2022 CORS/INFORMS International Conference

Retail Inventory Productivity and Financial Performance

Işık Biçer, PhD

Assistant Professor of Operations Management and Information Systems

(j/w David Johnston, Murat Kristal, and Ata Senkon)

Copyright © 2022 Işik Biçer All Rights Reserved

Retailers' addiction to growth

Schulich **School of Business** York University

- High growth objectives
- More stores
- More inventory
- Poor inventory management

Growth

by Marshall Fisher, Vishal Gaur, Herb Kleinberger

Publication Date: January 01, 2017

In pursuit of double-digit top-line growth, many retailers relentlessly open new stores, even when doing so destroys the profitability of their businesses. This addiction is fueled by Wall Street and a capitalist culture that's obsessed with growth. It's hard to

Observation #1: Retailers would be prone to growth anomalies, which would lead to serious operational problems and deteriorating inventory productivity.

Curing the Addiction to

- David Berman Case
- Benchmark comparison
- High inventory turnover AND high operating profits
- Two apparel retailers
 - Joseph A Bank (high margin, low inventory turnover)
 - Men's Wearhouse (moderate margin, high inventory turnover)

Raman, Ananth, Vishal Gaur, and Saravanan Kesavan. "David Berman." Harvard Business School Case 605-081, April 2005. (Revised October 2006.)

Joseph A Bank vs Men's Wearhouse

School of Business York University

Theoretical Background

Schulich **School of Business** York University

- **Operations Management**
 - Alan, Y., G. P. Gao, V. Gaur. 2014. Does inventory productivity predict future stock returns? A retailing industry perspective. _ Management Science 60(10) 2416-2434.
 - Ullrich, Kristoph KR, Sandra Transchel. 2017. Demand-supply mismatches and stock market performance: A retailing perspective. Production and Operations Management 26(8) 1444-1462.
 - Gaur, V., M. L. Fisher, A. Raman. 2005. An econometric analysis of inventory turnover performance in retail services. ____ Management Science 51(2) 181-194.
 - Chen, Hong, Murray Z Frank, Owen Q Wu. 2007. US retail and wholesale inventory performance from 1981 to 2004. — Manufacturing & Service Operations Management 9(4) 430-456.

Finance

- Frank, Murray Z, Tao Shen. 2016. Investment and the weighted average cost of capital. Journal of Financial Economics 119(2) — 300-315.
- Sharpe, William F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance 19(3) 425-442.
- Lintner, John. 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics 47(1) 13-37.
- Fama, Eugene F, Kenneth R French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial — Economics 33 3-56.
- Fama, Eugene F, Kenneth R French. 2015. A five-factor asset pricing model. Journal of Financial economics116(1) 1-22.

Arbitrage Risk: Existence

School of Business York University

Fama-French Five-factor model

 $R_{it} - R_{Ft} = a_i + b_i (R_{Mt} - R_{Ft}) + s_i SMB_t + h_i HML_t + r_i RMW_t + c_i CMA_t + e_{it}.$

DuPont model

 $ROA = \frac{\text{Net Profit}}{\text{Cost of Goods Sold}} \times \frac{\text{Cost of Goods Sold}}{\text{Inventory}} \times \frac{\text{Inventory}}{\text{Total Assets}}$

Observation #2: Although Inventory Turnover is part of ROA calculation, it is not included in the asset pricing models. Weighted Average Cost of Capital doesn't reflect the inventory risk.

- 1. Why do some retailers intentionally choose to assume higher levels of inventory risk?
 - Is this strategy justified given high growth targets?
- 2. How can inventory risk be better reflected in the valuation of a retailer's assets?

Analytical Results

- Postponement policy: Keeping excess inventory in stock at the book value, rather than selling it immediately at a discount
- Timely markdown policy: Sell excess inventory immediately, even at a salvage value that is less than purchasing cost

PROPOSITION 1. The postponement policy leads to the announcement of a higher "Net Profit" and "Inventory" but a lower "Cost of Goods Sold" in expected value terms than the timely markdown policy.

PROPOSITION 2. There exists a threshold value for the total assets such that the postponement policy results in higher ROA than the timely markdown policy if the value of total assets exceeds the threshold value.

- Postponement policy is not viable for small retailers (Proposition 2). ullet
 - Small retailers that achieve high margins and inventory turnover outperform those inflating margins to <u>ultra</u> high values while suffering from low inventory turnover
 - Not the case for big retailers. They may tend to inflate their margins to <u>ultra</u> high values by following the postponement policy, rather than keeping both margins and inventory turnover high.
- There is a positive interaction effect of operating profits and inventory turnover on the ROA. Is the interaction effect persistent in the long term?

HYPOTHESIS 1. There is a positive interaction effect of inventory turnover and operating profits on the next year's stock returns only for small retailers.

Copyright © 2022 Isik Bicer All Rights Reserved

York University

- Time period: July 1983 to November 2018 (449 months)
- Financial data from Compustat; stock prices from CRSP databases
- NYSE median market cap used as a breakpoint to group retailers as small and big

nonths) CRSP databases aroup retailers as smal

Generalized method of moments with (potentially) invalid instruments •

 $f(r_{it}) = r_{it} - \left(b_0 + F_i + L_{t-1} + b_1 Inventory Turnover_{i(t-1)} + b_2 Operating Profit_{i(t-1)}\right)$ $+b_3 Operating Profit_{i(t-1)} \times Inventory Turnover_{i(t-1)}),$

$$m_{0} = \frac{\sum_{i} \sum_{t} f(r_{it})}{n},$$

$$m_{1j} = \frac{\sum_{i} \sum_{t} f(r_{it}) xj}{n}, \quad \forall j \in \mathcal{J}_{exog},$$

$$m_{2j} = \frac{\sum_{i} \sum_{t} f(r_{it}) zj}{n} - \frac{b_{4}}{\sqrt{n \mathbb{E}[zj]}}, \quad \forall j \in \mathcal{J}_{inst},$$

Schulich School of Business York University

> Number of observations: 1696 Hansen J: 0.6262 Prob (Hansen J): 0.429 R-square: 0.282

	Estimate	Standard Error	z-value	$\Pr(> z)$			
b_0	-0.0203	0.021	-0.964	0.335			
b_1	0.0011^{*}	0.001	1.810	0.070			
b_2	-0.1068***	0.032	-3.334	0.001			
b_3	0.0011**	0.000	2.713	0.007			
b_4 (bias term)	-0.0013	0.017	-0.074	0.941			
Significance levels: *** ≤ 0.001 ; ** ≤ 0.05 ; * ≤ 0.1							

Schulich School of Business York University

	Estimate	Standard Error	z-value	$\Pr(> z)$			
b_0	0.0088	0.017	0.516	0.606			
b_1	0.0016^{**}	0.001	3.148	0.002			
b_2	0.0274	0.025	1.094	0.274			
b_3	-7.559e-05	0.000	-0.295	0.768			
b_4 (bias term)	0.0085	0.015	0.582	0.561			
Significance levels: *** ≤ 0.001 ; ** ≤ 0.05 ; * ≤ 0.1							

An additional factor

Schulich **School of Business** York University

Fast-minus-Slow (FMS): Inventory turnover median used to group retailers •

 $R_{it} - R_{Ft} = \alpha_i + \beta_i (R_{Mt} - R_{Ft}) + \theta_i SMB_t + \omega_i HML_t + \phi_i RMW_t + \gamma_i CMA_t + \xi FMS_t + \epsilon_{it}$

			-	
FMS (IT)	2294		61.77	2012
Dependent variable:	\mathbf{S}	\mathbf{F}	\mathbf{S}	\mathbf{F}
all Size-IT portfolios				
	$lpha_i$		$\mathrm{t}(lpha_i)$	
S	0.009	0.007	5.347^{***}	4.472^{***}
В	0.007	0.009	4.301^{***}	5.469^{***}
	eta_i		$\operatorname{t}(eta_i)$	
S	0.875	0.904	21.042^{***}	23.212***
В	0.896	0.867	22.615^{***}	21.697^{***}
	$ heta_i$		$\operatorname{t}(heta_i)$	
S	0.732	0.804	16.614^{***}	19.485^{***}
В	-0.189	-0.261	-4.495***	-6.165***
	ω_i		$\mathrm{t}(\omega_i)$	
S	0.122	-0.085	2.421^{**}	-1.804*
В	-0.161	0.047	-3.345***	0.960
	ϕ_i		$\operatorname{t}(\phi_i)$	
\mathbf{S}	0.122	-0.023	2.490^{**}	-0.510
В	0.060	0.206	1.293	4.370^{***}
	γ_i		$\operatorname{t}(\gamma_i)$	
\mathbf{S}	0.014	0.030	0.297	0.680
В	-0.037	-0.053	-0.816	-1.163
	ξ_i		$\operatorname{t}(\xi_i)$	
S	-0.862	0.426	-18.416^{***}	9.720***
В	-0.586	0.126	-13.125^{***}	2.802^{***}
$N_{-+-} *_{} < 0.1, **_{} < 0.05, ***_{} < 0.01$				

Note: *p<0.1; **p<0.05; ***p<0.01

Copyright © 2022 Işik Biçer All Rights Reserved

Case Analysis (Jos A Bank vs Men's Wearhouse)

School of Business York University

Joseph A Bank

Copyright © 2022 Işik Biçer All Rights Reserved

- Stock returns and ROA of retailers are influenced by inventory turnover, operating profits, and their interaction effect
- Inventory turnover has a persistent positive impact on stock returns for all retailers (Alan et al. 2014)
- Interaction effect is positive and persistent only for small retailers when inventory turnover exceeds a threshold value
- Inventory turnover should be used in factor models to calculate the cost of capital. Otherwise, retailers would face financial instability and unhealthy growth

Thank you

Email : bicer@schulich.yorku.ca

