′Z ≤ V+(r),V0(r) ≥ 0}. (3.21)

(b) Furthermore,

F (η′Z; η′µ, η′Ση,V−(r),V+(r))|{AZ ≤ b} ∼ U(0, 1). (3.22)

In our setup, b defined in (3.12) is random whereas Lemma 3.1 assumes constant b. In ad-

dition, we have an approximate normality in (3.16) instead of the exact normality assumed

in Lemma 3.1. These lead to an asymptotic version of (3.22), namely, as n→∞

F (e′jpZ, e′jpµ, e′jpΣ̂ejp,V−(r),V+(r))|{AZ ≤ b} d−→ U(0, 1). (3.23)

(3.23) can be established using the results of Markovic et al. (2017). Although we do not

directly use (3.23), it provides the basis of the inference procedures described below.

Suppose we wish to make inference on the j-th element of βM0, j = 1, . . . , |M | − 1

(conditional on the Lasso selection event M̂ = M and ŝM̂ = sM). Let Z,A and b be as in

(3.12), µ be as in (3.16), and set η = ejp ∈ Rp, c = c(Z, η) and r = r(Z, Σ̂, ejp) in (3.17),
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where Σ̂ is defined in (3.14). Fix ζ ∈ (0, 1). The SI confidence interval (CI) of level 1− ζ

is of the form CIM̂j ≡ [q̃l, q̃u], where q̃l and q̃u are the solutions to the following equations

F (n1/2q, e′jpZ, e
′
jpΣ̂ejp,V−(r),V+(r)) = ζ

2 , (3.24)

F (n1/2q, e′jpZ, e
′
jpΣ̂ejp,V−(r),V+(r)) = 1− ζ

2 . (3.25)

The asymptotic validity of the above CI is established in the following proposition.

Proposition 3.2. Let Assumption 1 hold with p fixed, λ = Cn−1/2, where C = O(1), and

H(θ0) and I(θ0) converge to nonsingular matrices. Then, it holds that for ζ ∈ (0, 1)

lim inf
n→∞

P [e′
jM̂
βM̂0 ∈ CIM̂j|M̂ = M, ŝM = sM ] = 1− ζ.

See Appendix A.1 for a proof. The assumption of fixed p is commonly used in the

literature on SI (see e.g. Lee et al., 2016; Tian and Taylor, 2017; Taylor and Tibshirani,

2018; Kuchibhotla et al., 2022). Taylor and Tibshirani (2018) provide a heuristic argument

for the validity of the selective inference in a homoskedastic GLM. Proposition 3.2 extends

their argument to i.n.i.d. and possibly heteroskedastic survey samples. The asymptotic

validity of the SI procedures typically entails showing that CLTs that hold before selection

extend to selective inference under suitable assumptions (Tian and Taylor, 2017; Kuchib-

hotla et al., 2022). We establish the asymptotic validity of the selective inference procedure

by verifying the conditions given in Kuchibhotla et al. (2022).

Inference on a nonlinear parameter function. Next we consider inference on a scalar

nonlinear parameter function ρM(θM0) (which may depend on n) in the selected model with

coefficients βM on the active variables. Such results are especially useful in the context

of logit and probit models because the AMEs are often the objects of interest therein.

Analogously to (3.6), consider the one-step estimator

ρ̃M ≡ ρ(θ̂M) + ρ̇M(θ̂M)ĤM(θ̂M)−1SM(θ̂M), ρ̇M(θM) ≡ ∂ρM(θM)′
∂θM

. (3.26)
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Standard arguments yield the distributional approximation

n1/2ρ̃M
a∼ N

(
n1/2ρM(θM0), ρ̇M(θM0)′Σ ρ̇M(θM0)

)
. (3.27)

Again, an approach similar to those applied to the elements of β allows us to define the

augmented variables:

Aρ ≡

 0 0′p
02p+1−|M | A

 ∈ R(2p+2−|M |)×(p+1), Zρ ≡

n1/2ρ̃M

Z

 ∈ Rp+1, (3.28)

bρ ≡

0

b

 ∈ R2p+2−|M |, Σ̂ρ ≡


Σ̂ρρ Σ̂ρβ Σ̂ρs

Σ̂βρ Σ̂ββ Σ̂βs

Σ̂sρ Σ̂sβ Σ̂ss

 ∈ R(p+1)×(p+1), (3.29)

where Z, A and b are as defined in (3.12), and

Σ̂ρρ ≡ ρ̇M(θ̂M)′ĤM(θ̂M)−1ÎM(θ̂M)ĤM(θ̂M)−1ρ̇M(θ̂M),

Σ̂ρβ ≡ ρ̇M(θ̂M)′ĤM(θ̂M)−1ÎM(θ̂M)ĤM(θ̂M)−1[0|M |−1, I|M |−1]′,

Σ̂ρs ≡ ρ̇M(θ̂M)′ĤM(θ̂M)−1ÎM(−M)(θ̂M)− ρ̇M(θ̂M)′ĤM(θ̂M)−1ÎM(θ̂M)ĤM(θ̂M)−1ĤM(−M)(θ̂M).

Then, for ζ ∈ (0, 1), the level 1 − ζ CI for ρM(θM0) can be constructed as in (3.24) and

(3.25) by replacing A, Z, b and ejp by Aρ, Zρ, bρ and ej(p+1), respectively, and letting

rρ = r(Zρ, Σ̂ρ, ej(p+1)) in (3.17).

We can also infer the parameter ρM(θM0) by conditioning on the sign of the estimated

parameter ρM̂(θ̂M̂) in addition to the event {AZ ≤ b} considered previously in (3.11). To

this end, let sρM ≡ sign(ρM(θM0)) and ŝρM ≡ sign(ρM(θ̂M)) and redefine

Aρ ≡

 −sρM 0′p
02p+1−|M | A

 ∈ R(2p+2−|M |)×(p+1), bρ ≡

−sρM ρ̇M(θ̂M)′ĤM(θ̂M)−1(0, λ s′M)′

b

 ∈ R2p+2−|M |,

and keep Zρ and Σ̂ρ as defined in (3.28) and (3.29). Then, we can rewrite the event
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{sρM = ŝρM} = {sρM = sign(ρM(θ̂M))} as

{sρM = sign(ρM(θ̂M))} = {sρM ρM(θ̂M) > 0}

= {sρM (ρ̃M − ρ̇M(θ̂M)′ĤM(θ̂M)−1(0, λs′M)′) > 0}

= {−sρM ρ̃M < −λ sρM ρ̇M(θ̂M)′ĤM(θ̂M)−1(0, s′M)′}. (3.30)

Therefore, the event {M̂ = M, ŝM̂ = sM , ŝ
ρ

M̂
= sρM} is equivalent to the affine constraint

AρZρ ≤ bρ. We proceed similarly to the subvector case considered previously to obtain the

SI CI for ρM(θM0). Let rρ = r(Zρ, Σ̂ρ, ej(p+1)) as in (3.17), and fix ζ ∈ (0, 1). The SI CI

of level 1 − ζ for ρM(θM0) is given by CIρ
M̂
≡ [q̃ρl , q̃ρu], where q̃ρl and q̃ρu are the solutions

respectively to the following equations

F (n1/2q, n1/2ρ̃M , e
′
j(p+1)Σ̂ρej(p+1),V−(rρ),V+(rρ)) = ζ

2 , (3.31)

F (n1/2q, n1/2ρ̃M , e
′
j(p+1)Σ̂ρej(p+1),V−(rρ),V+(rρ)) = 1− ζ

2 . (3.32)

We summarize the asymptotic validity of the above CI in the next corollary which follows

from the arguments similar to the proof of Proposition 3.2.

Corollary 3.3. Suppose that the conditions of Proposition 3.2 hold, and the scalar non-

linear parameter function ρM(θM) is continuously differentiable in a neighborhood of θM0

with ρ̇M(θM0)′ρ̇M(θM0) > λl > 0, Then, it holds that for ζ ∈ (0, 1)

lim inf
n→∞

P [ρM̂ ∈ CIρ
M̂
|M̂ = M, ŝM̂ = sM , ŝ

ρ

M̂
= sρM ] = 1− ζ.

3.2 Debiased Lasso inference

The debiased Lasso method of Zhang and Zhang (2014) and Javanmard and Montanari

(2014) is based on the one-step estimator constructed from the initial Lasso estimator θ̂:

θ̃ = θ̂ + Ĥ(θ̂)−1S(θ̂). (3.33)
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This particular variant of the debiased Lasso that employs the standard Hessian is proposed

by Xia et al. (2021) for a homoskedastic GLM. Similarly, we use Î(θ̂) to estimate the

asymptotic variance of n1/2S(θ0) and I(θ0). To show the consistency of Ĥ(θ̂) and Î(θ̂),

we first extend Corollary 5.50 of Vershynin (2010) to random matrices i.n.i.d. rows with

non-identical second moment matrices in the following lemma.

Lemma 3.4 (Covariance matrix consistency for i.n.i.d. random vectors.). Let A be an n×p

matrix whose rows A′i are independent sub-Gaussian random vectors in Rp with E[Ai] = µi,

E[AiA′i] = Σi and 0 < λl < λmin(Σ̄n) <∞, where Σ̄n ≡ n−1∑
i=1 Σi. Then for every t ≥ 0,

with probability at least 1− 2 exp(−t2) it holds that

‖n−1A′A− Σ̄n‖2 ≤ CK max(δ, δ2)‖Σ̄n‖2, δ ≡ c

(√
p

n
+ t√

n

)
, (3.34)

where c is an absolute constant and CK > 0 is a constant that depend only on the sub-

Gaussian norm K = maxi ‖Ai‖ψ2 <∞ of the rows and λl.

See Appendix A.2 for a proof. Relative to Theorem 5.39 and Corollary 5.50 of Vershynin

(2010), the invertibility of Σ̄n is required in Lemma 3.4, but the rows of the matrix A can

be heterogeneous with non-identical second moment matrices Σi, i = 1, . . . , n. Lemma 3.4

together with Lemma S2 of Xia et al. (2021) yields the following result.

Lemma 3.5 (The rate of convergence of the Hessian and information matrices). Under

Assumption 1,

‖Ĥ(θ̂)−H(θ0)‖2 = Op

(√
p

n
+m0λ

)
, (3.35)

‖Ĥ(θ̂)−1 −H(θ0)−1‖2 = Op

(√
p

n
+m0λ

)
, (3.36)

‖Î(θ̂)− I(θ0)‖2 = Op

(√
p

n
+m0λ

)
, (3.37)

‖Î(θ̂)−1 − I(θ0)−1‖2 = Op

(√
p

n
+m0λ

)
. (3.38)

The proof is provided in Appendix A.3 which essentially verifies that the argument of

Xia et al. (2021) goes through with i.n.i.d. data.

For inference on a r × 1 vector nonlinear parameter function ρ(θ) (which may depend
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on n), we define a debiased Lasso (one-step estimator) as

ρ̃ ≡ ρ(θ̂) + ρ̇(θ̂)′Ĥ(θ̂)−1S(θ̂), ρ̇(θ) ≡ ∂ρ(θ)′
∂θ

. (3.39)

We establish the asymptotic validity of Wald-type inference based on the debiased Lasso

estimator above in the proposition below.

Proposition 3.6 (Asymptotic validity of Survey Debiased Lasso test). Let Assumption 1

hold and assume that λ = C
√

log p
n

with C = O(1) and p ≥ 1, p2/n→ 0 and m0 log p
√

p
n
→ 0

as n→∞. If the r× 1 function ρ(θ) is differentiable in a neighborhood of θ0 with a locally

Lipschitz Jacobian ρ̇(θ) and λmin (ρ̇(θ0)′ρ̇(θ0)) > λl > 0, where r(< (p+ 1)) is fixed, then

(
ρ̇(θ̂)′Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1ρ̇(θ̂)

)−1/2
n1/2(ρ̃− ρ(θ0)) d−→ N(0, Ir). (3.40)

The proof is given in Appendix A.4. λ = C
√

log p
n

is a standard assumption in the

literature (see e.g. Bühlmann and van de Geer, 2011; Negahban et al., 2012; van de Geer

et al., 2014; Hastie et al., 2015). The assumptions imposed on the number of covariates

p, and the model sparsity m0 are the same as those in Xia et al. (2021). In particular,

while the condition m0 log p
√

p
n
→ 0 is stronger than the condition m0

log p√
n
→ 0 assumed

by van de Geer et al. (2014), no assumption is imposed directly on the sparsity of the

inverse Hessian (and information matrix) i.e. maxjmj = o(n/ log p), where mj ≡ |{k 6=

j : (H(θ0)−1)jk 6= 0}| is the number of non-zero elements of the j-th row of H(θ0)−1, as in

van de Geer et al. (2014). As noted by Xia et al. (2021), the condition p2/n→ 0 is weaker

than the condition maxjmj = o(n/ log p), when mj is of the order p.

The assumption of locally Lipschitz Jacobian ρ̇(θ) is slightly stronger than the usual

continuous differentiability assumption required for testing nonlinear hypotheses (see e.g.

Section 9 of Newey and McFadden (1994) and Hansen (2022a,b)). Under this assumption,

an error term n1/2(ρ̇(θ̂) − ρ̇(θ̄))′(θ̂ − θ0), where θ̄ is a mean-value between θ̂ and θ0, that

results from the estimation of θ0 and ρ(θ0) becomes negligible.

Using Proposition 3.6, we obtain confidence intervals for the elements of θ0 as well as

the vector nonlinear parameter function ρ(θ0). One can also consider a plug-in estimator

ρ(θ̃), where θ̃ is the one-step estimator defined in (3.33). This estimator is asymptotically
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equivalent to the one-step estimator ρ̃ in (3.39). The proof is actually similar to that of

Proposition 3.6, thus is omitted. In addition, multi-step estimators of θ0 and ρ(θ0) can

also be considered.

3.3 C(α)/Orthogonalization inference

Belloni et al. (2016) develop subvector inference procedure in a high-dimensional GLM

that satisfies sparsity assumptions. They construct an estimating equation orthogonalized

against the direction of the nuisance parameter estimation which also underlies the Neyman

(1959)’s C(α) test. Here, we consider a survey version of the C(α)-type statistic for the

r × 1 nonlinear parameter functon ρ(θ) defined as

Cα(ρ0) ≡ nS(θ̃∗)′Ĥ(θ̃∗)−1ρ̇(θ̃∗)
(
ρ̇(θ̃∗)′Ĥ(θ̃∗)−1Î(θ̃∗)Ĥ(θ̃∗)−1ρ̇(θ̃∗)

)−1
ρ̇(θ̃∗)′Ĥ(θ̃∗)−1S(θ̃∗),

(3.41)

where θ̃∗ is an auxiliary estimate that satisfies ρ(θ̃∗) = ρ0. This test statistic is proposed,

in a regular likelihood context, by Smith (1987) and studied further by Dufour et al. (2016)

among others.

Proposition 3.7 (Asymptotic validity of Survey C(α) test). Let Assumption 1 hold and

assume that λ = C
√

log p
n

with C = O(1), p2/n → 0 and m0 log p
√

p
n
→ 0 as n → ∞. Let

θ̃∗ be an auxiliary estimator that satisfies ‖θ̃∗−θ0‖2 = Op(m0λ
2) and ρ(θ̃∗) = ρ0, where the

nonlinear parameter function ρ(θ) ∈ Rr satisfies the conditions given in Proposition 3.6.

Then, under H0 : ρ(θ0) = ρ0

Cα(ρ0) d−→ χ2
r. (3.42)

The proof is given in Appendix A.5. In general, determining an auxiliary estimator that

satisfies the constraint ρ(θ̃∗) = ρ0 may be difficult. However, as we show in the next

section, when testing a restriction on the AME of a binary regressor in the logit model,

such an estimator can be readily obtained.
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4 Survey logit

This section applies the results established in the previous sections to inference on the

logit model estimated by the Lasso from survey data. The standard logit specification for

a dependent variable yi, i = 1, . . . , n, is

P [yi = 1|xi] = Λ(x′iθ), (4.1)

where xi = (1, x̃′i)′ ∈ Rp+1, x̃i = (x̃i1, . . . , x̃ip)′ ∈ Rp, and θ = (α, β′)′ ∈ Rp+1, α ∈ R,

β ∈ Rp. Given the survey weights {wi}ni=1 on the observations {(yi, x′i)′}ni=1, the weighted

log-likelihood function is

L(θ) = n−1
n∑
i=1

wi(yix′iθ − log(1 + exp(x′iθ))). (4.2)

The score function, the sample information and negative Hessian functions are given by

S(θ) = ∂L(θ)
∂θ

= n−1
n∑
i=1

wixi(yi − Λ(x′iθ)), (4.3)

Î(θ) = n−1
n∑
i=1

w2
i xix

′
iΛ(x′iθ)(1− Λ(x′iθ)), (4.4)

Ĥ(θ) = −∂
2L(θ)
∂θ∂θ′

= n−1
n∑
i=1

wixix
′
iΛ(x′iθ)(1− Λ(x′iθ)). (4.5)

4.1 Inference on average marginal effects

In the context of the logit model, a key parameter of interest is the AME which is a

nonlinear function of the model parameters. As such, this section focuses on the inference

on AMEs. The marginal effect (ME) of a binary regressor x̃ij, j = 1, . . . , p, i = 1, . . . , n,

with a coefficient θ(j) is calculated by the change in P [yi = 1|xi] when the regressor x̃ij is

switched from 0 to 1 holding all other variables constant:

MEij(θ) ≡ Λ(x′iθ)|x̃ij=1 − Λ(x′iθ)|x̃ij=0. (4.6)
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The AME of the j-th regressor is defined as

AMEj = AMEj(θ0) ≡ E
[

1∑n
i=1 wi

n∑
i=1

wiMEij(θ0)
]
,

where θ0 denotes the true value of θ and the expectation is taken with respect to the

distribution of the regressors.

Let us first consider the debiased Lasso inference for the AMEs. A natural estimator

of AMEj(θ0) is

ÂMEj(θ̂) ≡
1∑n

i=1 wi

n∑
i=1

wi
(
Λ(x′iθ̂)|x̃ij=1 − Λ(x′iθ̂)|x̃ij=0

)
,

where θ̂ = (α̂, β̂′)′ is an estimator of θ0 e.g. the survey-weighted Lasso estimator. In the

current context, the one-step estimator defined in (3.33) specializes to

ÃMEj = ÂMEj(θ̂) + ∂ÂMEj(θ̂)
∂θ′

Ĥ(θ̂)−1S(θ̂),

where

∂ÂMEj(θ̂)
∂θ

≡ 1∑n
i=1 wi

n∑
i=1

wi
{[
xiΛ(x′iθ̂)(1− Λ(x′iθ̂))

]
|x̃ij=1 −

[
xiΛ(x′iθ̂)(1− Λ(x′iθ̂))

]
|x̃ij=0

}
.

To obtain a confidence interval for AMEj(θ0), j = 2, . . . , p+ 1, we can then use

∂ÂMEj(θ̂)
∂θ′

Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1∂ÂMEj(θ̂)
∂θ

−1/2

n1/2(ÃMEj − AMEj) d−→ N(0, 1).

Next, we turn to the SI. Let AMEM(θM) = [AMEM2(θM), . . . ,AMEMM(θM)]′ ∈ R|M |−1

denote the AMEs for the active variables selected by the survey-weighted Lasso with coef-

ficients βM . Then, from (3.26) the SI for the AMEs in the selected model is based on the

one-step estimator

ÃMEM = ÂMEM(θ̂M) + ∂ÂMEM(θ̂M)
∂θ′M

ĤM(θ̂M)−1SM(θ̂M). (4.7)

Finally, we consider the C(α) statistic. Let Cα(AME0j) denote the C(α) statistic for testing
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H0 : AMEj = AME0j. To obtain an auxiliary estimate that satisfies AMEj(θ̃∗) = AME0j,

we only need to solve for a scalar θ(j) in the following equation:

1∑n
i=1 wi

n∑
i=1

wi
(
Λ
(
θ(j) + x′i(−j)θ̂(−j)

)
− Λ

(
x′i(−j)θ̂(−j)

))
= AME0j.

Testing the zero restriction H0 : AMEj = 0 is particularly simple. First, note that AMEj =

0 if θ(j) = 0. Furthermore, the Jacobian used in the Cα(AME0j) statistic is

∂ÂMEj(θ)
∂θ

≡ 1∑n
i=1 wi

n∑
i=1

wi
[
0, . . . , (Λ(x′iθ)(1− Λ(x′iθ))) |x̃ij=1, . . . , 0

]′
= 1∑n

i=1 wi

n∑
i=1

wiΛ(x′iθ)(1− Λ(x′iθ))|x̃ij=1ej(p+1).

Let θ̃∗ denote the estimator when the j-th element of the Lasso estimator θ̂ is replaced by

0. Then, we have

Cα(AME0j)

= nS(θ̃∗)′Ĥ(θ̃∗)−1ej(p+1)
(
e′j(p+1)Ĥ(θ̃∗)−1Î(θ̃∗)Ĥ(θ̃∗)−1ej(p+1)

)−1
e′j(p+1)Ĥ(θ̃∗)−1S(θ̃∗)

= Cα(θ0(j)),

where Cα(θ0(j)) is the C(α) statistic for testing the coefficient H0 : θ(j) = 0. We summarize

this simple observation in the following lemma.

Lemma 4.1. The C(α) statistic for testing the coefficient H0 : θ(j) = 0 on a binary

regressor x̃ij based on the auxiliary estimator θ̃∗ is equivalent to the C(α) statistic for

testing the corresponding AME H0 : AMEj = 0 based on θ̃∗.

5 Simulations

This section presents a simulation evidence on the performance of the proposed procedures.

We consider a logit model where the regressors and the dependent variables are generated

as follows:

yi ∼ Bernoulli(πi), (5.1)
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where θ0 = (1, 1, 1, 01×(p−2))′, x̃ij ∼ i.i.d.Bernoulli(prob), j = 1, . . . , p, i = 1, . . . , N ,

xi = (1, x̃′i)′ and πi = x′iθ0. We set the size of the population equal to N = 10, 000. Two

sampling schemes are considered: standard stratified sampling and exogenous stratification

with prob = 0.5 and prob = 0.4, respectively. For each scheme, we create 4 strata and

consider two cases: (ns, n) ∈ {(50, 200), (100, 400)}, where ns observations are drawn from

each stratum with replacement yielding a stratified sample of size n.

In the standard stratified sampling with prob = 0.5, the population is stratified into 4

strata of sizes N1 = 1000, N2 = 2000, N3 = 3000 and N4 = 4000, respectively. As a result,

the weights on the observations are wi = 0.1, 0.2, 0.3, 0.4 corresponding to the four strata.

In the exogenous stratification with prob = 0.4, the population is stratified according to

the values of the first two non-constant regressors: (x̃i1, x̃i2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

The weights on the observations in the above four strata are wi = 0.36, 0.24, 0.24, 0.16,

respectively.

To assess the effect of the dimension of the regressors, the values for p are set such

that p
n
∈ {0.01, 0.025, 0.05, 0.1, 0.25, 0.5} for each n ∈ {200, 400}. The true value of AME

corresponding to the coefficient θ(2) = β1 is 0.11. The empirical size of the tests is examined

by testing the following two restrictions separately:

H0 : θ(2) = 1, H0 : AME2 = 0.11. (5.2)

To test the hypothesis on AME, we implement the two SI approaches, labeled as SI and

SI2, with or without conditioning on the sign of the estimated AME, respectively, described

in Section 3.1. For the auxiliary estimate θ̃∗ in the C(α) statistic, we used the one-step

iteration of (1, θ̂′(−2))′, where 1 corresponds to the tested value and θ̂(−2) is the (weighted)

logistic Lasso estimate of θ(−2), the model coefficients other than θ(2). Moreover, whenever

the sample Hessian evaluated at θ̃∗ in the C(α) statistic is found to be singular, we used

the Moore-Penrose inverse. There was no such issue in the other test statistics.

The model (2.6) is fit using the R package glmnet. For the tuning parameter λ, we

use the default value of the package which is chosen by 10-fold cross validation with loss

function “auc” (area under the ROC curve).

Tables 1 and 2 report the empirical sizes of the tests under standard stratified sampling
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and exogenous stratification, respectively. The results under both sampling schemes are

qualitatively similar. All tests show reasonable size control when the number of regressors

is moderate i.e. p/n = 0.01, 0.025, 0.05, 0.1, 0.25 for both hypotheses. We can also see that

the SI tests tend to underreject in most cases while the C(α) test does so when p/n = 0.5.

The size distortions of the SI method could potentially be alleviated by considering an

appropriate form of bootstrap. When p/n = 0.5, that is, the number of covariates is large

relative to the sample size, all tests tend to underreject. This may be attributed to the

conditions imposed on the growth rate of p relative to the degree of sparsity, the tuning

parameter and the sample size which are needed for the asymptotic validity of the DB and

C(α) tests given in Propositions 3.6 and 3.7.

Moreover, when p/n = 0.5, the C(α) test exhibits a substantial size distortion, while

the DB and SI tests show somewhat better performance despite the fact that, in this case,

the number of covariates are too high relative to the sample size for our results to hold.

It is also clear that the rejection rate of the survey t-test, denoted as tsvy, deteriorates as

the ratio p/n grows, which is expected as the test is not robust to increasing number of

covariates.

6 Empirical application

This section applies the proposed methods to Canadian Internet Use Survey (CIUS) 2020

data, and examines what demographic factors affect a person’s access to a government pro-

gram or service.3 The dependent variable is a binary variable where respondents answered

1) yes; 2) no; 3) not stated to the question “During the past 12 months, what activities did

you perform on the Internet to interact with the government in Canada? Was it: Accessed

an account for a government program or service?”

The covariates in this analysis are income, education, employment status, aboriginal

identity, visible minority status, immigration status, gender, type of household, language

spoken at home, and province. All have two or more categories. There are n = 17, 031

observations in the survey.

The collection of CIUS 2020 is based on a stratified design employing probability sam-
3Available at https://www150.statcan.gc.ca/n1/daily-quotidien/210622/dq210622b-eng.htm
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Table 1: Empirical rejection frequencies of the tests for H0 : θ(2) = 1 and H0 : AME2 = 0.11
at 5% level. Standard stratified sampling.

Tests p = 2 p = 5 p = 10 p = 20 p = 50 p = 100
H0 : θ(2) = 1, n = 200

DB 5.0 4.4 3.7 3.1 4.5 3.3
C(α) 5.5 4.1 3.1 2.8 4.2 0.3
SI 3.9 2.5 2.3 2.6 3.6 3.6
tsvy 6.2 6.4 8.0 8.7 36.0 94.9

H0 : AME2 = 0.11, n = 200
DB 5.4 5.3 4.6 3.7 3.5 1.4
C(α) 6.1 6.4 4.9 5.4 4.2 1.3
SI 4.2 2.6 2.2 2.8 3.6 4.7
SI2 4.2 2.6 2.4 2.8 3.5 4.3
tsvy 5.7 7.7 7.4 8.2 50.9 93.3

Tests p = 4 p = 10 p = 20 p = 40 p = 100 p = 200
H0 : θ(2) = 1, n = 400

DB 4.8 4.4 6.0 3.7 5.6 3.9
C(α) 4.7 4.2 4.2 4.2 5.7 0.5
SI 5.5 3.6 3.7 3.0 3.9 2.9
tsvy 5.0 5.1 6.3 15.9 40.4 98.3

H0 : AME2 = 0.11, n = 400
DB 4.5 4.9 5.8 5.0 4.6 3.3
C(α) 5.2 6.9 8.5 3.1 3.4 1.0
SI 5.1 4.4 4.6 2.8 3.9 3.2
SI2 5.1 4.4 4.6 2.9 3.7 2.8
tsvy 5.3 6.9 9.1 10.8 46.8 93.7

Notes: n = 200, 400 and 1000 simulation replications. DB, C(α), SI and tsvy denote the debiased
Lasso, C(α), selective inference and standard survey-weighted t tests respectively. For the restriction
H0 : AME2 = 0.11, SI is conditional on the sign of the estimated AME in addition to M̂ = M, ŝM̂ = sM

while SI2 is conditional on the latter only.
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Table 2: Empirical rejection frequencies of the tests for H0 : θ(2) = 1 and H0 : AME2 = 0.11
at 5% level. Exogenous stratification.

Tests p = 2 p = 5 p = 10 p = 20 p = 50 p = 100
H0 : θ(2) = 1, n = 200

DB 4.9 4.8 3.1 4.1 7.3 4.6
C(α) 6.4 5.3 4.0 4.0 8.4 1.8
SI 4.4 2.1 2.7 2.2 2.9 4.1
tsvy 5.1 5.1 6.6 6.1 31.8 95.1

H0 : AME2 = 0.11, n = 200
DB 5.4 4.9 5.3 3.8 5.6 4.3
C(α) 6.3 5.5 3.9 4.5 6.3 1.7
SI 4.1 1.9 3.0 2.4 2.8 5.2
SI2 4.1 2.0 3.1 2.6 2.7 5.0
tsvy 5.9 6.1 8.8 7.6 43.4 93.6

Tests p = 4 p = 10 p = 20 p = 40 p = 100 p = 200
H0 : θ(2) = 1, n = 400

DB 5.7 4.9 8.4 4.7 7.1 4.0
C(α) 5.1 4.6 5.7 4.7 9.1 7.0
SI 7.0 5.7 4.1 4.2 3.1 2.9
tsvy 4.8 5.2 6.0 9.2 29.9 98.4

H0 : AME2 = 0.11, n = 400
DB 4.7 5.7 4.3 5.1 4.8 4.6
C(α) 4.6 5.3 5.6 4.5 4.3 0.3
SI 3.8 4.2 3.3 3.0 3.3 5.1
SI2 3.8 4.2 3.3 3.0 3.2 4.8
tsvy 6.0 6.9 5.3 8.9 43.9 91.0

Notes: n = 200, 400 and 1000 simulation replications. DB, C(α), SI and tsvy denote the debiased
Lasso, C(α), selective inference and standard survey-weighted t tests respectively. For the restriction
H0 : AME2 = 0.11, SI is conditional on the sign of the estimated AME in addition to M̂ = M, ŝM̂ = sM

while SI2 is conditional on the latter only.
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pling; the stratification is done at the province/census metropolitan area (CMA) and cen-

sus agglomeration (CA) level where each of the ten Canadian provinces were divided into

strata/geographic areas.4 Each record on a sampling frame used in CIUS 2020 is a group

of one or several telephone numbers associated with the same address from the Census and

various administrative sources with Statistics Canada’s dwelling frame. The records—the

groups of telephone numbers—were sampled independently without replacement from each

stratum.

The initial weight on observations is the inverse of an adjusted version of the probability

of selection equal to the number of records sampled in the stratum divided by the number

of records in the stratum from the survey frame. The final person weight wi is an adjusted

version of the initial weight that takes into account the household size and survey-response

among others.5

The base categories are omitted in each model as the comparison category for the logit

model. The representative individual in the base category has the following character-

istics – male, non-aboriginal, neither English nor French (e.g. English and non-official

language) speaker, not employed, some post-secondary education, not a visible minority,

family household with children under 18, income of $44, 120-$75, 321, landed immigrant

(recent immigrant), and from the province Alberta.

Table 3 reports the inference results for the logit coefficients. The survey logit Lasso

selects French, Employed, High school or less, University degree, Visible Minority, Family

household with no children under 18, and Single. The magnitude of the Lasso estimates

are in line with the survey logit estimates, and the signs of the estimates also appear

reasonable. All inference methods indicate that the coefficients on Employed, University

degree and Visible minority are highly significant. The variable French is selected by the

Lasso but the inference results show that its coefficient is far from being significant.

It is interesting to note that although New Brunswick (NB) is not selected by the Lasso,

its debiased Lasso estimate −0.32 is almost identical to the survey GLM estimate −0.33
4There are 151 strata with the largest stratum, Toronto, having 2,235,145 private dwellings

and the smallest stratum, Elliot Lake, having 6,259 private dwellings as of 2016, see https:
//www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/pd-pl/Table.cfm?Lang=Eng&T=
201&SR=1&S=3&O=D&RPP=9999&PR=0

5Further details of the weighting procedure can be found in Section 10 of Microdata user Guide, CIUS
2020 at https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey$&$SDDS=4432$#$a2
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and highly significant.

Table 4 displays the inference results for the AMEs. The employed are about 8-11

percentage points more likely to use the government online service than those not employed.

Moreover, the use of government online service in NB appears to be 6-7 percentage points

lower than the level of Alberta (AB).

The debiased Lasso and C(α) test results in Table 4 show that the family household

without children under age 18 is less likely to use the government service than those with

children under age 18. Moreover, low educational attainment and high income negatively

affect the likelihood of an individual using the government online services. The variables

with the largest (in absolute value) AMEs on whether a person uses government online

services are whether or not a person is employed, whether or not a person is single, and if

their educational attainment was a High school or less or a University degree.

7 Conclusion

This paper has provided two main results. First, we have extended Lasso inference methods

to a GLM with survey weights and/or heteroskedasticity, and established their asymptotic

validity. Second, we have considered inference on nonlinear parameter functions. The

proposed extended inference methods were applied to the logit model and remain reliable

when p/n increases as illustrated in a simulation study with standard stratified sampling

and exogenous stratification. An empirical illustration based on the CIUS 2020 data also

confirms the relevance of the proposed approach.
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Table 3: Point estimates of θ0 and test p-values for H0 : θ0(j) = 0 in Lasso Logistic
Regression for Government Online Service Access.

Estimator p-values

Variable GLM Lasso DB SI tsvy DB C(α) SI

Intercept −0.53 −0.51 −0.52 −0.37 0.23 0.18 0.18 0.00
Female −0.02 0.00 −0.02 − 0.61 0.61 0.61 −
Aboriginal 0.11 0.00 0.10 − 0.43 0.45 0.45 −
Aboriginal n.s. 0.85 0.00 0.71 − 0.11 0.16 0.16 −
English 0.30 0.00 0.28 − 0.49 0.44 0.44 −
French −0.18 −0.22 −0.15 −0.59 0.68 0.70 0.78 1.00
English and French 0.48 0.00 0.46 − 0.27 0.22 0.22 −
Language n.s. −0.15 0.00 −0.14 − 0.80 0.79 0.79 −
Employed 0.36 0.30 0.36 0.34 0.00 0.00 0.00 0.00
Employment n.s. 0.35 0.00 0.32 − 0.29 0.33 0.33 −
High school or less −0.53 −0.41 −0.51 −0.51 0.00 0.00 0.00 1.00
University degree 0.37 0.32 0.37 0.35 0.00 0.00 0.00 0.00
Education n.s. −0.99 0.00 −0.78 − 0.01 0.06 0.06 −
Visible minority 0.27 0.17 0.27 0.25 0.00 0.00 0.00 0.00
Visible minority n.s. 0.40 0.00 0.33 − 0.33 0.41 0.41 −
Family household w.o.c.u 18 −0.29 −0.08 −0.28 −0.28 0.00 0.00 0.00 1.00
Single −0.72 −0.31 −0.70 −0.65 0.00 0.00 0.00 1.00
Other household type −0.07 0.00 −0.07 − 0.62 0.64 0.64 −
Family n.s. −0.17 0.00 −0.17 − 0.48 0.48 0.48 −
$44,119 and less −0.01 0.00 −0.01 − 0.92 0.94 0.94 −
$75,322–$109,431 −0.04 0.00 −0.04 − 0.62 0.62 0.62 −
$109,432–$162,799 −0.02 0.00 −0.02 − 0.80 0.80 0.80 −
$162,800 and higher −0.22 0.00 −0.21 − 0.01 0.01 0.01 −
Non-landed immigrant 0.01 0.00 0.01 − 0.86 0.87 0.87 −
Immigration n.s. 0.90 0.00 0.91 − 0.29 0.31 0.31 −
NL 0.14 0.00 0.14 − 0.20 0.20 0.20 −
PEI −0.03 0.00 −0.03 − 0.78 0.78 0.78 −
NS −0.21 0.00 −0.21 − 0.05 0.06 0.06 −
NB −0.33 0.00 −0.32 − 0.01 0.00 0.00 −
QC −0.25 0.00 −0.25 − 0.02 0.02 0.02 −
ON −0.16 0.00 −0.16 − 0.06 0.06 0.06 −
MB −0.21 0.00 −0.20 − 0.07 0.07 0.07 −
SK −0.01 0.00 −0.01 − 0.90 0.90 0.90 −
BC 0.04 0.00 0.04 − 0.65 0.65 0.65 −

Notes: n = 17, 031. GLM, Lasso, DB and SI in the columns 2-5 denote the survey GLM, survey Lasso,
debiased Lasso and SI one-step estimates of θ0(j), respectively. The columns 6-9 report the p-values of the
survey GLM, DB, C(α) and SI tests for θ0(j) = 0, respectively. “ − ” means “not computed”. n.s. and
w.o.c.u. abbreviate “not stated” and “without children under”.
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Table 4: Point estimates of AME and test p-values for H0 : AMEj = 0 in Lasso Logistic
Regression for Government Online Service Access.

Estimator p-values

Variable GLM DB SI tsvy DB C(α) SI

Female 0.02 −0.01 − 0.43 0.63 0.61 −
Aboriginal 0.19 0.02 − 0.11 0.46 0.45 −
Aboriginal n.s. 0.01 0.16 − 0.65 0.16 0.16 −
English −0.22 0.06 − 0.01 0.46 0.44 −
French 0.08 −0.03 −0.13 0.29 0.70 0.78 1.00
English and French 0.08 0.10 − 0.00 0.23 0.22 −
Language n.s. 0.07 −0.03 − 0.49 0.80 0.79 −
Employed 0.11 0.08 0.08 0.27 0.00 0.00 0.00
Employment n.s. −0.04 0.07 − 0.48 0.34 0.33 −
High school or less −0.06 −0.11 −0.11 0.00 0.00 0.00 1.00
University degree −0.01 0.08 0.08 0.61 0.00 0.00 0.00
Education n.s. −0.04 −0.16 − 0.68 0.10 0.06 −
Visible minority −0.12 0.06 0.06 0.00 0.00 0.00 0.00
Visible minority n.s. 0.20 0.08 − 0.29 0.42 0.41 −
Family household w.o.c.u 18 0.00 −0.06 −0.06 0.92 0.00 0.00 1.00
Single −0.01 −0.15 −0.14 0.62 0.00 0.00 1.00
Other household type 0.00 −0.02 − 0.80 0.65 0.64 −
Family n.s. −0.05 −0.04 − 0.01 0.50 0.48 −
$44,119 and less −0.03 0.00 − 0.80 0.94 0.94 −
$75,322–$109,431 −0.05 −0.01 − 0.07 0.63 0.62 −
$109,432–$162,799 −0.07 0.00 − 0.01 0.81 0.80 −
$162,800 and higher 0.03 −0.05 − 0.20 0.01 0.01 −
Non-landed immigrant 0.00 0.00 − 0.86 0.88 0.87 −
Immigration n.s. −0.05 0.21 − 0.05 0.31 0.31 −
NL −0.04 0.03 − 0.06 0.21 0.20 −
PEI −0.02 −0.01 − 0.62 0.79 0.78 −
NS −0.01 −0.05 − 0.78 0.07 0.06 −
NB −0.06 −0.07 − 0.02 0.01 0.00 −
QC −0.16 −0.05 − 0.00 0.03 0.02 −
ON 0.00 −0.04 − 0.90 0.07 0.06 −
MB 0.08 −0.04 − 0.00 0.08 0.07 −
SK 0.06 0.00 − 0.00 0.90 0.90 −
BC 0.09 0.01 − 0.33 0.66 0.65 −

Notes: n = 17, 031. GLM, DB and SI in the columns 2-4 denote the survey GLM, debiased Lasso and SI
one-step estimates of AMEj . The columns 5-8 report the p-values of the survey GLM, DB, C(α) and SI
tests for AMEj = 0, respectively. The C(α) test p-values are identical to those reported in Table 3 (Lemma
4.1). The p-values of SI2 were identical to those of SI, thus not shown. “− ” means “not computed”.
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A Proofs

A.1 Proposition 3.2

We will verify the assumptions of Algorithm 2 of Kuchibhotla et al. (2022). Let β̂Mj and

βM0j denote the j-th elements of β̂M and βM0, respectively. Set in Assumptions (A1)–(A4)

and Algorithm 2 of Kuchibhotla et al. (2022) that θ̂q = β̂Mj, θq = βM0j, Dn,q = AZ − b,

where A, Z and b are as defined in (3.12), and

µn,q = An1/2(β′M0, 0′p+1−|M |)′ − b = [n1/2(−diag(sM)βM0)′, 0′2p+2−2|M |]′ − b.

Rewrite (2.7) as

{sM = sign(β̂M)} = {diag(sM)β̂M > 0}

= {diag(sM)(β̃M − ĤM(θ̂M)−1(0, λs′M)′) > 0}

= {−diag(sM)β̃M < −λ diag(sM)ĤM(θ̂M)−1(0, s′M)′}. (A.1)

The constraint (2.8) can be rewritten as

{‖u‖∞ < 1} = {‖λ−1S−M(θ̂M)‖∞ < 1}

= {‖λ−1
(
S̃−M(θ̂M) + Ĥ−MM(θ̂M)ĤM(θ̂M)−1SM(θ̂M)

)
‖∞ < 1}

= {−1p+1−|M | ≤ λ−1
(
S̃−M(θ̂M) + Ĥ−MM(θ̂M)ĤM(θ̂M)−1SM(θ̂M)

)
≤ 1p+1−|M |}

= {S̃−M(θ̂M) ≤ λ(1p+1−|M | − Ĥ−MM(θ̂M)ĤM(θ̂M)−1(0, s′M)′),

− S̃−M(θ̂M) ≤ λ(1p+1−|M | + Ĥ−MM(θ̂M)ĤM(θ̂M)−1(0, s′M)′)}, (A.2)

where the fourth equality uses (2.7). Thus, {M̂ = M, sign(β̂M) = sM} = {AZ ≤ b} and

Assumption (A1) of Kuchibhotla et al. (2022) is satisfied.

Assumption (A2) therein is verified as follows. Consider the first (|M | − 1)× 1 nonzero

subvector of µn,q = [n1/2(−diag(sM)βM0)′, 0′2p+2−2|M |]′ − b. Clearly, −n1/2diag(sM)βM0 =

−n1/2|βM0| → −∞ as n → ∞. Furthermore, b = Op(1) because n−1/2λ = C = O(1) and

Ĥ−MM(θ̂M)−H−MM(θM0) p−→ 0 and ĤM(θ̂M)−1 −HM(θM0)−1 p−→ 0 by and Assumption

1 and Lemma 3.5. Thus, the first (|M | − 1)× 1 nonzero subvector of µn,q diverges to −∞
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in probability. Combined with (A.6) shown below, by Slutsky’s lemma (Corollary 11.2.3

and Problem 11.36 of Lehmann and Romano (2005)) we have

lim inf
n→∞

P [Dn,q ≤ 0] = lim inf
n→∞

P [Dn,q − µn,q ≤ −µn,q] > 0.

This verifies Assumption (A2) of Kuchibhotla et al. (2022).

Assumption (A3) of Kuchibhotla et al. (2022) holds as follows. From Lemma B.4 and

the fact p is fixed, n1/2(θ̂M − θM0) = Op(1). By the mean-value expansion,

SM(θ̂M) = SM(θM0)− ĤM(θ∗M)(θ̂M − θM0), (A.3)

S−M(θ̂M) = S−M(θM0)− Ĥ−MM(θ̄M)(θ̂M − θM0), (A.4)

where θ∗M and θ̄M are the mean-value between θM0 and θ̂M . Hence,

n1/2(θ̃M − θM0) = n1/2(θ̂M − θM0)− ĤM(θ̂M)−1ĤM(θ∗M)n1/2(θ̂M − θM0) + n1/2ĤM(θ̂M)−1SM(θM0),

= n1/2HM(θM0)−1SM(θM0) + op(1),

where we used ĤM(θ̂M)−1ĤM(θ∗M) p−→ I|M | and ĤM(θ̂M)−1 − HM(θM0)−1 p−→ 0 which

follow from Lemma 3.5, the convergence of the Hessian assumption, n1/2SM(θM0) = Op(1)

and the CMT. Moreover, using (A.3) and (A.4)

n1/2S̃−M(θ̂M) = n1/2S−M(θ̂M)− Ĥ−MM(θ̂M)ĤM(θ̂M)−1n1/2SM(θ̂M)

= n1/2S−M(θM0)− Ĥ−MM(θ̄M)(θ̂M − θM0)

− Ĥ−MM(θ̂M)ĤM(θ̂M)−1n1/2[SM(θM0)− ĤM(θ∗M)(θ̂M − θM0)]

= n1/2S−M(θM0)−H−MM(θM0)HM(θM0)−1n1/2SM(θM0) + op(1)

= n1/2S̃−M(θM0) + op(1),

where the second equality uses Ĥ−MM(θ̂M)−1 − H−MM(θM0)−1 p−→ 0 which follows from

Lemma 3.5, and and the convergence of the Hessian above.. Therefore, by the Lyapunov’s

CLT applied to [n1/2SM(θM0)′, n1/2S̃−M(θM0)′]′ (see the proof of Lemma B.1) and Slutsky’s
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lemma
n1/2(β̃M − βM0)

n1/2S̃−M(θ̂M)

 =

[0|M |−1, I|M |−1]HM(θM0)−1n1/2SM(θM0)

n1/2S̃M(θM0)

+ op(1) d−→ N(0,Σ).

(A.5)

Then, by Slutsky’s lemma for j = 1, . . . , |M | − 1

n1/2e′j(|M |−1)(β̂M − βM0)

Dn,q − µn,q

 =

e′jp
A


n1/2(β̃M − βM0)

n1/2S̃−M(θ̂M)

 d−→ N

0,

e′jp
A

Σ

e′jp
A


′ .
(A.6)

Assumption (A3) of Kuchibhotla et al. (2022) thus holds. Finally, by the CMT and Lemma

3.5

Σ̂ p−→ Σ. (A.7)

This verifies Assumption (A4) of Kuchibhotla et al. (2022) and the result follows.

A.2 Lemma 3.4

We prove the result in 4 steps. In the first step, we show that Σ̄−1/2
n Ai is sub-Gaussian.

The second step reduces to the problem into bounding a sum of zero mean, independent

sub-exponential random variables. The third step applies Bernstein’s inequality to the

average determined in the second step. Finally, the fourth step completes the proof.

Step 1: Sub-Gaussian norm bound for Σ̄−1/2
n Ai.

We first verify that Σ̄−1/2
n Ai is sub-Gaussian. Because Ai is sub-Gaussian with ‖Ai‖ψ2 ≤ K,

by Remark 5.18 of Vershynin (2010) ‖Ai − µi‖ψ2 ≤ 2K. Hence, there exists an absolute

constant C > 0 such that for all t ∈ Rp

E[exp(t′(Ai − µi))] ≤ exp(C‖t‖2‖Ai − µi‖ψ2) ≤ exp(2CK‖t‖2), (A.8)

see Section 5.2.3 of Vershynin (2010) and Jin et al. (2019). Hence,
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E[exp(t′Σ̄−1/2
n (Ai − µi))] ≤ exp(2CK‖Σ̄−1/2

n t‖2)

≤ exp(2CK‖t‖2λmax(Σ̄−1
n ))

= exp(2CK‖t‖2/λmin(Σ̄n))

< exp(2CK‖t‖2/λl). (A.9)

It follows that for some absolute constant C1 > 0

‖Σ̄−1/2
n (Ai − µi)‖ψ2 ≤ C1K ≡ K1. (A.10)

Let Sp−1 ≡ {x ∈ Rp, ‖x‖2 = 1}. Next we will bound

‖Σ̄−1/2
n Ai‖ψ2 ≡ sup

x∈Sp−1
‖A′iΣ̄−1/2

n x‖ψ2 = sup
x∈Sp−1

sup
m≥1

m−1/2
(
E[|A′iΣ̄−1/2

n x|m]
)1/m

. (A.11)

For m ≥ 1, it holds that

(
E[|A′iΣ̄−1/2

n x|m]
)1/m

=
(
E[|(Ai − µi)′Σ̄−1/2

n x+ µ′iΣ̄−1/2
n x|m]

)1/m

≤
(
E[|(Ai − µi)′Σ̄−1/2

n x|m]
)1/m

+
(
E[|µ′iΣ̄−1/2

n x|m]
)1/m

≤
(
E[|(Ai − µi)′Σ̄−1/2

n x|m]
)1/m

+ E[|A′iΣ̄−1/2
n x|]. (A.12)

where the first inequality is by Minkowski’s inequality and the second inequality is by

Jensen’s inequality on noting that
(
E[|µ′iΣ̄−1/2

n x|m]
)1/m

= |µ′iΣ̄−1/2
n x| = |E[A′iΣ̄−1/2

n x]|.

Consider the second term in (A.12). Since Ai is sub-Gaussian with supx∈Sp−1

√
E[(A′ix)2]
√

2 ≤

K,

λmax(E[AiA′i]) = sup
x∈Sp−1

x′ E[AiA′i]x = sup
x∈Sp−1

E[(A′ix)2] ≤ (
√

2K)2. (A.13)
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Then,

sup
x∈Sp−1

E[|A′iΣ̄−1/2
n x|] ≤ sup

x∈Sp−1

(
E[|A′iΣ̄−1/2

n x|2]
)1/2

≤ sup
x∈Sp−1

(
λmax(E[AiA′i])λmax(Σ̄−1

n )‖x‖2
)1/2

= sup
x∈Sp−1

(
λmax(E[AiA′i])/λmin(Σ̄n)

)1/2

≤
√

2
λl
K. (A.14)

where the first inequality is by Jensen’s inequality, the second inequality is the extremal

property of the maximum eigenvalue and the eigenvalue product inequality (see Hansen

(2022a), Appendix B), and the third is by λmin(Σ̄n) > λl and (A.13). Finally,

‖Σ̄−1/2
n Ai‖ψ2 ≤ sup

x∈Sp−1
sup
m≥1

m−1/2
[(

E[|(Ai − µi)′Σ̄−1/2
n x|m]

)1/m
+ E[|A′iΣ̄−1/2

n x|]
]

≤ K1 +
√

(2/λl)K sup
m≥1

m−1/2 ≤ C1K +
√

(2/λl)K ≡ K2, (A.15)

where the first inequality follows from (A.11) and (A.12), and the second inequality is by

(A.10) and (A.14).

Step 2: Reduction to an average of sub-exponential random variables. Given

K2 defined in (A.15), let

ε ≡ 8K2
2 max(δ, δ2), (A.16)

Below, we will show that with probability at least 1− 2 exp(−t2)

‖n−1Σ̄−1/2
n A′AΣ̄−1/2

n − Ip‖2 ≤ max(δ, δ2) = ε

8K2
2
, (A.17)
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Let N denote the 1/4-net of Sp−1. Since n−1Σ̄−1/2
n A′AΣ̄−1/2

n − Ip = n−1∑n
i=1 Σ̄−1/2

n (AiA′i−

E[AiA′i])Σ̄−1/2
n , by Lemma 5.4 of Vershynin (2010)

‖n−1Σ̄−1/2
n A′AΣ̄−1/2

n − Ip‖2 ≤ 2 max
x∈N
|n−1

n∑
i=1

x′Σ̄−1/2
n (AiA′i − E[AiA′i])Σ̄−1/2

n x|

= 2 max
x∈N
|n−1

n∑
i=1

(Z2
i − E[Z2

i ])|, (A.18)

where Zi ≡ x′Σ̄−1/2
n Ai. To show (A.17), for ε > 0 defined in (A.17) we will upper bound

the probability

P

[
max
x∈N
|n−1

n∑
i=1

(Z2
i − E[Z2

i ])| ≥ ε/2
]
.

Step 3: Concentration. Fix x ∈ Sn−1. It is clear that {Z2
i − E[Z2

i ]}ni=1 are centered

and independent. In addition, by Remark 5.18 and Lemma 5.14 of Vershynin (2010),

{Z2
i − E[Z2

i ]}ni=1 are sub-exponential random variables with ‖Z2
i − E[Z2

i ]‖ψ1 ≤ 2‖Z2
i ‖ψ1 ≤

4‖Zi‖2
ψ2 ≤ 4K2

2 , where the last inequality is due to (A.15). By Bernstein’s inequality

(Corollary 5.17 of Vershynin (2010), Corollary 2.8.3 of Vershynin (2018)), for an absolute

constant c1 > 0

P

[∣∣∣∣∣n−1
n∑
i=1

(Z2
i − E[Z2

i ])
∣∣∣∣∣ ≥ ε

2

]
≤ 2 exp

[
−c1 min

(
ε2

64K4
2
,
ε

8K2
2

)
n

]

= 2 exp(−c1δ
2n)

= 2 exp
[
−c1c

2(√p+ t)2
]

≤ 2 exp(−c1c
2(p+ t2)) (A.19)

where the first equality holds by the definition of ε in (3.34), the second equality is by the

definition of δ, and the last inequality is due to the fact that (a+ b)2 ≥ a2 + b2 for a, b ≥ 0.

Step 4: Union bound. By Corollary 4.2.13 of Vershynin (2018), there exists a 1/4-net

N of Sp−1 with cardinality |N | ≤ 9p. Taking the union bound and using (A.19) give

P

[
max
x∈N

∣∣∣∣∣n−1
n∑
i=1

(Z2
i − E[Z2

i ])
∣∣∣∣∣ ≥ ε

2

]
≤ 9p 2 exp

[
−c1c

2(p+ t2)
]
≤ 2 exp(−t2), (A.20)
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where the second inequality is by the choice c =
√

log 9
c1

. Next we note that

P [‖n−1A′A− Σ̄n‖2 < 8K2
2 max(δ, δ2)‖Σ̄n‖2]

= P [‖n−1A′A− Σ̄n‖2 < ε‖Σ̄n‖2]

= P [‖Σ̄1/2
n (n−1Σ̄−1/2

n A′AΣ̄−1/2
n − Ip)Σ̄1/2

n ‖2 < ε‖Σ̄n‖2]

≥ P [‖Σ̄1/2
n ‖2‖n−1Σ̄−1/2

n A′AΣ̄−1/2
n − Ip‖2‖Σ̄1/2

n ‖2 < ε‖Σ̄n‖2]

= P
[
‖n−1Σ̄−1/2

n A′AΣ̄−1/2
n − Ip‖2 < ε

]
≥ P

[
max
x∈N

∣∣∣∣∣n−1
n∑
i=1

(Z2
i − E[Z2

i ])
∣∣∣∣∣ < ε

2

]

≥ 1− 2 exp(−t2),

where the first two equalities hold trivially, the first inequality is by the Cauchy-Schwarz

inequality, the second equality holds by the definition of the spectral norm and Σ̄n is

symmetric, the second inequality holds by (A.18) and the last is by (A.18). This completes

the proof.

A.3 Lemma 3.5

By the triangle inequality for spectral norm,

‖Ĥ(θ̂)−H(θ0)‖2 ≤ ‖Ĥ(θ̂)− Ĥ(θ0)‖2 + ‖Ĥ(θ0)−H(θ0)‖2. (A.21)

Let Ai = xi
√
wig̈(yi, x′iθ0) and t = s

√
p in Lemma 3.4. Since xi is sub-Gaussian and√

wig̈(yi, x′iθ0) ≤ Cu a.s. by Assumption 1(a) and (c) (the condition (3.4)), using Assump-

tion 1(a) once again

‖Ai‖ψ2 = sup
‖b‖=1

sup
m≥1

m−1/2
(

E
[∣∣∣∣x′ib√wig̈(yi, x′iθ0)

∣∣∣∣m])1/m
≤ C2

u. (A.22)
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Then, n−1A′A = n−1∑n
i=1 AiA

′
i = Ĥ(θ0), Σ̄n = H(θ0) and δ = c

(√
p
n

+ t√
n

)
= (s+ 1)c

√
p
n
,

and Lemma 3.4 gives

P
[
‖n−1A′A− Σ̄n‖2 < 8K2

2(s+ 1)c
√
p

n
λu

]
≥ 1− 2 exp(−s2p).

Therefore, ‖n−1A′A− Σ̄n‖2 = Op

(√
p
n

)
or equivalently

‖Ĥ(θ0)−H(θ0)‖2 = Op

(√
p

n

)
. (A.23)

By Lemma 3.4 and Assumption 1(b), ‖n−1X ′X − E[n−1X ′X]‖2
p−→ 0 and

λmax(n−1X ′X)− λmax(E[n−1X ′X]) ≤ ‖n−1X ′X − E[n−1X ′X]‖2
p−→ 0. (A.24)

Hence

λmax(n−1X ′X) = Op(1), (A.25)

Furthermore, letting W (θ) ≡ −diag(w1g̈(y1, x
′
1θ), . . . , wng̈(yn, x′nθ))

‖Ĥ(θ̂)− Ĥ(θ0)‖2 = ‖n−1X ′(W (θ̂)−W (θ0))X‖2

≤ n−1‖X ′‖2‖X‖2‖W (θ̂)−W (θ0)‖2

= λmax(n−1X ′X)‖W (θ̂)−W (θ0)‖2

≤ λmax(n−1X ′X) max
i
|wi||g̈(yi, x′iθ̂)− g̈(yi, x′iθ0)|

≤ λmax(n−1X ′X)CuL0 max
i
|xi(θ̂ − θ0)|

≤ λmax(n−1X ′X)C2
uL0‖θ̂ − θ0)‖1

= Op(m0λ), (A.26)

where the last equality uses Lemma B.4. Thus, combining (A.23) and (A.26) with (A.21)

gives

‖Ĥ(θ̂)−H(θ0)‖2 = Op

(√
p

n
+m0λ

)
. (A.27)
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To show (3.36), note first that by Cauchy-Schwarz inequality for spectral norm (Hansen,

2022a)

‖Ĥ(θ̂)−1 −H(θ0)−1‖2 = ‖Ĥ(θ̂)−1(Ĥ(θ̂)−H(θ0))H(θ0)−1‖2

≤ ‖Ĥ(θ̂)−1‖2‖Ĥ(θ̂)−H(θ0)‖2‖H(θ0)−1‖2. (A.28)

For the third term on the right-hand side of (A.28), by Assumption 1(b)

‖H(θ0)−1‖2 = 1/λmax(H(θ0)) = O(1). (A.29)

Finally consider the third factor in (A.28). By Weyl’s inequality (see Eaton and Tyler

(1991), Lemma 2.1), λmin(Ĥ(θ̂)−H(θ0)) ≤ λmin(Ĥ(θ̂))−λmin(H(θ0)) ≤ λmax(Ĥ(θ̂)−H(θ0)).

Combining this with the fact that

‖Ĥ(θ̂)−H(θ0)‖2 = max{−λmin(Ĥ(θ̂)−H(θ0)), λmax(Ĥ(θ̂)−H(θ0))},

we obtain

|λmin(Ĥ(θ̂))− λmin(H(θ0))| ≤ ‖Ĥ(θ̂)−H(θ0)‖2. (A.30)

Fix 0 < ε < λl. Since ‖(Ĥ(θ̂))−1‖2 = 1/λmin(Ĥ(θ̂)), using (A.30)

P

[
‖Ĥ(θ̂)−1‖2 ≥

1
λmin(H(θ0))− ε

]
= P

[
1

λmin(Ĥ(θ̂))
≥ 1
λmin(H(θ0))− ε

]

= P
[
λmin(H(θ0))− λmin(Ĥ(θ̂)) ≥ ε

]
≤ P

[
|λmin(H(θ0))− λmin(Ĥ(θ̂))| ≥ ε

]
≤ P

[
‖H(θ0)− Ĥ(θ̂)‖2 ≥ ε

]
→ 0,

where the last line follows from (A.27). Thus,

‖Ĥ(θ̂)−1‖2 = Op(1). (A.31)
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Combining (A.27), (A.29) and (A.31) in (A.28), we obtain (3.36). The convergence results

in (3.37) and (3.38) follow similarly by setting Ai = xiwiġ(yi, x′iθ0) in Lemma 3.4 and

repeating the argument above.

A.4 Proposition 3.6

By the mean value expansion,

S(θ0) = S(θ̂) + Ĥ(θ∗)(θ̂ − θ0) = S(θ̂) + Ĥ(θ̂)(θ̂ − θ0) +R, (A.32)

where θ∗ is the mean-value between θ̂ and θ0, and R = [R1, . . . , Rp+1]′ with

Rj ≡ n−1
n∑
i=1

(g̈(yi, x′iθ∗)− g̈(yi, x′iθ̂))wixijx′i(θ0 − θ̂). (A.33)

Note that since ρ̇(θ) is locally Lipschitz in a neighborhood of θ0, with probability approach-

ing 1 ‖ρ̇(θ̄)− ρ̇(θ̂)‖ ≤ B0‖θ̄ − θ̂‖ for some B0 = O(1). Also, since

n1/2(ρ(θ̂)− ρ(θ0)) = ρ̇(θ̄)′n1/2(θ̂ − θ0), (A.34)

where θ̄ is a mean-value between θ̂ and θ0, we have

n1/2‖ρ̇(θ̂)− ρ̇(θ̄)‖‖θ̂ − θ0‖ = n1/2B0‖θ̂ − θ̄‖‖θ̂ − θ0‖ = Op(n1/2m0λ
2)

= op(1), (A.35)

where the last line is by n1/2m0λ
2 = n−1/2m0C

2 log p ≤ C2m0(p/n)1/2 log p = o(1). Then,

n1/2(ρ̃− ρ(θ0))

= n1/2(ρ(θ̂)− ρ(θ0)) + ρ̇(θ̂)′Ĥ(θ̂)−1n1/2S(θ̂)

= n1/2ρ̇(θ̄)′(θ̂ − θ0) + n1/2ρ̇(θ̂)′Ĥ(θ̂)−1S(θ0)− n1/2ρ̇(θ̂)′(θ̂ − θ0)− n1/2ρ̇(θ̂)′Ĥ(θ̂)−1R

= n1/2ρ̇(θ̂)′Ĥ(θ̂)−1S(θ0)− n1/2ρ̇(θ̂)′Ĥ(θ̂)−1R + op(1),
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where the first equality is by the definition of ρ̃, the second equality is by (A.32) and

(A.34), and the third is by (A.35). Below, the proof will be completed in three steps: the

first two steps establish

ρ̇(θ̂)′Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1ρ̇(θ̂)− ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0) = op(1),

n1/2ρ̇(θ̂)′Ĥ(θ̂)−1S(θ0)− n1/2ρ̇(θ0)′H(θ0)−1S(θ0) = op(1), (A.36)

and the third step verifies n1/2ρ̇(θ̂)′Ĥ(θ̂)−1R = op(1). It will then follow that

[
ρ̇(θ̂)′Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1ρ̇(θ̂)

]−1/2
n1/2(ρ̃− ρ(θ0))

=
[
ρ̇(θ̂)′Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1ρ̇(θ̂)

]−1/2 [
n1/2ρ̇(θ̂)′Ĥ(θ̂)−1S(θ0)− n1/2ρ̇(θ̂)′Ĥ(θ̂)−1R + op(1)

]
=
[
ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)

]−1/2
n1/2ρ̇(θ0)′H(θ0)−1S(θ0) + op(1).

Finally, applying Lemma B.1 and Slutsky’s lemma give the desired result.

Step 1: ρ̇(θ̂)′Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1ρ̇(θ̂)− ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0) = op(1).

First, by the triangle inequality

‖ρ̇(θ̂)′Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1ρ̇(θ̂)− ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)‖2

≤ ‖ρ̇(θ̂)′
[
Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1 −H(θ0)−1I(θ0)H(θ0)−1

]
ρ̇(θ̂)‖2

+ ‖ρ̇(θ̂)′H(θ0)−1I(θ0)H(θ0)−1(ρ̇(θ̂)− ρ̇(θ0))‖2

+ ‖(ρ̇(θ̂)− ρ̇(θ0))′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)‖2. (A.37)

Consider the first term on the right-hand side of (A.37). By Cauchy-Schwarz inequality,

‖ρ̇(θ̂)′
[
Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1 −H(θ0)−1I(θ0)H(θ0)−1

]
ρ̇(θ̂)‖2

≤ ‖Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1 −H(θ0)−1I(θ0)H(θ0)−1‖2‖ρ̇(θ̂)‖2
2, (A.38)
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After rearranging and using the triangle and Cauchy-Schwarz inequalities

‖Ĥ(θ̂)−1Î(θ̂)Ĥ(θ̂)−1 −H(θ0)−1I(θ0)H(θ0)−1‖2

= ‖(Ĥ(θ̂)−1 −H(θ0)−1)Î(θ̂)Ĥ(θ̂)−1 +H(θ0)−1(Î(θ̂)Ĥ(θ̂)−1 − I(θ0)H(θ0)−1)‖2,

≤ ‖Ĥ(θ̂)−1 −H(θ0)−1‖2‖Î(θ̂)‖2‖Ĥ(θ̂)−1‖2 + ‖H(θ0)−1‖2‖Î(θ̂)Ĥ(θ̂)−1 − I(θ0)H(θ0)−1‖2.

(A.39)

For the first summand of (A.39), by Lemma 3.5

‖Ĥ(θ̂)−1 −H(θ0)−1‖2‖Î(θ̂)‖2‖Ĥ(θ̂)−1‖2 = op(1). (A.40)

For the second factor in the second summand of (A.39), using the triangle and Cauchy-

Schwarz inequalities

‖Î(θ̂)Ĥ(θ̂)−1 − I(θ0)H(θ0)−1‖2

= ‖(Î(θ̂)− I(θ0))(Ĥ(θ̂)−1 −H(θ0)−1) + (Î(θ0)− I(θ0))H(θ0)−1 + I(θ0)(Ĥ(θ0)−1 −H(θ0)−1)‖2

≤ ‖Î(θ̂)− I(θ0)‖2‖Ĥ(θ̂)−1 −H(θ0)−1‖2 + ‖Î(θ0)− I(θ0)‖2‖H(θ0)−1‖2

+ ‖I(θ0)‖2‖Ĥ(θ0)−1 −H(θ0)−1‖2

p−→ 0, (A.41)

where the last line is by Lemma 3.5 and the CMT. From Lemma B.4, ‖θ̂ − θ0‖ =

Op(m1/2
0 λ) = Op

((
m0 log p

n

)1/2
)

= op(1). Since ρ̇(θ) is locally Lipschitz in a neighborhood

of θ0, with probability approaching 1, we have for B0 = O(1) ‖ρ̇(θ̂)− ρ̇(θ0)‖ ≤ B0‖θ̂− θ0‖.

Thus,

‖ρ̇(θ̂)− ρ̇(θ0)‖2 ≤ r1/2‖ρ̇(θ̂)− ρ̇(θ0)‖ = Op

(m0 log p
n

)1/2
 . (A.42)

By the triangle inequality and (A.42)

‖ρ̇(θ̂)‖2 ≤ ‖ρ̇(θ̂)− ρ̇(θ0)‖2 + ‖ρ̇(θ0)‖2 = Op(1). (A.43)
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Therefore, the quantity in (A.38) is op(1). Consider the second term on the right-hand

side of (A.37). By the triangle inequality and (A.42),

‖ρ̇(θ̂)′H(θ0)−1I(θ0)H(θ0)−1(ρ̇(θ̂)− ρ̇(θ0))‖2

≤ ‖ρ̇(θ̂)‖2‖H(θ0)−1I(θ0)H(θ0)−1‖2‖ρ̇(θ̂)− ρ̇(θ0)‖2

p−→ 0.

Similarly, for the third term on the right-hand side of (A.37)

‖(ρ̇(θ̂)− ρ̇(θ0))′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)‖2

≤ ‖ρ̇(θ̂)− ρ̇(θ0)‖2‖H(θ0)−1I(θ0)H(θ0)−1‖2‖ρ̇(θ0)‖2

p−→ 0.

Step 2: n1/2ρ̇(θ̂)′Ĥ(θ̂)−1S(θ0)− n1/2ρ̇(θ0)′H(θ0)−1S(θ0) = op(1).

Remark that from Assumption 1, |ġ(yi, x′iθ0)| ≤ Cu, |wi| ≤ Cu and ‖xi‖2 ≤ (p + 1)C2
u a.s.

for all i. Using the independence assumption,

E[‖S(θ0)‖2
2] = E[‖S(θ0)‖2] = n−2 E

[
n∑
i=1

w2
i ‖xi‖2ġ(yi, x′iθ0)2

]
≤ n−1(p+ 1)C6

u.

By Markov’s inequality,

‖S(θ0)‖2 = Op

(√
p

n

)
. (A.44)

Now rewrite

n1/2ρ̇(θ̂)′Ĥ(θ̂)−1S(θ0)− n1/2ρ̇(θ0)′H(θ0)−1S(θ0)

= n1/2(ρ̇(θ̂)− ρ̇(θ0))′Ĥ(θ̂)−1S(θ0) + n1/2
(
ρ̇(θ0)′Ĥ(θ̂)−1S(θ0)− ρ̇(θ0)′H(θ0)−1S(θ0)

)
.

(A.45)
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For the first term of (A.45),

‖n1/2(ρ̇(θ̂)− ρ̇(θ0))′Ĥ(θ̂)−1S(θ0)‖2 ≤ n1/2‖ρ̇(θ̂)− ρ̇(θ0)‖2‖Ĥ(θ̂)−1‖2‖S(θ0)‖2

= n1/2Op

√m0 log p
n

Op(1)Op

(√
p

n

)

= Op

√pm0 log p
n


= op(1), (A.46)

where the first inequality is by Cauchy-Schwarz, the first equality uses (A.31), (A.42) and

(A.44), and the last equality holds because m0(log p)p/n ≤ m0(log p)(p/n)1/2(p2/n)1/2 → 0

by the assumption of the proposition. For the second term of (A.45), we have

n1/2‖ρ̇(θ0)′Ĥ(θ̂)−1S(θ0)− ρ̇(θ0)′H(θ0)−1S(θ0)‖2 ≤ n1/2‖ρ̇(θ0)‖2‖Ĥ(θ̂)−1 −H(θ0)−1‖2‖S(θ0)‖2

= n1/2Op

(√
p

n
+m0λ

)
Op

(√
p

n

)

= Op

√p2

n
+√pm0λ


= op(1), (A.47)

where the first inequality is by Cauchy-Schwarz, the first equality is by Lemma 3.5 and

(A.44), and the last equality holds because p2/n→ 0 and p1/2 m0λ = Cm0(p/n)1/2(log p)1/2 ≤

Cm0(p/n)1/22 log p → 0 by the assumption of the proposition. It follows from (A.45),

(A.46) and (A.47) that

n1/2ρ̇(θ̂)′Ĥ(θ̂)−1S(θ0)− n1/2ρ̇(θ0)′H(θ0)−1S(θ0) = op(1).

Step 3: n1/2ρ̇(θ̂)′Ĥ(θ̂)−1R = op(1).

By Cauchy-Schwarz, n1/2‖ρ̇(θ̂)′Ĥ(θ̂)−1R‖2 ≤ n1/2‖ρ̇(θ̂)‖2‖Ĥ(θ̂)−1R‖2. Remark from (A.43)
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that ‖ρ̇(θ̂)‖2 = Op(1). To show n1/2‖Ĥ(θ̂)−1R‖2 = op(1), note that

max
1≤j≤p+1

|Rj| ≤ n−1
n∑
i=1
|g̈(yi, x′iθ∗)− g̈(yi, x′iθ̂)||wi| max

1≤j≤p+1
|xij||x′i(θ0 − θ̂)|

≤ n−1
n∑
i=1

L0|xi(θ∗ − θ̂)|C2
u|x′i(θ0 − θ̂)|

≤ L0C
2
un
−1

n∑
i=1
|x′i(θ0 − θ̂)|2

= L0C
2
uOp(m0λ

2)

= Op(m0λ
2), (A.48)

where the first inequality is by Assumption 1(c), and the first equality uses Lemma B.4.

Since ‖H(θ0)‖ = O(1) and ‖Ĥ(θ̂)−H(θ0)‖ = op(1), ‖Ĥ(θ̂)‖ = Op(1). Therefore,

n1/2‖Ĥ(θ̂)−1R‖2 ≤ n1/2‖Ĥ(θ̂)−1‖2‖R‖2

≤ n1/2Ĥ(θ̂)−1(p+ 1)1/2‖R‖∞

= Op((n(p+ 1))1/2m0λ
2)

= op(1), (A.49)

where the first equality holds by using (A.48) and the second equality follows on noting

that (n(p+ 1))1/2m0λ
2 = (n(p+ 1))1/2m0C

2(log p)/n ≤ (2p/n)1/2m0C
2 log p = o(1).

A.5 Proposition 3.7

Similarly to (A.32), by the mean value expansion

S(θ0) = S(θ̃∗) + Ĥ(θ∗)(θ̃∗ − θ0) = S(θ̃∗) + Ĥ(θ̃∗)(θ̃∗ − θ0) +R∗, (A.50)

where θ∗ is a mean-value between θ̃∗ and θ0, and R∗ = [R∗1, . . . , R∗p+1]′ with

R∗j ≡ n−1
n∑
i=1

(g̈(yi, x′iθ∗)− g̈(yi, x′iθ̃∗))wixijx′i(θ0 − θ̃∗).
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Proceeding similarly to Steps 1, 2 and 3 in the proof of Proposition 3.6, we obtain

(
ρ̇(θ̃∗)′Ĥ(θ̃∗)−1Î(θ̃∗)Ĥ(θ̃∗)−1ρ̇(θ̃∗)

)−1/2
−
(
ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)

)−1/2
= op(1),

(A.51)

n1/2ρ̇(θ̃∗)′Ĥ(θ̃∗)−1S(θ0) = n1/2ρ̇(θ0)′H(θ0)−1S(θ0) + op(1), (A.52)

n1/2ρ̇(θ̃∗)′Ĥ(θ̃∗)−1R∗ = op(1). (A.53)

By the assumption that ρ(θ̃∗) = ρ(θ0) and the mean value expansion

0 = n1/2(ρ(θ̃∗)− ρ(θ0)) = ρ̇(θ̄)′n1/2(θ̃∗ − θ0), (A.54)

where θ̄ is a mean-value between θ̃∗ and θ0. Next, we will show that ρ̇(θ̃∗)′n1/2(θ̃∗ − θ0) =

op(1). Since ρ̇(θ) is locally Lipschitz in a neighborhood of θ0, with probability approaching

1 ‖ρ̇(θ̄)− ρ̇(θ̃∗)‖ ≤ B0‖θ̄ − θ̃∗‖ for some B0 = O(1). Thus, using (A.54)

‖n1/2ρ̇(θ̃∗)′(θ̃∗ − θ0)‖ = ‖n1/2(ρ̇(θ̃∗)− ρ̇(θ̄))′(θ̃∗ − θ0)‖

≤ n1/2‖ρ̇(θ̃∗)− ρ̇(θ̄)‖‖θ̃∗ − θ0‖

= n1/2B0‖θ̃∗ − θ̄‖‖θ̃∗ − θ0‖

= Op(n1/2m0λ
2).

Since n1/2m0λ
2 = n−1/2m0C

2 log p ≤ C2m0(p/n)1/2 log p = o(1),

n1/2ρ̇(θ̃∗)′(θ̃∗ − θ0) = op(1). (A.55)

Using (A.50), (A.52), (A.53) and (A.55), we have

n1/2ρ̇(θ̃∗)′Ĥ(θ̃∗)−1S(θ̃∗) = n1/2ρ̇(θ̃∗)′Ĥ(θ̃∗)−1
[
S(θ0)− Ĥ(θ̃∗)(θ̃∗ − θ0)−R∗

]
= n1/2ρ̇(θ̃∗)′Ĥ(θ̃∗)−1S(θ0)− n1/2ρ̇(θ̃∗)′(θ̃∗ − θ0)− n1/2ρ̇(θ̃∗)′Ĥ(θ̃∗)−1R∗

= n1/2ρ̇(θ0)′H(θ0)−1S(θ0) + op(1). (A.56)
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By Lemma B.1

(
ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)

)−1/2
n1/2ρ̇(θ0)′H(θ0)−1S(θ0) d−→ N(0, Ir). (A.57)

Then,

(
ρ̇(θ̃∗)′Ĥ(θ̃∗)−1Î(θ̃∗)Ĥ(θ̃∗)−1ρ̇(θ̃∗)

)−1/2
n1/2ρ̇(θ̃∗)′Ĥ(θ̃∗)−1S(θ̃∗)

=
(
ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)

)−1/2
n1/2ρ̇(θ0)′H(θ0)−1S(θ0) + op(1)

d−→ N(0, Ir), (A.58)

where the equality holds by (A.51) and (A.56), and the convergence follows from (A.57)

and Slutsky’s lemma. Finally, from (A.58) and the CMT

Cα(ρ0) d−→ χ2
r.

B Supplementary lemmas

We first prove the following lemma that establishes the asymptotic distribution of a studen-

tized quantity with the expected Hessian and information matrices and the score function

evaluated at the true parameters.

Lemma B.1. Let Assumption 1 hold and p1+δ0/n → 0 for some 0 < δ0 ≤ 1. Then, as

n→∞

(
ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)

)−1/2
ρ̇(θ0)′H(θ0)−1n1/2S(θ0) d−→ N(0, Ir).

Proof of Lemma B.1. Let si(θ0) ≡ wixiġ(yi, x′iθ0), Xni ≡ n−1/2ρ̇(θ0)′H(θ0)−1si(θ0) and

Σn ≡ Var[∑n
i=1 Xni] = ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0). Let νn ≡ λmin(Σn). We will verify

the conditions of the multivariate Lindeberg-Feller CLT (see e.g. Theorem 9.3 of Hansen

(2022b)). First note that E[Xni] = 0 because E[si(θ0)|xi] = −E[xiwi(yi − ȧ(x′iθ0))|xi] = 0.
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Moreover, we have

νn = min
τ∈Rr\{0}

τ ′ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)τ
τ ′τ

≥ min
τ∈Rr\{0}

τ ′ρ̇(θ0)′H(θ0)−1I(θ0)H(θ0)−1ρ̇(θ0)τ
τ ′ρ̇(θ0)′ρ̇(θ0)τ min

τ∈Rr\{0}

τ ′ρ̇(θ0)′ρ̇(θ0)τ
τ ′τ

≥ λmin(H(θ0)−1I(θ0)H(θ0)−1)λmin(ρ̇(θ0)′ρ̇(θ0))

≥ λmin(H(θ0)−1)λmin(I(θ0))λmin(H(θ0)−1)λmin(ρ̇(θ0)′ρ̇(θ0))

= λmin(I(θ0))
(λmax(H(θ0))2λmin(ρ̇(θ0)′ρ̇(θ0))

≥ λ2
l /λ

2
u.

where the first inequality follows from the extremal property of λmin(·), the second in-

equality is the eigenvalue product inequality (Hansen (2022a)) and the last inequality is

by Assumption 1(b). Next, we will verify the Lindeberg condition: for δ = 2
δ0
> 0 and any

ε > 0

1
ν2
n

n∑
i=1

E[‖Xni‖21(‖Xni‖ ≥ (εν2
n)1/2)] ≤ 1

ν2+δ
n εδ/2

n∑
i=1

E[‖Xni‖2+δ]→ 0. (B.1)

First, note that

‖ρ̇(θ0)′H(θ0)−1xi‖2+δ ≤ ‖ρ̇(θ0)‖2+δ
(
‖H(θ0)−1xi‖2

)1+δ/2

≤ r1+δ/2‖ρ̇(θ0)‖2+δ
2

(
λmax(H(θ0)−1H(θ0)−1)‖xi‖2

)1+δ/2

≤ r1+δ/2λ2+δ
u

(
‖xi‖2

(λmin(H(θ0)))2

)1+δ/2

≤ r1+δ/2λ2+δ
u

(p+ 1)1+δ/2C2+δ
u

λ2+δ
l

. (B.2)

where the first inequality is by Cauchy-Schwarz, the second inequality is by the inequality

‖ρ̇(θ0)‖ ≤ r1/2‖ρ̇(θ0)‖2 and the extremal property of λmax(·), the third inequality is by the

eigenvalue product inequality (Hansen (2022a), Appendix B), and the last inequality is by
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Assumption 1(a) and (b). Thus, using |wi|2+δ|ġ(yi, x′iθ0)|2+δ ≤ C4+2δ
u and (B.2), we have

n∑
i=1
‖Xni‖2+δ ≤ 1

n1+δ/2

n∑
i=1
‖ρ̇(θ0)′H(θ0)−1xi‖2+δ|wi|2+δ|ġ(yi, x′iθ0)|2+δ

≤ 1
nδ/2 r

1+δ/2λ2+δ
u

(p+ 1)1+δ/2C2+δ
u

λ2+δ
l

C4+2δ
u

≤
(

(p+ 1)1+δ0

n

)1/δ0

r1+δ/2λ2+δ
u

C6+3δ
u

λ2+δ
l

→ 0.

This verifies (B.1) and the result follows.

Next, we present several lemmas to establish the consistency of the survey GLM Lasso

estimator and confirm that the convergence rate obtained with i.i.d. data in the literature

also holds with i.n.i.d. data.

To obtain the convergence rate of the Lasso estimator, following Bühlmann and van de

Geer (2011) we define the empirical process associated with the negative log-likelihood, its

local supremum, and the excess risk as:

vn(θ) ≡ n−1
n∑
i=1

(wig(yi, x′iθ)− E[wig(yi, x′iθ)]) , θ ∈ Rp+1, (B.3)

ZR ≡ sup
‖θ−θ0‖1≤R

|vn(θ)− vn(θ0)|, (B.4)

E(θ) ≡ E
[
n−1

n∑
i=1

(wig(yi, x′iθ)− wig(yi, x′iθ0))
]
. (B.5)

By Jensen’s inequality,

E(θ) = E
[
n−1

n∑
i=1

(wig(yi, x′iθ)− wig(yi, x′iθ0))
]

= n−1
n∑
i=1

E
[
wi log f(yi|xi, θ)

f(yi|xi, θ0)

]

≥ n−1
n∑
i=1

wi log E
[
f(yi|xi, θ)
f(yi|xi, θ0)

]
= 0.

Therefore,

θ0 = arg min
θ∈Rp+1

E(θ) = arg min
θ∈Rp+1

E
[
n−1

n∑
i=1

wig(yi, x′iθ)
]
. (B.6)

The following lemma shows that ZR is proportional to R and follows from Lemma 14.20
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of Bühlmann and van de Geer (2011).

Lemma B.2 (Concentration inequality). Let Assumption 1 hold. Then, for all R ≤ η/Cu

E[ZR] ≤ 4Ran, an ≡ C2
u(C2

u + 0.5ηC2
u)
(

2 log(2(p+ 1))
n

)1/2

. (B.7)

Proof of Lemma B.2. Let γ(yi, wi, s) = wig(yi, s), i = 1, . . . , n, in Lemma 14.20 of Bühlmann

and van de Geer (2011). Note that |x′i(θ − θ0)| ≤ max1≤j≤p+1 |xij|‖θ − θ0‖1 ≤ CuR ≤

Cuη/Cu = η. By the second-order Taylor expansion and Assumption 1

wig(yi, x′iθ)− wig(yi, x′iθ0) = wiġ(yi, x′iθ0)x′i(θ − θ0) + 0.5wix′i(θ − θ0)g̈(yi, x′iθ∗)x′i(θ − θ0),

(B.8)

where θ∗ is between θ and θ0. By the triangle inequality and Assumption 1,

|wi(g(yi, x′iθ)− g(yi, x′iθ0))| ≤ |(wiġ(yi, x′iθ0) + 0.5wix′i(θ − θ0)g̈(yi, x′iθ∗))x′i(θ − θ0)|

≤ (C2
u + 0.5RC3

u)|x′i(θ − θ0)|. (B.9)

Hence γ(yi, wi, s) = wig(yi, s) is Lipschitz, and Lemma 14.20 of Bühlmann and van de Geer

(2011) and Assumption 1 yield

E[ZR] ≤ 4R(C2
u + 0.5RC3

u)
(

2 log(2(p+ 1))
n

)1/2

E
[

max
1≤j≤p+1

n−1
n∑
i=1

x2
ij

]

≤ 4RC2
u(C2

u + 0.5RC3
u)
(

2 log(2(p+ 1))
n

)1/2

.

We first recall the compatibility condition for a subset of indices M ⊆ {1, . . . , p + 1}

which represents the compatibility between a positive definite matrix (of the expected

Hessian-type) and the sparsity of the model coefficients.

Assumption 2 (Compatibility Condition (CC)). For a subset of indices M ⊆ {1, . . . , p+

1}, there exists κ(M) > 0 such that for all θ ∈ Rp+1 satisfying ‖θ−M‖1 ≤ 3‖θM‖1 it holds

that ‖θM‖2
1 ≤ (θ′Hθ)|M |/κ2(M) as n→∞, where H is a positive definite fixed matrix.
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Related to the CC are the restricted eigenvalue condition (Hansen, 2022a, Chapter 29)

and the restricted isometry condition (Negahban et al., 2012). For detailed discussions,

we refer to p.129 and Sections 6.12 and 6.13 of Bühlmann and van de Geer (2011). The

next assumption concerns the the quadratic behaviour of the excess risk around the true

parameter.

Assumption 3 (Quadratic Margin Condition (QMC)). There exist constants η > 0, c > 0

and a positive definite matrix H such that E(θ) ≥ c‖H1/2(θ − θ0)‖2 for all θ satisfying

‖X(θ − θ0)‖∞ ≤ η.

For c > 0 in Assumption 3, define the oracle parameter vector θ∗ as

θ∗ ≡ arg min
θ:Mθ⊆{1,...,p+1}

(
3 E(θ) + 8λ2mθ

κ2(Mθ)c

)
, (B.10)

where Mθ ≡ {1} ∪ {j : βj 6= 0} and mθ ≡ |Mθ| denotes the cardinality of the subset Mθ.

Moreover, let

ε∗ ≡ 3
2E(θ∗) + 8λ2m∗

2κ2
∗c

, (B.11)

where m∗ = |Mθ∗| and κ∗ = κ(Mθ∗).

Assumption 4 (‖·‖∞ neighborhood). For θ∗ and ε∗ defined in (B.10) and (B.11), assume

that ‖X(θ∗ − θ0)‖∞ ≤ η and ‖X(θ − θ0)‖∞ ≤ η for all ‖θ − θ∗‖1 ≤ R, where R ≡ ε∗

λ0
for

some λ0 > 0, and η > 0 is given in Assumption 3.

Next, we recall Theorem 6.4 of Bühlmann and van de Geer (2011) (see also Corollary 6.6

therein) to derive the consistency and rate of convergence of the GLM Lasso estimator.

The key condition for the result, in addition to Assumptions 2–4, is the convexity of the

loss function (i.e. the convexity of ρf in f in Bühlmann and van de Geer (2011)’s notation)

which holds because wg(y, t) is convex in t.

Proposition B.3 (Theorem 6.4 of Bühlmann and van de Geer (2011)). Suppose that there

exist η > 0, c > 0 and a positive definite matrix H such that

(a) Assumption 2 holds for all subsets of indices M ⊆ {1, . . . , p+ 1};

(b) Assumptions 3 and 4 hold;
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(c) The function g(y, t) is convex in t for all y;

(d) λ satisfies λ ≥ 8λ0.

Then on the set

F = {ZR ≤ λ0R} = {ZR ≤ ε∗}, (B.12)

where ZR is defined in (B.4), it holds that

E(θ̂) + λ‖θ̂ − θ∗‖1 ≤ 6 E(θ∗) + 16λ2m∗
cκ2
∗

. (B.13)

In the following lemma, we obtain the rate convergence of the Lasso estimator by

verifying the conditions of Proposition B.3.

Lemma B.4. Under Assumption 1 and the conditions of Proposition 3.6, ‖θ̂ − θ0‖1 =

Op(m0λ), ‖θ̂ − θ0‖2 = Op(m0λ
2) and n−1‖X(θ̂ − θ0)‖2

2 = Op(m0λ
2).

Proof of Lemma B.4. Following the remark of Bühlmann and van de Geer (2011) preceding

Corollary 6.6 therein, let us set Mθ = {1}∪M̃θ, where M̃θ ⊆ {2, . . . , p+1} in the definition

of the oracle (B.10). As a result, the unpenalized intercept α is kept in the oracle. When

M̃θ = M̃θ0 , that is, Mθ = {1} ∪ M̃θ0 , we have θ∗ = θ0, E(θ∗) = E(θ0) = 0 and ε∗ = 4λ2m0
κ2

0c
.

The proof consists of three steps. The first step verifies the assumption of Proposition

Proposition B.3. The second step provides a lower bound for P [F ], where the event F is

defined in (B.12). The final step completes the proof.

Step 1: Verifying the assumptions of Proposition B.3.

We will verify that the conditions of Proposition B.3 hold under Assumption 1. Since

λmin(H) > λl > 0, by Lemma 6.23 of Bühlmann and van de Geer (2011) the adaptive

restricted eigenvalue condition holds. The latter, in turn, implies that Assumption 2 holds

for all index sets M ⊂ {1, . . . , p + 1} (see Bühlmann and van de Geer (2011), p.162).

Assumption 3 holds by the condition in (3.1) in Assumption 1. Next, we verify Assumption

4. Let λ0 = λ
8 = C

8

√
log p
n

. If ‖θ − θ0‖1 ≤ R, since m0λ → 0 from the rate assumption in

Proposition 3.6, for n large

‖X(θ−θ∗)‖∞ = ‖X(θ−θ0)‖∞ ≤ Cu‖θ−θ0‖1 ≤ CuR = 4Cuλ2m0

κ2
0cλ0

= 32Cuλm0

κ2
0c

≤ η. (B.14)
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The conditions of Proposition B.3 are therefore satisfied, and (B.13) implies that

E(θ̂) + λ‖θ̂ − θ0‖1 ≤
16λ2m0

cκ2
0

, (B.15)

hence on F

λ‖θ̂ − θ0‖1 ≤
16λ2m0

cκ2
0

. (B.16)

Step 2: Bounding P [F ] for F defined in (B.12).

Set in Theorem A.1 of van de Geer (2008) that γ(Zi) = wi[g(yi, x′iθ)−g(yi, x′iθ0)]. Following

(B.9) for ‖θ − θ0‖1 ≤ R

|wi(g(yi, x′iθ)− g(yi, x′iθ0))| ≤ |(wiġ(yi, x′iθ0) + 0.5wix′i(θ − θ0)g̈(yi, x′iθ∗))x′i(θ − θ0)|

≤ (C2
u + 0.5RC3

u)|x′i(θ − θ0)|

≤ η(C2
u + 0.5ηC2

u).

Therefore,

‖γ‖∞ ≤ η(C2
u + 0.5ηC2

u) ≡ bn, (B.17)

n−1
n∑
i=1

Var[γ(Zi)] ≤ n−1
n∑
i=1

E[γ(Zi)2] ≤ η2(C2
u + 0.5ηC2

u)2 = b2
n.

Then, by the Bousquet’s inequality (see Theorem A.1 of van de Geer (2008)) followed by

Lemma B.2

e−nt
2 ≥ P

[
ZR ≥ E[ZR] + t

√
2(b2

n + 2bn E[ZR]) + 2t2bn/3
]

≥ P
[
ZR ≥ 4Ran + t

√
2(b2

n + 8anbnR) + 2t2bn/3
]
,

where an is defined in (B.7). Replacing t by 4Rt in the above inequality yields

P
[
ZR ≤ 4R(an + t

√
2(b2

n + 8anbnR) + 8bnR2t2/3)
]

= P [ZR ≤ λ0R]

≥ 1− e−16R2nt2 , (B.18)
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where λ0 = 4(an + t
√

2(b2
n + 8anbnR) + 8bnR2t2/3).

Step 3: Completing the proof.

Since nR2 = O(m2
0 log p), with a suitable choice of t (hence with a suitable choice of C in

λ0 and λ), we obtain from (B.16) and (B.18) that ‖θ̂ − θ0‖1 = Op(m0λ). By Corollary 6.4

of Bühlmann and van de Geer (2011), ‖θ̂ − θ0‖2
2 = ‖θ̂ − θ0‖2 = Op(m0λ

2). Combining the

latter with (A.25), we obtain

‖X(θ̂ − θ0)‖2
2/n ≤ λmax(n−1X ′X)‖θ̂ − θ0‖2

2 = Op(m0λ
2). (B.19)
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