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1 Introduction

The cryptocurrency market has grown considerably over the last decade.

Bitcoin and Ethereum are the leaders in terms of market capitalizations of over 500

and 200 Billions, respectively. Stellar and XRP have much smaller capitalizations

and lower prices. These four cryptocurrencies: BTC, ETH, XRP and XLM are

examined in this paper to determine and explain their common characteristics in

the behaviour of their exchange rates against the US Dollar over time. In particular,

the four series display similar dynamic patterns, which include short-lived trends

interpreted as bubbles and referred to as local explosive patterns in Gourieroux,

Zakoian (2017). Other common dynamic price patterns are sudden spikes and time

varying volatility, the latter one being a nonlinear pattern found in exchange rates

and stock returns. The similarities in cryptocurrency behavior over time, can be

examined by considering the dynamics of pairs of cryptocurrency prices, such as

BTC and ETH, on the one hand, and XRP and XLM on the other. Pairing up

the cryptocurrencies this way is motivated by the fact that Bitcoin and Ethereum

were market capitalization leaders while Ripple and Stellar serve similar purposes

and share similar underlying technological features. To detect the common dynamic

patterns, all four cryptocurrency rate series can be considered as a single multivariate

process. The presence of common bubbles in all of them is due to the speculative

character of these digital assets.

Under the traditional approach to time series analysis, the bubbles are

viewed as nonstationary phenomena, which need to be detected and modelled

separately from the stationary component of a time series. There exist a variety

of bubble models, such as the Watson bubble for example [Blanchard and Watson

(1982)], and tests of bubbles such as those proposed in Phillips and Shi (2018), and

Phillips and Yu (2015a) and (2015b).

In this paper, an alternative approach is used. The cryptocurrency rates

are modelled as a strictly stationary (mixed) causal-noncausal Vector Autoregressive

process and the bubbles and other local explosive patterns are considered as inherent
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features of this process. The objective of this paper is to estimate the common latent

components of the cryptocurrencies, and to display and compare the common latent

explosive components. In addition, we show that while the (mixed) causal-noncausal

Vector Autoregressive (VAR) process provides a good fit to the cryptocurrency

rates, the traditional, i.e.past-dependent causal VAR is flawed and fails to detect the

comovements between the cryptocurrencies.

Research on modelling the cryptocurrencies as multivariate processes has

primarily been focused on the causal i.e. past dependent models. For example,

[Catania et al., 2019] find that combinations of parameter varying multivariate causal

models can improve the inference. This suggests the importance of accommodating

the nonlinearities in cryptocurrency rates, which is done in this paper by including

the noncausal components. In addition, we model the rates, i.e. prices rather than

returns which separates our approach from the literature. The relationships between

the cryptocurrency returns have received a lot of attention in recent years [see e.g.

Antonakakis et al. (2019), Bouri et al. (2021), Dunbar and Owusu-Amoako (2022)

and Nyakurukwa and Seetharam (2023). We model the cryptocurrency rates as a

strictly stationary multivariate process because these assets are mean reverting rather

than explosive, i.e. they do not display global trends and long-lasting explosions.

Our approach relaxes the traditional assumptions of linearity of the VAR process

by allowing for noncausal components that accommodate nonlinear patters in the

calendar time, including the aforementioned bubbles and spikes.

A mixed causal-noncausal VAR process Gouriéroux & Jasiak (2017) Davis

& Song (2020).] (henceforth referred to as the mixed VAR) has a representation

similar to the traditional VAR model. Unlike the traditional VAR, the autoregressive

matrix of coefficients of the mixed VAR can have eigenvalues either strictly smaller

or greater than one. The eigenvalue(s) strictly smaller than one are associated with

the traditional past dependent i.e. causal stationary behavior of the series. The

eigenvalue(s) strictly larger than one are associated with locally explosive behavior,

generating the bubbles and spikes. In addition, the errors of the mixed VAR have to

be non-Gaussian and serially independent, identically distributed (i.i.d.) to ensure



THIS VERSION: June 9, 2023 4

that the dynamics of the mixed process can be identified.

The assumption of Gaussianity, common in the time series literature, implies

the restriction of the parameter space of a given time series model to the causal

region. It implies that forward and backward dynamics of a given stochastic process

are not distinguishable and, as a consequence the forward looking dynamics cannot

be identified. Our empirical results suggest that the assumption of causality is

insufficient for capturing the comovements of cryptocurrency rates.

To estimate the mixed VAR model we apply the Generalized Covariance

estimator Gouriéroux & Jasiak (2017) which is a one-step, consistent semi-parametric

estimator for mixed causal noncausal multivariate non-Gaussian processes. This

approach allows us to study the cryptocurrency rates in a semi-parametric setup, i.e.

without imposing any distributional assumptions on the errors of the VAR model.

The mixed VAR modelling allows us also to filter out the latent casual and

noncausal components, the latter one capturing the bubble phenomena and locally

explosive behaviour in strictly stationary time series. The noncausal components

in the VAR process represents a common bubble component of the multivariate

series. When the series share a common noncausal component we can monitor and

forecast that explosive component to notify investors about explosive patterns, such

as spikes and bubbles. The monitoring can be beneficial for the investors. The

noncausal component can also be predicted [see Gourieroux, Jasiak (2016), Lanne,

Luoto,Saikkonen (2013)].

The paper is organized as follows: Section 2 discusses the causal noncausal

Vector Autoregressive (VAR) model and the GCov estimator. Section 3 introduces

the time series of cryptocurrencies : Bitcoin (BTC), Ethereum (ETH), Ripple (XRP)

and Stellar (XLM) and shows the results on the empirical analysis of their respective

USD exchange rates. Section 4 concludes. Appendix A contains summary statistics,

Appendix B contains supplementary graphs.
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2 Mixed VAR(p) Model

The Vector Autoregression of order p (VAR(p)) model represents the dy-

namics of a weakly stationary multivariate process yt, t = 1, 2, ..., T of dimension

n:

yt = Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + et (1)

where Φi, i = 1, ..., p are n× n matrices of autoregressive coefficients, et is an error

vector of length n which follows a weak white noise (i.e. a sequence of uncorrelated

random vectors) with mean zero and a positive definite variance matrix Σ. 1

Under the classical approach yt is assumed to be causal i.e. past dependent

and stationary. This condition implies that the roots of

det(Id− Φ1z − Φ2z
2 − ...− Φpz

p) = 0

lie outside the unit circle.

This assumption is too stringent for practical applications as it eliminates

stationary noncasual or mixed (i.e. causal and noncausal) dynamics in non-Gaussian

processes. Moreover, the normality-based estimation methods such as the normality-

based Maximum Likelihood (ML) and Ordinary Least Squares (OLS) applied to

such processes do not distinguish between the causal and noncausal dynamics of

the process due to the lack of identification issue, and therefore yield inconsistent

estimates. The standard Box-Jenkins approach for the estimation of causal, i.e past-

dependent VAR, involving normality-based ML or OLS estimation is only adequate

for causal linear time-series which are normally distributed, stationary, linear and

which can be represented by a moving average with weak white noise errors. The

1In equation (1) yt is assumed to have zero mean.
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reason is that the Box-Jenkins approach is based on the identification and estimation

of time series from moments of order up to only two. Consequently, the normality-

based methods are unable to accommodate jumps, bubbles and local trends which

involve higher moments. If the observed time-series is strictly stationary, noncausal

and non-Gaussian then we are able to distinguish between the two-sided (those

including the past present and future errors) and one-sided (those including only the

current and lagged errors) moving average representations written in terms of i.i.d.

non-Gaussian errors.

To solve this difficulty, Lanne and Saikkonen (2013) proposed a multiplica-

tive vector autoregressive VAR model for strictly stationary non-Gaussian time series

using a multiplicative polynomial representation:

Π(L)Φ(L−1)yt = εt,

where Π(L) = Id− Π1L− ...− ΠrL
r, and, Φ(L−1) = Id− Φ1...− ΦsL

−s are n× 1

autoregressive causal and noncausal polynomials such that detΦ(z) 6= 0 for |z| ≤ 1

and detΠ(z) 6= 0 for |z| ≤ 1, and εt is a n×1 sequence of independent and identically

distributed (i.i.d.) non-Gaussian random vectors with zero mean and finite positive

definite variance-covariance matrix. A limitations of this approach is the fact that the

multiplicative polynomial representation with autoregressive orders of r and s may

not be unique, and may not always exist for a VAR(p). Moreover, the Approximate

Maximum Likelihood (AML) estimator of this model requires the assumption of

parametric error distribution. If the distribution is correctly specified then the

estimates stemming from the approximate likelihood method are consistent. If, on

the other hand, the distribution is not correctly specified then the approximate

likelihood method is unreliable.

Gouriéroux & Jasiak (2017), Davis & Song (2020) and Swensen (2022)

consider the classical representation (1) under modified assumptions. More specifically

Gouriéroux & Jasiak (2017) assume that the errors et follow a sequence of non-
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Gaussian independent and identically distributed (i.i.d) vectors with positive definite

variance-covariance matrix Σ and the roots of the autoregressive polynomial lie

either outside or inside the unit circle. Both articles discuss the identification and

estimation of the causal noncausal VAR(p) models. Davis & Song (2020) rely on

the ML estimation which requires a distributional assumption on the error terms

involving the risk of mis-specification. Gouriéroux & Jasiak (2017) introduce a

semi-parametric estimator called the Generalized Covariance Estimator (the GCov

hereafter) for mixed causal noncausal multivariate non-Gaussian processes. The

estimator does not require an assumption of a specific parametric error distribution

and uses the nonlinear autocovariances for identification of causal and noncausal

components. Gouriéroux & Jasiak (2017) show that the GCov estimator is consistent

and asymptotically normally distributed.

The next Section presents the causal noncausal VAR model, (referred to as

the mixed VAR) recalls the representation in terms of purely causal and noncausal

components and summarizes the results on the GCov estimator.

2.1 The MIXED VAR(1) Model

Let us consider a strictly stationary n-dimensional mixed VAR(1) process:

Yt = ΦYt−1 + εt, (2.1)

where (εt) is a strong multivariate non-Gaussian white noise of dimension n, and Φ

is an n× n matrix. Gouriéroux & Jasiak (2017) assume that (εt) is square integrable

with zero mean E(εt) = 0, and variance-covariance matrix V (εt) = Σ. 2

The eigenvalues of matrix Φ are assumed to be of modulus different from 1

2The assumption of square integrability facilitates the derivation of asymptotic properties of the
estimators.
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as this ensures that a unique, strictly stationary solution to recursive equation (2.1)

exists.

Since (εt) is not assumed independent of the lagged values of the process

Yt−1, Yt−2..., the process εt cannot be interpreted as an innovation.

2.2 Representation Theorem GJ (2017)

This Section reviews the representation theorem of Gouriéroux & Jasiak

(2017) introduced for the causal-noncausal mixed processes that distinguishes their

purely causal and noncausal latent components. Let us consider the bivariate VAR(1)

model for ease of exposition. In the mixed VAR(1) model, if n1 (resp. n2 = n− n1)

represents the number of eigenvalues of Φ whose modulus is strictly less than 1 (resp.

strictly larger than 1), then there exists an invertible n×n matrix A, and two square

matrices: J1 with dimension n1×n1 and J2 with dimension n2×n2. The eigenvalues

of J1 (resp. J2) with their modulus strictly less than 1 (resp. larger than 1) are such

that :

Yt = A1Y
∗

1,t + A2Y
∗

2,t, (2.2)

Y ∗1,t = J1Y
∗

1,t−1 + ε∗1,t, Y
∗

2,t = J2Y
∗

2,t−1 + ε∗2,t, (2.3)

ε∗1,t = A1εt, ε
∗
2,t = A2εt, (2.4)

where A1, A2 (resp A1, A2) are the blocks in the decomposition of matrix A as :

A = (A1, A2) [resp. in the decomposition of A−1 as A−1 =

 A1

A2

].
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The matrices J1 and J2 are derived from the real Jordan canonical form of Φ such

that

Φ = A

 J1 0

0 J2

A−1,

where A contains the eigenvectors of Φ as its columns.

By premultiplying both sides of equation (2.1) and (2.4) by matrix A−1 we

can decompose Yt into causal and noncausal components as follows :

Y ∗t =

 Y ∗1,t

Y ∗2,t

 ≡ A−1Yt, ε∗t =

 ε∗1,t

ε∗2,t

 ≡ A−1εt.

We get :

Y ∗t =

 J1 0

0 J2

Y ∗t−1 + ε∗t , and Y ∗j,t = JjY
∗
j,t−1 + ε∗j,t, j = 1, 2,

In addition, equation Yt = AY ∗t , is equivalent to :

Yt = A1Y
∗

1,t + A2Y
∗

2,t,

which is the decomposition of (2.2).

Given that the eigenvalues of J1 have modulus strictly less than 1, the
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recursive equation below is causal :

Y ∗1,t = J1Y
∗

1,t−1 + ε∗1,t,

and recursive backward substitutions can be used derive the causal one-sided moving

average representation of Y ∗1,t given by the expression below (where L is the lag

operator) :

Y ∗1,t = Σ∞h=0J
h
1 ε
∗
1,t−h = (Id− J1L)−1ε∗1,t, (2.5)

and where

(Id− J1L)−1 ≡ Σ∞h=0J
h
1L

h. (2.6)

The second recursive equation is noncausal : Y ∗2,t = J2Y
∗

2,t−1 +ε∗2,t can, using recursive

substitution, be written thus :

Y ∗2,t = J−1
2 Y ∗2,t+1 − J−1

2 ε∗2,t+1 = (Id− J2L)−1ε∗2,t, (2.7)

where :

(Id− J2L)−1 ≡ −Σ∞h=1J
−h
2 L−h. (2.8)

It follows that:

1. There exists a strong (i.i.d) two-sided moving average representation of the
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solution of (2.1). Processes (Y ∗1,t) and (Y ∗2,t) are purely causal and noncausal

processes, respectively. They can be interpreted as the causal and noncausal

latent components of process (Yt);

2. These components are deterministic functions of (Yt) since : Y ∗j,t = AjYt, j =

1, 2.

The component Y ∗2,t is the explosive component that follows a strictly stationary

noncausal (V)AR process. This component represents the common bubbles, and

spikes. It can be univariate or multivariate, depending on the dimension of the time

series Yt.

2.3 Bivariate VAR(1) - Interpretation

To better understand the comovements of Yt components and their contri-

bution to the latent causal and non-causal components, let us consider again the

bivariate VAR(1) process. When matrix Φ is triangular, then depending on the

eigenvalues, all components of yt do not always contribute to both the explosive (i.e.

noncausal) and regular (causal) dynamics.

Suppose that matrix Φ has the following Jordan decomposition:

Φ = AJA−1

where J is the 2 by 2 matrix of eigenvalues A is the 2 by 2 matrix with columns

containing the eigenvectors of Φ. Suppose also that φ12 = 0 or φ21 = 0, so that

matrix Φ is upper or lower triangular. It is known that for any n × n triangular

matrix the following properties hold:

1) The eigenvalues of an upper or lower triangular matrix are the diagonal

entries of the matrix
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2) For any triangular matrix, a vector with all elements zero, except the

first one is an eigenvector. There is a second eigenvector with all elements zero,

except the first two, etc.

Therefore, a triangular 2 by 2 matrix Φ has a triangular matrix A, with a

triangular inverse A−1. It follows that the past values of one component of yt do not

contribute to either the explosive dynamics y∗2t, or the regular dynamics y∗1,t.

Let the matrix J be written as J =

 J1 0

0 J2

 , where J1 < 1 < J2. Then matrix

A has entries A =

 a11 a12

a21 a22

 and its inverse is A−1 =

 a11 a12

a21 a22

 .

Accordingly, we have row vectors A1 = [a11 a12] and A2 = [a21 a22] corresponding to

the latent components y∗1t and y∗2t with regular and explosive dynamics, respectively.

Example 1: Upper triangular Φ

Suppose the element φ21 = 0 in matrix

Φ =

 φ11 φ12

φ21 φ22


which makes it an upper triangular matrix

ΦU =

 φ11 φ12

0 φ22


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If J1 = φ11, J2 = φ22 so that J2 > J1, we get a21 = 0

A−1 =

 a11 a12

0 a22


Then both y1t and y2t contribute to the regular component y∗1t, but process y1t does

not contribute to the explosive y∗2t = y2t:

y∗1,t = a11y1 + a12y2 =
+∞∑
j=0

λ1ε
∗
1,t−j, (2.9)

with ε∗1,t as the causal error ε∗1,t = a11ε1,t + a12ε2,t, and

y∗2,t = a22y2,t = −
+∞∑
j=0

[λ−j−1
2 a22ε2,t+j+1]. (2.10)

The noncausal error ε∗2,t = a22ε2,t is a function of ε2 only. We observe that y1,T affects

only the error term associated with y1,T+1, i.e. the non-explosive error.

If J1 = φ22, J2 = φ11 so that J2 > J1, we get a11 = 0

A−1 =

 0 a12

a21 a22


In this case process y1t is explosive and does not contribute to the regular component

y∗1t = y2t, while both y1t and y2t contribute to the explosive component y∗2t.
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Example 2: Lower triangular Φ

Suppose the element φ12 = 0 in matrix

Φ =

 φ11 φ12

φ21 φ22


which makes a lower triangular matrix

ΦL =

 φ11 0

φ21 φ22



Then, if J1 = φ11, J2 = φ22 so that J2 > J1, we get a12 = 0

A−1 =

 a11 0

a21 a22


Process y2t does not contribute to the regular component y∗1t = y1t, but both processes

contribute to the explosive y∗2t.

y∗1,t = a11y1 =
+∞∑
j=0

λ1ε
∗
1,t−j, (2.11)

where ε∗1,t is the causal error ε∗1,t = a11ε1,t and a function of ε1,t only. The explosive
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component is

y∗2,t = a21y1,t + a22y2,t = −
+∞∑
j=0

[λ−j−1
2 (a21ε1,t+j+1 + a22ε2,t+j+1)]. (2.12)

If J1 = φ22, J2 = φ11 so that J2 > J1, we get a22 = 0

A−1 =

 a11 a12

a21 0


In this case process y2t does not contribute to the explosive component y∗2t = y1t,

while both y1t and y2t contribute to the regular component y∗1t.

Independence

The independence between y1 and y2 arises when φ12 = φ21 = 0 and the

joint density of errors can be written as: g(ε1,t, ε2,t) = g1(ε1,t)g2(ε2,t),∀t.

2.4 VAR(1) representation of the VAR(p) model

The VAR(p) can be easily transformed into a VAR(1) model for estimation and

inference purposes. In that context, the latent causal and noncausal components can

be easily determined too.
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Consider the VAR(p) process:

Yt = Φ1Yt−1 + ...+ ΦpYt−p + εt , (2.13)

where (εt) is a sequence of independent and identically distributed (i.i.d.) random

vectors of dimension n with variance-covariance matrix Σ. We can write this model

as a VAR(1) model for Xt where Xt is obtained by stacking the current and lagged

values of Yt

Xt = (Y ′t , Y
′
t−1, ..., Y

′
t−p+1)′ , (2.14)

to get

Xt = ΨXt−1 + ut. (2.15)

The autoregressive polynomial Ψ can be written as

Ψ =



Φ1 ... ... Φp

Id 0 ... 0

0 Id ... 0

0 ... Id 0


. (2.16)
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and

ut =



ε1,t

...

ε1,n

0

...

0



. (2.17)

By the representation theorem given in section (2.2) Ψ can also be written in Jordan

canonical form:

Ψ = B

 J1 0

0 J2

B−1. (2.18)

Similar to Yt in the VAR(1) case, Xt can be written as the sum of causal and

noncausal components as follows

Xt = B1X
∗
1,t +B2X

∗
2,t,

where

X∗1,t = J1X
∗
1,t−1 + u∗1,t,

X∗2,t = J2X
∗
2,t−1 + u∗2,t,

and

X∗1,t = B1Xt,
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X∗2,t = B2Xt.

Like in the VAR(1) model, the causal and noncausal errors are deterministic functions

of the of the process ut,

u∗1,t = B1ut, u∗2,t = B2ut.

Errors u∗1,t and u∗2,t satisfy n(p−1) linearly independent and deterministic relationships

since they both depend on εt and dim u∗1,t + dim u∗2,t = n1 + n2 = np and np is

greater than dim εt = n whenever p > 1.

2.5 Estimation from Nonlinear Autocovariances

The semi-parametric estimation method applicable to mixed causal non-

causal multivariate processes, called the Generalized Covariance Estimator was

introduced by Gouriéroux & Jasiak (2017).

It follows from the nonlinear identification result in Ming-Chung & Kung-

Sik (2007) that there exist nonlinear covariance based conditions that can be used to

identify causal and noncausal components of a given series provided the error terms

εt are serially independent. The nonlinear covariance based conditions, for example,

could be the covariances between nonlinear transforms of the error terms defined for

a given set of functions as:

cj,k(h,Φ) = Cov[aj(Yt − ΦYt−1), ak(Yt − ΦYt−h−1)], j, k = 1, ..., K, h = 1, .., H,

for a given set of functions ak, k = 1, ...K.
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Let us denote by Ψl(Yt, φ), l = 1, ..., KH, function ak(Yt−h−ΦYt−h−1), where

φ = vecΦ′ . For each covariance ckl = Cov[Ψk(Yt, φ),Ψl(Yt, φ)], k, l = 1, ..., KH, we

can write its sample counterpart:

γ̂k,l,T = Ĉov[Ψk(Yt, φ),Ψl(Yt, φ)], k, l = 1, ..., KH.

We can then define a covariance estimator as follows:

The Covariance estimator φ̃T of φ = vecΦ′ minimizes the following objective function:

φ̃T = γ̂T ′(φ)Ωγ̂T (φ),

with respect to φ where γ̂T (φ) denotes the vector obtained by stacking γ̂k,l,T (φ) and

Ω is a (KH ×KH) positive definite weighting matrix.

The selection of the function aj determines the semi-parametric efficiency

bound of the covariance estimator and the asymptotic efficiency of a Covariance

estimator based on a given set of covariances depends on the matrix of weights Ω

the estimator, in general, asymptotically semi-parametrically efficient.

One can use the optimal weights Ω that ensure asymptotic semi-parametric

efficiency and the associated estimator is then called the Generalized Covariance

(GCov) estimator [see, Gourieroux, Jasiak (2022)].

The definition of the Generalized Covariance estimator is similar to the

definition of a Generalized Method of Moments (GMM) estimator since by analogy,

we can obtain a consistent covariance estimator with a simple weighting scheme

such as an identity matrix (although that first step estimator may not be fully

semi-parametrically efficient). The differences lie in 1) the use of the central moments

only in the GCov approach and 2) reduced dimension of the objective function to be

minimized.
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2.5.1 Estimation of Φj

The choice of nonlinear covariances is a problem similar to choosing the

instruments in a GMM setting. One can choose a combination of quadratic and

linear transformations to capture the absence of leverage effect at lag h, h ≤ 0 for

example, or other nonlinear functions, such as higher powers or logarithms. Note

that the GMM estimator is not available for the models with noncausal components.

As mentioned earlier in Section 2.1, the error term cannot be interpreted as an

innovation and no instruments are available, see Lanne & Saikkonen (2011b) and

Lanne & Saikkonen (2011a) for further discussion on the issue.

Let us consider nonlinear functions ak, k = 1, ..., K, and sample autocorre-

lations ρ̂j,k(h,Φ) = Corr[aj(Yt − ΦYt−1), ak(Yt−h − ΦYt−h−1)], Γ(0)−1Γ(1). Then the

GCov estimator can be represented as a weighted covariance estimator:

Φ̂T = argmin
Φ

K∑
j=1

K∑
k=1

[
H∑
h=1

ρ̂2
j,k(h,Φ)] (2.19)

where H is the highest selected lag and the theoretical auto correlations ρj,k are

replaced by their sample counterparts ρ̂j,k, seeGouriéroux & Jasiak (2017).

The efficiency of the GCov estimator depends on the choice of functions

ak, k = 1, ..., K and the maximum lag H.

2.5.2 Asymptotic Properties of the GCov Estimator

Gouriéroux & Jasiak (2017) show that GCov estimator φ̂ of vec(Φ′) is

consistent and asymptotically normal with asymptotic variance given by: (D′Σ−1D)−1

= Vasy[
√
T (φ̂T − φ)].

The rows of matrix D are: Dk,l = − ∂
∂φ′
Ĉov[Ψk(Yt, φ),Ψl(Yt, φ)].
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The elements of matrix Σ are:

σ(k,l),(k′,l′) = Covasy(
√
TĈov[Ψk,Ψl],

√
TĈov[Ψk′ ,Ψl′ ])

where Ψi = Ψi(Yt, φ) = ak(Yt−h − ΦYt−h−1) for i = (k, l, k′, l′).

2.5.3 Estimation and Identification Steps

In practice, the estimation of a (bivariate) VAR(p) from the GCov estimator

can be accomplished along the following steps:

1. Estimate Φ1, ...,Φp for a given autoregressive order p using the GCov estimator.

This can be done using linear and nonlinear functions of εt(φ) = Yt −Φ1Yt−1 −
...− ΦpYt−p.

2. Using the p estimated autoregressive coefficients Φ̂1, ..., Φ̂p compute Ψ̂ and

derive the Jordan canonical form of Ψ̂ The decomposition will yield n̂1 and Ĵi

and B̂i for i = {1,2}.

3. Compute the residuals ε̂t = Yt − Φ̂1Yt−1 − ... − Φ̂pYt−p and compute their

nonlinear autocorrelation function. If the residual autocorrelations are still

significant at some lags, then re-estimate the model increasing p and repeat

until the residual autocorrelations are no longer significant.

3 Empirical Analysis of Four Cryptocurrencies

3.1 Cyptocurrencies

Let us consider the US dollar exchange rates of the following cryptocurren-

cies: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP) and Stellar (XLM) observed at
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daily frequency obtained from the Bitfinex exchange (www.bitfinex.com). The data

display short lived local trends which suggest the presence of noncausal dynamics.

3.2 Bitcoin (BTC) and Ethereum (ETH)

The sample of Bitcoin and Ethereum exchange rates against the US Dollar

(USD) (BTC and ETH hereafter) consists of T = 885 observations on daily closing

rates collected between January 01, 2017 and June 04, 2019.

Figure 1a displays the daily BTC/USD and ETH/USD exchange rates over

the entire sampling period of 885 days. Both Bitcoin and Ethereum experienced

a large increase in value relative to the US dollar since early 2017 but had, as of

2018, lost a large proportion of their respective US dollar values since their peak in

late 2017. In addition, both exchange rates show evidence of bubble phenomena, i.e.

explosive trends characterized by periods of explosive increases in level followed by

rapid decreases in level or vice versa.

Figure 1b displays BTC/USD and ETH/USD exchange rates with medians

subtracted. The BTC/USD exchange rate is divided by a factor of ten for comparison

and further modelling and, along with the original ETH/USD exchange rate, it is

hereafter referred to as the adjusted series.

In Figure 1c we show in the grey region a sub-sample of T = 250 observations

over the period February 02, 2018 and October 10, 2018 selected for further analysis of

the series. This sub-sample is shown in Figure 1d again to document the comovements

between the series.

We chose this sub-sample with T = 250 because it displayed many spikes

in the late 2017 when the large bubble was bursting and the price of cryptocurrency

was decreasing. This sub-sample shown in Figures 1b and 1d is then detrended with

Python package Obspy 3 using a spline of order 2 with a knot every 30 observations.

3Specifically, from Obspy we import the spline package from obspy.signal.detrend
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(a) 2017-01-01 to 2019-06-04 (b) Adjusted 2017-01-01 to 2019-06-04

(c) Sub-sample 2018-02-03 to 2018-10-10
in grey

(d) Sub-sample 2018-02-03 to 2018-10-10

Figure 1: BTC/USD and ETH/USD Exchange Rates. BTC/USD solid line,
ETH/USD dotted line.
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We detrend the subsample using splines instead of the Hodrick–Prescott filter because

the Hodrick–Prescott filter is parametric and can destroy the serial dependence

pattern Hecq & Voisin (2022). Moreover, one cannot predict it or extrapolate from

data detrended using this method. As such we use splines because they are non-

parametric. The original and detrended data for BTC and ETH exchange rates can

be seen in Figures 2. Figure 2c displays the detrended, adjusted BTC/USD exchange

rate as a solid line and the detrended ETH/USD exchange rate as a dotted line.

The autocorrelation function (ACF) in Figure 3 of the detrended data shows

finite range of serial dependence. The shaded region in Figure 3 is the asymptotically

valid confidence interval at 95%.

Figure 3: ACF of Detrended BTC and ETH VAR(1)

By applying the Augmented Dickey-Fuller test to the detrended data we
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(a) BTC (Adjusted) Detrended by Spline (b) ETH (Adjusted) Detrended by Spline

(c) BTC/USD: solid line, ETH/USD: dotted line

Figure 2: BTC and ETH (Adjusted) Detrended by Spline
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find that the resulting process is stationary as all p-values are near zero (for models

with and without a constant, constant, with a linear trend and with both linear

and quadratic trends - results available on request). Moreover, the detrended data

is not normally distributed, with excess kurtosis and skewness of 0.245 and 0.31,

respectively in BTC, and of 2.15 and 0.338 in ETH.

3.3 VAR(1) Model of BTC and ETH

The VAR(1) model is estimated minimizing the objective function (2.19)

with respect to Φ with H equal to 11 and power two as the nonlinear function. We

obtain the following estimates of the autoregressive matrix:

Φ̂GCOVBTC/ETH
=

 0.12 1.18

−0.56 2.08

 .

The eigenvalues for this matrix are 0.55 and 1.6 respectively, which is

consistent with a mixed causal noncausal process. The standard errors for the first

row are 0.059, 0.093 respectively and the standard errors for the second row are

0.064 and 0.1 respectively. The coefficients are statistically significant based on the

standard Wald test.

The residual variance covariance matrix estimated for the BTC/ETH

VAR(1) model is

Σ̂BTC/ETH =

 1002.37 676.4

676.4 650.1


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The ACF of the residuals of the VAR(1) model is shown in Appendix B

in Figure B.1 and of the squared residuals in Figure B.2 . We find that most serial

correlation has been removed but there still exists evidence of slight correlation at

lags 1 and 2, especially in the squared residuals.

The histograms and QQ plots shown in Figures 4 and 5 respectively, display

the sample distributions of the residuals for the VAR(1) BTC and ETH providing

evidence of their non-Gaussian distributions.The residual densities have long left

tails. Their densities are difficult to specify parametrically, and are characterized by

departures from normality.

Figure 4: Histograms of Residuals from VAR(1) for BTC and ETH
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(a) BTC QQ Plot of Residuals VAR(1) (b) ETH QQ Plot of Residuals VAR(1)

Figure 5: BTC and ETH Plot of Residuals VAR(1)

In order to further investigate the normality of the residuals we employ a

battery of statistical tests: JB - Jarque-Bera, KS - Komolgorov and Smirnoff, DP -

D’Agostino and Pearson, Sh - Shapiro whose test statistics and p-values can be seen

in Table 1 and excess kurtosis and skewness where ’p’ stands for ’p-value’.

JB JB-p KS KS-p DP DP-p Sh Sh-p
BTC 35.03 0.0 0.514 0.0 0.97 0.0 19.2 0.0
ETH 312.5 0.0 0.485 0.0 48.04 0.0 0.93 0.0

Table 1: BTC and ETH Normality Tests for VAR(1) Residuals

The non-normality is also evidenced by the skewness and the excess kurtosis of 1.63

and -0.42, respectively for the BTC residuals and of 5.38 and -0.53, respectively for

the ETH residuals.

Having decomposed the autoregressive coefficient matrix Φ̂ = ÂĴÂ−1 (i.e.

into Jordan normal form) we can use the blocks of matrix Â−1 to obtain the causal

noncausal components of the process and causal noncausal components of the residuals

of both processes.

In order to calculate the causal and noncausal components of the process

(which are deterministic functions of the estimated errors) we use blocks of of A−1,
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Ŷ ∗1,t = Â1ε̂t, Ŷ
∗

2,t = Â2ε̂t, where Â−1 =

Â1

Â2

.

Below, we plot the two series of exchange rates along with their causal and noncausal

components representing the ’regular’ and ’explosive’ common dynamics in Figure??.

Next we show only the causal and noncausal components in Figure 6b.

(a) Detrended Series with Causal and
Noncausal Latent Components

(b) Causal and Noncausal Latent Com-
ponents

Figure 6: BTC and ETH Series with Causal and Noncausal Latent Components,
VAR(1)

Figure 6a shows the graph of the causal and noncausal components of the

multivariate process for the sub-sample of BTC and ETH without the original series.

We see that the causal component of the model is more smooth compared to the

noncausal component. Figure 6b shows that the noncausal component displays more

volatility than the common causal component. This is expected since the noncausal

component represents the common bubble or explosive local trend in the series. It

can be monitored in practice to provide insights to investors, for example when the

explosive component exceeds in absolute value a pre-determined threshold.

Since the process shows autocorrelation in the squared residuals at lag 1

we increase the number of lags in the VAR model to remove the correlation in the

squared residuals. This autocorrelation appears to be removed by lag 3, i.e. when
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the VAR(3) model is fitted to the time series.

3.4 VAR(3) Model of BTC and ETH

The VAR(3) model is estimated by setting H in the objective function (2.19) equal

to 11 and minimizing it with respect to Φ. We obtain the estimated autoregressive

coefficient matrices at lags one, two and three, which are:

Φ̂GCOVBTC/ETH i =

 −0.792 2.059

−1.268 2.06

 ,
 1.717 −1.439

−1.268 2.06

 ,
 −0.497 0.242

0.087 −0.099


with the following augmented VAR(1) representation:

Ψ̂GCovBTC/ETH
=



−0.792 2.059 1.717 −1.439 −0.497 0.242

−1.268 2.06 −1.268 2.06 0.087 −0.099

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



The VAR(3) has two eigenvalues outside the unit circle equal to 1.42 and

-1.079. There are two real valued eigenvalues 0.4 and -0.09 and a pair of two complex

eigenvalues 0.576+0.4i and 0.576-0.4i, both of modulus 0.7.
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Figure B.5 in Appendix B shows that there remains no statistically signifi-

cant serial correlation in the residuals. Figure B.6 also shows that there does not

remain much statistically significant serial correlation in the squared residuals. The

VAR(3) models provides a good fit to the data.

The histograms of VAR(3) residuals for BTC and ETH are given in Figures

B.3 Appendix B. Both series display large tails indicating non-normality.

(a) BTC and ETH Series with Causal and
Noncausal Latent Components

(b) Causal and Noncausal Latent Compo-
nents

Figure 7: BTC and ETH Series with Causal and Noncausal Latent Components,
VAR(3)

There are two noncausal components in the VAR(3) model of BTC and

ETH. In Figure 7 the data and the highest variance latent causal and noncausal

components are graphed. Panel (a) contains both the original series and the causal

and noncausal components while Panel (b) contains only the causal and noncausal

latent components. The causal components are graphed as solid blue lines while the

noncausal components are graphed as dotted red lines.

The Noncausal 1 component is the most explosive stationary combination

of the two processes while the Causal 1 is the highest variance regular combination.

The dynamics of the Noncausal 1 match the bubbles and spikes, such as the one

between observations 200 and 230.

We observe that the noncausal components of VAR (1) displayed in Figure
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6 (b) has very similar dynamics to the Noncausal 1 component of VAR(3) shown in

Figure 7.

A linear regression of the noncausal component of the BTC/ETH VAR(1)

on the two noncausal components of the BTC/ETH VAR(3) show close relationship

with and R-squared of 0.92.

3.5 Comparison of Mixed VAR(3) and Causal VAR(3) for

BTC and ETH

Let us compare the fit of the mixed VAR(3) with a pure causal VAR(3) for

BTC and ETH USD exchange rates.

The OLS estimated VAR(3) coefficients are as follows:

Φ̂OLSBTC/ETH i =

 0.867 −0.166

−0.066 0.677

 ,
 0.108 0.0574

0.143 0.029

 ,
 −0.172 0.006

−0.057 −0.104





THIS VERSION: June 9, 2023 33

with the augmented VAR(1) representation:

Ψ̂OLSBTC/ETH
=



0.867 −0.166 0.108 0.0574 −0.172 0.006

−0.066 0.677 0.143 0.029 −0.057 −0.104

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



The eigenvalues for this augmented matrix are, 0.943, 0.456+0.43i, 0.456-

0.43i (modulus 0.627), 0.463, -0.55, -0.23. The coefficient values of the causal and

mixed VAR models are different, as well as their statistical significance. In the

equation of BTC in the OLS estimated causal VAR(3) model, the only statistically

significant coefficient is on BTC at time t − 1. In the ETH equation the only

statistically significant coefficient is on ETH at time t − 1. No other coefficients

are statistically significant. The results show no evidence of a feedback effect or

comovements.

The ACF in Figure B.7, Appendix B, shows the presence of serial dependence

in the squared residuals of a linear and causal VAR(3) model estimated by the OLS

estimator from the same sample.

The mixed causal noncausal VAR is able to capture nonlinear serial depen-

dence in the data that a standard linear causal VAR model is unable to accommodate.

We observe that the autocorrelation of the squared residuals at lags one to three

are statistically significant for the causal VAR(3) while they were not for the mixed

VAR(3).
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The correlation matrices for the mixed and causal VAR models are shown

below. We can see that these two models have similar contemporaneous correlations

between their respective residuals.

Corr[OLSBTC/ETH ] =

 1 0.857

0.857 1

 , CorrGCovBTC/ETH
=

 1 0.889

0.889 1



Although the correlations between residuals are similar, the OLS model fails to

capture the comovements and feedback effects that the mixed causal noncausal

model captures. This is because the OLS model assumes all eigenvalues lie within

the unit circle and is therefore misspecified.

3.6 XRP (Ripple) and XLM (Stellar)

Figure 8a shows the USD exchange rates for Ripple and Stellar for the

full sample of 882 daily exchange rate observations between 2017 01 and 2019 06,

referred to as XRP and XLM hereafter. Figure 8b displays the same two time series

with their medians subtracted (referred to as the adjusted series henceforth) and

Figure 8c shows the sub-sample of T = 250 observations between 2018 03 25 and

2018 11 29 used for analysis in the context of the full sample in grey and Figure 8d

shows the adjusted sub-sample.

The summary statistics for the two series are given in Summary Sample

Statistics, Table A.1. We find that the series are not normally distributed. In

addition the series display features indicating the presence of bubbles and spikes.

The XRP and XLM exchange rate data is detrended by using a spline of

order three and with a knot at every 25 observations using Python package Obspy
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(a) 2017-01-01 to 2019-06-04 (b) Adjusted 2017-01-01 to 2019-06-04

(c) Sub-sample 2018-03-25 to 2018-11-29
in grey

(d) Sub-sample 2018-03-25 to 2018-11-29

Figure 8: XRP/USD and XML/USD Exchange Rates. XRP/USD solid line,
XML/USD dotted line.
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4. Figures 9a and 9b show the original and detrended series for XRP and XLM

respectively.

Figure 9c shows the adjusted and detrended sub-sample for XLM and XRP

with XRP as the solid line and XLM as the dotted line.

By applying the Augmented Dickey-Fuller test to the detrended data we

find that the resulting process is stationary as all p-values are near zero (for models

with and without a constant, constant, with a linear trend and with both linear and

quadratic trends - results available on request). The detrended data is not normally

distributed, with non-zero excess kurtosis and skewness equal to 0.48 and 0.102,

respectively in XRP and equal to 0.017 and 0.28 in XLM.

Figure 15 shows the ACF of the detrended series.

Figure 10: ACF of Adjusted and Detrended XRP and XLM

We observe that the autocorrelations of the detrended XRP and XLM series are

decaying gradually to 0.

4Specifically, from Obspy we import the spline package from obspy.signal.detrend
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(a) XRP (Adjusted) Detrended by Spline (b) XLM (Adjusted) Detrended by Spline

(c) XRP/USD: solid line, XLM/USD: dotted line

Figure 9: XLM and XRP (Adjusted) Detrended by Spline
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3.7 VAR(3) Model of XRP and XLM

The mixed VAR(1) model estimated from the XRP and XLM rates does

not remove completely the serial correlation in the residuals. Hence, to account for

the serial correlation in the squared residuals, we increase the order of the model to

VAR(3), as it was done in Section 3.4 for the BTC and ETH series. By setting H

in the objective function (2.19) equal to 6 and minimizing it with respect to Φ we

obtain the following estimated autoregressive coefficient matrices at lags one, two

and three given below.

Φ̂GCOVXRP/XLM− =

 1.52 0.04

1.70 0.67

 ,
 −2.19 1.61

−4 2.97

 ,
 1.66 −1.35

3.33 −2.53



All coefficients are statistically significant according to the standard Wald test.

The augmented matrix Ψ̂GCOVXRP/XLM
has the following eigenvalues, with

one above the unit circle: 1.8, 0.75, -0.64+0.2i and -0.64-0.2i (of modulus 0.67)

0.46+0.52i 0.46-0.52i (of modulus 0.69) which is consistent with a mixed causal

noncausal dynamics.

The ACFs for the residuals and squared residuals from the VAR(3) model

for XRP and XLM an are shown in Figures B.8 and B.9 respectively in APpendix

B. These plots indicate that the noncausal VAR(3) has captured the linear and

nonlinear serial dependence in the residuals and is thus an improvement over the

mixed bivariate VAR(1) model.

The histograms of VAR(3) residuals for XRP and XLM are given in Figures

B.4 Appendix B. Both series display large tails and non-normality of their sample

distributions.
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(a) XRP and XLM Series with Causal and
Noncausal Latent Components

(b) Causal and Noncausal Components

Figure 11: XRP and XLM Series with Causal and Noncausal Latent Components,
VAR(3)

Figure 11 above displays the real causal and noncausal components of the

XRP/XLM pair of cryptocurrencies. There is only one noncausal component of the

VAR(3) model which mimics closely the bubbles and spikes of the series.

A linear regression of the noncausal components of the XRP/XLM VAR(1)

Noncausal Component on the noncausal components of the BTC/ETH VAR(1) and

VAR(3) show a linear relationship as the regression has an R-squared of 0.3.

3.8 Comparison of Mixed VAR(3) and Causal VAR(3) for

XRP and XLM

Let us compare the mixed VAR(3) estimated by using the GCov estimator

with the results obtained from a causal VAR(3) estimated by OLS on the XRP and

XLM data.

The OLS estimated VAR(3) coefficients are as follows:
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Φ̂OLSXRP/XLM i =

 0.867 −0.166

−0.066 0.677

 ,
 0.108 0.0574

0.143 0.029

 ,
 −0.172 0.006

−0.057 −0.104



In the equation of XRPt of the OLS estimated VAR(3) there are two

statistically significant coefficients on XRPt−1, and XLMt−2. In the equation of

XLMt there is only one statistically significant coefficient on XLMt−1 at time t− 1.

No other coefficients are statistically significant.

The ACF of the squared residuals in Figure B.10 shows that the causal

VAR(3) fails to remove serial correlation from the squared residuals. We observe

that the autocorrelation of the squared residuals at lags one to three are statistically

significant in the causal VAR(3) model. In contrast, the mixed causal noncausal

VAR(3) model is able to remove the nonlinear serial dependence.

The correlation matrix is shown below which shows that both the mixed

and causal VAR models have similar correlations in their respective residuals.

Corr[OLSXRP/XLM ] =

 1 0.74

0.74 1

 , CorrGCovXRP/XLM
=

 1 0.82

0.82 1


As was the case with the BTC/ETH pair, the causal OLS model shows

strong correlation in the residuals but fails to capture the feedback effects because of

the misspecification of the model due to the assumption of causality.
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3.9 VAR(1) For Bitcoin, Ethereum, Ripple and Stellar

We now consider a noncausal VAR(1) of all four cryptocurrencies using 200

observations recorded between March 5th 2018 and October 10th 2018 in which the

values of BTC and ETH have been divided by a factor of 1000 in order to adjust the

data to a common range of values. The data has been demeaned and scaled in order

to perform the estimation and can be seen in Figure 12.

Figure 12: BTC, ETH, XRP, and XLM Exchange Rates Spline Detrended (adjusted)

Figure 12 suggests that the series display comovements. The explosive

patterns of the series resemble one another, in particular. This suggests modelling

the series jointly as a mixed model. Because there is a trade-off between the lag
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order and the dimension of the series in Markov processes 5, we expect the VAR(1)

model to provide a satisfactory fit to the data.

By setting H=14 in the objective function (2.19)) and minimizing it with

respect to Φ with powers two as the nonlinear functions, we obtain the following

estimated autoregressive matrix:

Φ̂GCOVBTC/ETH/XRP/XLM
=



0.69 0.075 0.099 0.56

−0.094 0.918 −0.15 0.588

−0.2 0.0979 0.995 0.295

0.306 −0.326 −0.0115 1.068


.

The eigenvalues of the autoregressive matrix given above are as follows: 1.16, 0.79,

0.79+0.23i, 0.79-0.23i with one eigenvalue outside the unit circle and three eigenvalues

inside the unit circle (the complex eigenvalues have modulus 0.832). This result

implies a mixed VAR(1) process (i.e. a process containing both causal and noncausal

components).

The histograms of the residuals and QQ plots of the residuals, both in

Supplementary Graphs, Figures B.11 and B.12 respectively show large tails consistent

with a non-normal distribution of the VAR(1) residuals. The Jarque-Bera and Shapiro

Wilk test statistics both indicate that the residuals for BTC, ETH, XRP and XLM

are not normally distributed.

Located in Supplementary Graphs Figures B.13a and B.13c display the

ACFs for the residuals and squared residuals for BTC and ETH respectively, while

Figures B.13b and B.13d display the ACFs for the residuals and squared residuals

5The mixed VAR models are Markov in both the calendar and reverse time.
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for XRP and XLM.

We observe here that the model removes the serial correlation in the residuals

and the squared residuals. This implies that the model provides a good fit to the

data.

There is one common noncausal component determining the common ex-

plosive patterns of the four cryptocurrency series. The noncausal component is

displayed in Figure 13 below.

Figure 13: Common Noncausal Component of VAR(1) with four Cryptocurrencies

The noncausal component of the VAR(1) of the four cryptocurrencies is

closely related to the noncausal components of the bivariate processes. A linear

regression of the noncausal components of the VAR(1) of dimension four on the

noncausal components of the two bivariate series for both lags one and three shows a
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close relationship between the noncausal components of all series with an R-squared

of 0.88.

4 Conclusion

In this paper we examined the US dollar exchange rates for the following

cryptocurrencies: Bitcoin, Ethereum, Ripple and Stellar. We modelled these cryp-

tocurrency exchange rates as bivariate VAR(1) and VAR(3) mixed processes for the

pairs Bitcoin/Ethereum and Ripple/Stellar and as a VAR(1) mixed process for the

four cryptocurrency exchange rates (i.e. a VAR(1) of dimension four).

The mixed causal noncausal modelling has allowed us to decompose the

processes into their causal (i.e. ’regular’) and noncausal (i.e. ’explosive’) latent

components. The noncausal component can be monitored over time to provide

inference on the local explosive patterns and bubbles. It can be also predicted by

using the prediction methods for noncausal processes given in Gourieuroux, Jasiak

(2016).

We compare the results from the OLS estimation of VAR models with

the semi-parametrically estimated mixed causal noncausal models. We find that

modelling these processes as containing both causal and noncausal components

enables us to detect nonlinear dependencies within and between the series as well as

comovements between the processes, which cannot be captured by standard linear

causal VAR models.
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A Summary Sample Statistics

BTC ETH XRP XLM
T 250 250 250 250

Mean 5613 317.1 0.41 0.15
Std 3460 263.71 0.4 0.145

Excess Kurtosis 1.52 -0.81 14.74 1.89
Skew 0.96 1.33 3.16 1.27
Min 778.6 8.2 0.005 0.0017
Max 19187 1380 3.38 0.9

Table A.1: Summary Statistics

B Supplementary Graphs

Figure B.1: ACF of Residuals from VAR(1) for BTC and ETH
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Figure B.2: ACF of Squared Residuals from VAR(1) for BTC and ETH

Figure B.3: BTC/ETH Histograms of VAR(3) Residuals
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Figure B.4: XRP/XLM Histograms of VAR(3) Residuals

Figure B.5: ACF of Residuals from VAR(3) for BTC and ETH
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Figure B.6: ACF of Squared Residuals from VAR(3) for BTC and ETH

Figure B.7: ACF of Squared Residuals from Causal VAR(3) for BTC and ETH
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Figure B.8: ACF of VAR(3) Residuals for XRP and XLM

Figure B.9: ACF of VAR(3) Squared Residuals for XRP and XLM



THIS VERSION: June 9, 2023 54

Figure B.10: ACF of Causal VAR(3) Squared Residuals for XRP and XLM
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(a) BTC Residuals (b) ETH Residuals

(c) XRP Residuals (d) XLM Residuals

Figure B.11: BTC/ETH/XRP/XLM Histograms of Residuals from VAR(1)
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(a) BTC QQ Plot (b) ETH QQ Plot

(c) XRP QQ Plot (d) XLM QQ Plot

Figure B.12: BTC/ETH/XRP/XLM QQ Plots of Residuals from VAR(1)
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