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Despite decades of research, there is still uncertainty about how
people make simple decisions about perceptual stimuli. Most
theories assume that perceptual decisions are based on decision
variables, which are internal variables that encode task-relevant
information. However, decision variables are usually considered to
be theoretical constructs that cannot be measured directly, and this
often makes it difficult to test theories of perceptual decision
making. Here we show how to measure decision variables on
individual trials, and we use these measurements to test theories of
perceptual decision making more directly than has previously been
possible. We measure classification images, which are estimates of
templates that observers use to extract information from stimuli.
We then calculate the dot product of these classification images
with the stimuli to estimate observers’ decision variables. Finally,
we reconstruct each observer’s “decision space,” a map that shows
the probability of the observer’s responses for all values of the de-
cision variables. We use this method to examine decision strategies
in two-alternative forced choice (2AFC) tasks, for which there are
several competing models. In one experiment, the resulting decision
spaces support the difference model, a classic theory of 2AFC de-
cisions. In a second experiment, we find unexpected decision spaces
that are not predicted by standard models of 2AFC decisions, and
that suggest intrinsic uncertainty or soft thresholding. These exper-
iments give new evidence regarding observers’ strategies in 2AFC
tasks, and they show how measuring decision variables can answer
long-standing questions about perceptual decision making.
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Many current questions about human cognition are related
to how people make decisions, including decisions based

on perceptual information. For example, how do we decide
whether a search target is present in a cluttered display? How do
we decide when to respond in a task where both speed and ac-
curacy are important? How do we judge which of two signals is
present in a discrimination task?
Most theories of perceptual decision making rely on the notion of

a decision variable, a quantity that the observer calculates from the
stimulus to summarize task-relevant information, e.g., the proba-
bility that a faint signal is present in a detection task (1). Some
theories of decision making are very simple, e.g., the observer gives
one response if the decision variable is greater than a fixed criterion,
and another response if the decision variable is less than the cri-
terion. Other theories use more complex decision rules. Testing
theories of decision making would be much easier if we had access
to observers’ decision variables, but these are usually thought of as
theoretical constructs that cannot be measured psychophysically.
Here we show that in some tasks, it is possible to estimate decision
variables on individual trials, and this provides a very direct way of
testing theories of perceptual decision making. We use this method
to examine the long-standing question of how people make de-
cisions in two-alternative forced choice (2AFC) tasks.

Proxy Decision Variables
Our approach relies on the linear template model that has been
shown to account for performance in many simple discrimination

tasks (2, 3). In this model, the decision variable is the dot product
of a template with the stimulus, plus a sample of normally dis-
tributed internal noise. Previous work has shown that we can
estimate an observer’s template by measuring a “classification
image,” which is a map that shows the impact of small luminance
fluctuations in each region of the stimulus on the observer’s re-
sponses (4–6). A stimulus region that has a large effect on the
observer’s responses has a large value in the classification image,
and a stimulus region that has little or no effect has a small value.
Thus, a classification image shows what stimulus regions an ob-
server uses to perform a task, and eliminates the need to make one
type of assumption about how the observer uses the stimulus.
Motivated by the linear template model, we estimate ob-

servers’ decision variables by taking the dot product of the
classification image with the stimulus on each trial. We call the
result of this dot product a “proxy decision variable.” The proxy
decision variable is an informative but imperfect estimate of the
true decision variable, and we return to this point after discussing
theories of decision making in 2AFC tasks.

Decision Making in 2AFC Tasks
In a 2AFC task, the observer views two signals in random order
and judges which order was shown (7). This task has played an
important role in perception research for over 60 years. It has
often been used as a method of reducing observer bias, but more
importantly, it has also been a testing ground for theories of
perceptual decision making.
The classic model of 2AFC decisions is the “difference

model.” This model assumes that the observer calculates a de-
cision variable from each of the two stimulus intervals and makes
a response based on which decision variable is greater (7). A
useful tool for understanding such decision strategies is the de-
cision space, a map that shows the probability of the observer’s
responses for all values of the decision variables (8). The dif-
ference model implies that the observer’s decision space is di-
vided into two response regions by a diagonal line (Fig. 1A): the
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observer gives one response if the first decision variable is
greater, and the other response if the second decision variable is
greater, so the dividing line, or decision line, is y = x.
Alternative models of 2AFC decisions have also been pro-

posed. According to the “double detection model,” the observer
makes independent decisions about which signal was shown in
the first stimulus interval and which was shown in the second
interval (9, 10). When the observer judges that both intervals
contain the same signal (which does not happen in a 2AFC task),
the observer guesses. Under this model, the decision space is
divided into four quadrants (Fig. 1B). According to the “single-
interval model,” the observer simply ignores one interval, and
the decision space is divided by a vertical or horizontal line (Fig.
1C). In the “difference model with guessing,” the observer
compares decision variables from the two stimulus intervals, as in
the difference model, but if the decision variables differ by less
than a threshold amount, then the observer guesses (11). Here
the decision space is divided into three regions by two diagonal
lines (Fig. 1D).
Previous studies have tested these models by comparing ob-

servers’ performance under various conditions in 2AFC tasks
and other designs (9–11). However, different tasks put different
demands on poorly understood factors such as attention and
memory, so these comparisons can be difficult to interpret (12).
A recent review of studies on the 2AFC task concludes that we
know very little about how people actually make 2AFC decisions,
and that the standard theory of 2AFC tasks, including the dif-
ference rule, has little experimental support (10). Here we take a
new approach to the problem of understanding peoples’ strate-
gies in 2AFC tasks: We measure proxy decision variables in the
two stimulus intervals over thousands of trials, and we use these
measurements to reconstruct observers’ decision spaces.

Proxy Decision Space
The proxy decision variable is the dot product of an observer’s
classification image with the stimulus. This gives an imperfect
estimate of the true decision variable for at least two reasons:
The classification image is an imperfect estimate of the template
(3–6), and the observer has internal noise (1). In SI Text, Prop-
erties of the Proxy Decision Space, we show that both these factors
imply that the proxy decision variable is equal to the true de-
cision variable plus a normal random variable that represents
measurement error. The “proxy decision space” is a map that
shows the probability of the observer’s responses for all values of
the proxy decision variables. In SI Text, Properties of the Proxy

Decision Space, we also show that the measurement error in the
proxy decision variables implies that the proxy decision space
does not have sharp edges, as in Fig. 1 A–D, but instead is the
true, sharp-edged decision space convolved with a Gaussian kernel
whose scale constant is the standard deviation (SD) of the mea-
surement error. For instance, an observer who uses the difference
rule will produce a blurred proxy decision space, as in Fig. 1E, instead
of a sharp-edged space, as in Fig. 1A. For this reason, when fitting a
model to a proxy decision space, we require an SD parameter σblur
that controls the amount of blurring, in addition to parameters that
control the position and orientation of the decision lines.

Experiment 1
Task. In our first experiment, three observers discriminated be-
tween black and white Gaussian profile disks in noise, at fixation,
with two 500-ms stimulus intervals separated by a blank 1,000-ms
interstimulus interval. Fig. S1 and Movie S1 show typical stimuli.
Each observer ran in 9,900 trials. We calculated each observer’s
classification image and took its dot product with the two stim-
ulus intervals on every trial. We constructed each observer’s
proxy decision space by finding the probability of the observer
responding “black disk first” for all values of the two proxy de-
cision variables. The data from both experiments reported in this
paper and MATLAB code implementing all our analyses are
available at purl.org/NET/rfm/pnas2015.

Results. Fig. 2A shows the resulting proxy decision spaces, which
are divided diagonally, consistent with the difference model or
the difference model with guessing (Fig. 1 A and D). Model
selection via 10-fold cross validation supports this observation
(Fig. 3). For all observers the cross-validation error was the same
for the difference model and the difference model with guessing,
and significantly lower than for the double detection and single-
interval models (P < 0.05 for within-observer, independent
samples t tests between the means of the difference model and
the double detection model, and between the means of the dif-
ference model and the single-interval model, Bonferroni cor-
rected for six comparisons). The difference model performs as
well as the difference model with guessing, but with one less
parameter, which supports the difference model as the better
model of performance on this task.
As another test of the four models (Fig. 1 A–D), we fitted each

model to each observer’s decision space (Fig. 2A) and calculated
the Akaike information criterion (AIC) of the fits (13). AIC
evaluates goodness of fit in a way that penalizes larger numbers
of parameters. For all three observers, the difference model had
the lowest AIC (see Table S1), showing again that it gave the
best account of observers’ data, consistent with our cross-vali-
dation results.
As a further test for a guessing region, we collapsed the de-

cision spaces parallel to the fitted decision line of the difference
model, which is a line approximately halfway between the two
red lines in each observer’s panel in Fig. 2A (to be discussed
below). The difference model predicts that the transition be-
tween response regions follows a normal cumulative distribution
function, whereas the difference model with guessing predicts a
flattening of the curve in the guessing region where the two
decision variables are approximately equal. Fig. 4 shows that the
normal cumulative distribution function (blue line) gives an ex-
cellent fit, with no flattened interval apparent for any of the
observers. To find confidence intervals for the width of the
guessing region, we bootstrapped fits of the difference model
with guessing to the data shown in Fig. 4. For the panels from left
to right, the maximum likelihood estimates and 95% confidence
intervals for the width of the guessing region were 0.00 (0.00,
0.29), 0.00 (0.00, 0.25), and 0.00 (0.00, 0.00). We conclude that
there is little or no role for a guessing region in these observers’
decision rules.
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Fig. 1. Decision spaces for 2AFC decision models. Color encodes the proba-
bility of the observer’s responses. (A) Difference model. (B) Double detection
model. (C) Single-interval model. (D) Difference model with guessing. (E) Proxy
decision space for the difference model, with blur due to internal noise.
(F) GDD function.
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In fact, even these relatively small bootstrapping estimates
overstate the evidence for a guessing region in our data. Fig. S2
(blue line) plots response probability as a function of the dis-
tance from the center of the guessing region, according to the
difference model with guessing with a guessing region 0.30 units
wide (the upper limit of the bootstrapped 95% confidence in-
tervals reported above) and an SD parameter σblur = 0.25 (a
typical fitted value). With a guessing region this size, the re-
sponse probability smoothly transitions from one side of the
decision line to the other, with no apparent flattening in the
middle. This occurs because, as we explained in the Introduction,
the proxy decision space is a blurred version of the true decision
space, and so a guessing region that is small relative to the
amount of blur is effectively blurred out of the proxy decision
space. Indeed, Fig. S2 (dashed green line) shows that the difference
model with an SD parameter of σblur = 0.30 gives a psychometric
function that is practically identical to the psychometric function
with a guessing width of 0.30 (blue line), without the need for an
additional guessing width parameter.
In Monte Carlo simulations, we generated artificial data from the

difference model, and we fitted the difference model with guessing
to these data. We matched the parameters of the simulated differ-
ence model and the number and distribution of trials to the psy-
chometric function shown in Fig. 4, Left. These simulations assigned
the guessing region width a 95% confidence interval of (0.00, 0.30),
simply due to the randomness in the simulated observer’s responses.
This confidence interval is similar to those we found for two of three
human observers, and the third observer’s confidence interval was
even smaller. (We include MATLAB code for this simulation in the
code posted at purl.org/NET/rfm/pnas2015.)
In summary, our bootstrapping results show that Fig. 2A is

consistent with a guessing region up to 0.30 units wide, but our

cross-validation and AIC tests show that the difference model
gives a better account of the data, and our Monte Carlo simula-
tions show that the 95% confidence intervals we found for human
observers’ guessing regions are no larger than one would expect

Fig. 2. Proxy decision spaces. Each panel shows results from a single observer, based on ∼10,000 trials. The axes are the proxy decision variables for the two
stimulus intervals, and the plots show the response probability as coded in the color bar. Red lines are maximum likelihood fits of the GDD function.
(A) Probability of a “black disk first” response in the black/white discrimination task. (B) Probability of a “right disk brighter” response in the contrast in-
crement detection task. (C) Probability of a “signal in interval 2” response from simulated model observers with intrinsic uncertainty. U is the number of
irrelevant mechanisms that the model observer monitors in each stimulus interval.

LMP MD MDC
400

450

500

550

observer

n
eg

at
iv

e 
lo

g
 li

ke
lih

o
o

d

difference
difference with guessing
double detection
single interval

Fig. 3. Results of 10-fold cross-validation. The y axis shows the negative log
likelihood of the observer’s responses on validation trials, averaged across
the 10 cross-validation blocks. Error bars show the SEM. The single-interval
bars show results averaged across a model that used only the first interval
and a model that used only the second interval; the results for these two
single-interval models were practically identical.

Pritchett and Murray PNAS | June 9, 2015 | vol. 112 | no. 23 | 7323

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1422169112/-/DCSupplemental/pnas.201422169SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1422169112/-/DCSupplemental/pnas.201422169SI.pdf?targetid=nameddest=SF2
http://purl.org/NET/rfm/pnas2015


from fitting the difference model with guessing to approximately
10,000 trials from an observer who follows the difference model.
Do all four models discussed above (Fig. 1 A–D) fail to de-

scribe important features of the decision spaces? To test this
possibility, we defined a new function that flexibly divides de-
cision spaces into response regions, and that has the four models
in Fig. 1 A–D as special cases. The “generalized double detection
(GDD) function” divides the decision space with two decision
lines at arbitrary orientations and positions (Fig. 1F). When the
two decision lines indicate the same response, the decision space
has probability 1.0 for that response, and when they indicate
different responses, the decision space has a response probability
near 0.5, indicating a random guess. Suitably arranged, the two
decision lines can produce any of the decision spaces illustrated
in Fig. 1 A–D. We prefer not to call the GDD function a model,
because we do not think it is a plausible account of how ob-
servers make decisions, but rather a flexible tool for exploring
decision spaces, much as one might fit a spline to data in the xy
plane. Maximum likelihood fits of the GDD function to the
proxy decision spaces (Fig. 2A, red lines) support the difference
model, possibly with a small guessing region, as the best expla-
nation of observers’ responses. As we showed above, cross-vali-
dation, AIC tests, and bootstrapped confidence intervals show
that the guessing region is small or nonexistent (Fig. 3).
These findings rely on a standard method of calculating clas-

sification images that has been developed assuming the differ-
ence model (6), and this may seem inappropriate given that here
we are questioning the difference model. In SI Text, Properties of
the Proxy Decision Space, we show that this method of calculating
classification images gives unbiased estimates of the template
for a much wider range of decision rules than has previously
been shown, including the four decision rules illustrated in
Fig. 1 A–D.

Experiment 2
Task. Many 2AFC experiments show stimuli separated in space
instead of time, which places different demands on memory and
attention. To test the robustness of our findings, we examined a
second experiment where nine observers detected a contrast
increment in one of two disks located to the left and right of
fixation and shown in noise (4). Fig. S1 and Movie S2 show
typical stimuli. Each observer ran in ∼10,000 trials.

Results. Fig. 2B shows the resulting proxy decision spaces. Sur-
prisingly, the GDD fits (red lines) do not correspond to any of
the four models discussed so far. Instead, they consistently show

a triangular guessing region, narrow at high values of the de-
cision variables and wide at low values. Across observers, the
average orientation of the bisector line (the line, not shown,
midway between the two GDD lines) is 44° relative to the x axis,
with an SD of 4°. The average angle between the two GDD lines
is 49°, with an SD of 8°.
What can this mean? These fits show that the decision spaces

are again divided diagonally, but now the transition between
response regions is more gradual at lower values of the decision
variables. That is, the difference between two low-valued de-
cision variables must be relatively large before the observer can
make a reliable response. This is consistent with an intrinsic
uncertainty model where the observer monitors the relevant
stimulus locations and also a number of irrelevant locations (14).
In this model, the noise from irrelevant locations interferes with
weak signals more than with strong signals. To test this expla-
nation of the triangular GDD fits, we simulated a template-
matching model observer that follows the difference model but is
uncertain about the signal location. The model observer’s de-
cision variable in each stimulus interval is the maximum of the
template response at the stimulus location and at some number
U of nonoverlapping irrelevant locations (U = 0, 1, 2, or 8; see SI
Text, Uncertain Observer Simulations for details). Fig. 2C shows
that even a small amount of uncertainty produces triangular
GDD fits much like those from human observers. Other possible
explanations of poor discrimination at low decision variables are
thresholding of weak signals (15) or higher internal noise for
weak signals. Our results are qualitatively consistent with the
difference model plus any of these mechanisms, which illustrates
the fact that although decision spaces show the relationship be-
tween stimuli and responses, they do not always uniquely identify
the mechanism that underlies this relationship.

Discussion
Proxy decision variables are useful for testing theories of visual
processing because they measure the task-relevant information
that is available to the observer on individual trials. A traditional
analysis of experiments like ours would record the signal contrast
and the observer’s response on each trial, so, for example, one
could plot the observer’s proportion of correct responses at each
signal level. The present method exploits trial-to-trial fluctua-
tions in the external noise to calculate two proxy decision vari-
ables on each trial, one from each stimulus interval, and finds the
probability of the observer giving one response or the other for
all combinations of the proxy decision variables. Instead of just
the nominal signal contrast, we record a more precise estimate of
the task-relevant information in each stimulus interval. Thus, we
obtain a 2D function (the proxy decision space) that describes
the observer’s decision strategy, instead of a one-dimensional
function such as a traditional psychometric function. As we have
shown, this 2D function can be highly effective for testing the-
ories of decision making.
Our findings clearly rule out the single-interval model and the

double detection model as theories of 2AFC discrimination in
experiment 1. The difference model is a special case of the dif-
ference model with guessing, so the choice between these two
models cannot be as decisive; it is always possible that observers
have a guessing region that is too small to be detected with the
available data. A more useful approach is to test what size of
guessing region is consistent with the data. For all three observers
in experiment 1, the maximum likelihood estimate of the width of
the guessing region was zero, and the 95% confidence intervals
were relatively small. Furthermore, cross-validation and AIC tests
showed that the additional parameter in the difference model
with guessing gave it no significant benefit over the difference
model. Altogether, the difference model gives the best account of
observers’ behavior in experiment 1, as it is the simpler model and
there is little or no need to assume a guessing region.
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The proxy decision spaces we measured in experiment 2 did
not match the predictions of any of the four classic 2AFC
models, and this is one of the most interesting findings of our
experiments. The proxy decision spaces were roughly symmetric
around the 45° diagonal line, similar to the decision spaces of the
difference model and the difference model with guessing, which
suggests that observers followed some variant of these models.
Model observer simulations showed that a similar proxy decision
space is produced by a difference model that is limited by a
factor such as intrinsic uncertainty that worsens performance at
low signal levels. The difference model with guessing, limited by
intrinsic uncertainty, would presumably produce a similar de-
cision space. In experiment 2, it is difficult to choose between the
difference model and the difference model with guessing, be-
cause uncertainty worsens performance in a triangular region
that covers the diagonal region where the difference model with
guessing predicts that a guessing region will appear (Fig. 1D).
Furthermore, some care is necessary in interpreting experi-

ment 2, as intrinsic uncertainty does not fit neatly into our
modeling tools. The linear observer model does not capture
spatial uncertainty, because an uncertain observer monitors
many signal detection mechanisms simultaneously, e.g., a spa-
tially uncertain observer monitors many spatial locations for the
signal. This means that the observer effectively uses multiple
templates (one for each location), and one consequence of this is
that classification images give a blurred estimate of the ob-
server’s template (16). Experiment 1 led to clear and easily in-
terpretable findings. Experiment 2 is less decisive, but it shows
that the proxy decision variable method is open-ended and can
reveal unexpected properties of observers’ decision strategies,
much like the classification image method that it builds on.
The literature on visual perception shows that in many tasks,

observers are unable to use an optimal strategy despite extensive
practice (e.g., refs. 14 and 17), and we should similarly expect
that observers’ decision spaces sometimes will be optimal and
sometimes will not. The difference model is the optimal strategy
in a 2AFC task with Gaussian noise (1). Experiment 1 gave
observers an excellent chance to use or learn this optimal strat-
egy: Observers ran in thousands of trials, in a simple foveal task,
with auditory feedback on every trial. We found that in this ex-
periment, observers did use the optimal strategy. However, ob-
servers did not use the optimal strategy in experiment 2, which
was different in seemingly minor ways: The stimuli were sepa-
rated in space instead of time, they were just 0.5 degrees to the
left and right of the fovea, and observers judged which stimulus
had a brightness increment instead of which was black or white.
Thus, even small changes in a task can produce qualitative dif-
ferences in behavior. There are currently no general rules for
predicting decision strategies, and they will need to be investi-
gated case by case until generalizations become possible.
Beyond testing models of 2AFC decisions, the proxy decision

variable method should be useful whenever it would be in-
formative to have trial-by-trial estimates of observers’ decision
variables. For example, most models of response times are based
on decision variables that fluctuate over time, accumulating in-
formation until they reach a state that causes the observer to
make a response (18). If we show stimuli in dynamic noise, take
the dot product of the observer’s classification image with each
frame of noise, and sum these dot products over successive
frames, we may be able to estimate how an observer’s decision
variable evolves over time on individual trials (compare the ap-
proach in ref. 19). To take another example, one influential
theory of visual search states that the observer calculates a de-
cision variable from each target or distractor element in the
search display and responds “target present” if the maximum of
these decision variables exceeds a criterion (20). Proxy decision
variables could give estimates of the decision variable from each
search element, and these measurements could be used to test

the maximum rule model of visual search. These examples il-
lustrate how methods like the one we have presented can be used
to test theories that are based on decision variables. Decision
variables have previously been thought of as inaccessible theo-
retical constructs, but our experiments show that, in some cir-
cumstances, they are measurable, and these measurements lead
directly to new tests of sensory processing and decision making.

Materials and Methods
Experiment 1: Black/White Discrimination Task. Each observer ran in 33 blocks
of 300 trials. Each trial showed two 500-ms stimulus intervals separated by a
blank 1,000-ms interstimulus interval. Fig. S1 and Movie S1 show typical
stimuli. The signals were black and white Gaussian profile disks with scale
constant σ = 0.055 degrees of visual angle (°). The black and white signals
were randomly assigned to the two stimulus intervals. The observer pressed a
key to indicate the order of the signals, and received auditory feedback. On
each trial, the white disk had peak luminance +L above the background
luminance of 65 cd/m2, and the black disk had peak luminance −L below the
background luminance. The luminance perturbation L was adjusted across
trials according to a one-up two-down staircase converging on 71% correct
performance (21). The disks were shown in Gaussian white noise: The lumi-
nance of each stimulus pixel was randomly perturbed by a value drawn from
a normal distribution with mean zero and SD 16.25 cd/m2. A faint fixation
point was shown continuously before and after the stimulus intervals. To
minimize spatial uncertainty, a thin white square surrounding the stimulus
location was always present on the screen, and there was a small tick in the
middle of each side to indicate the center of the square. The stimuli were
0.81° square (31 × 31 pixels). Viewing distance was 1.65 m. In each block,
trials 101–150 were repeated as trials 151–200 (that is, the staircase was
suspended for trials 151–200, and these trials were exact repetitions of trials
101–150), but we do not examine response consistency in this paper. Stimuli
were shown on a Sony Trinitron G520 monitor (512 × 384 resolution, pixel
size 0.755 mm, refresh rate 75 Hz). We show results for three observers. A
fourth observer’s thresholds rose sharply over the course of the experiment,
probably due to a loss of motivation; it is not meaningful to analyze all of
this observer’s trials in a single decision space, so we discarded this data.

Experiment 2: Contrast Increment Detection Task. The data for this experiment
are taken fromMurray et al.’s (4) experiment 2 (Fig. 2B, Top) and experiment
3 (Fig. 2B, Middle and Bottom). Each observer ran in 50 blocks of 200 trials.
Fig. S1 and Movie S2 show typical stimuli. The stimulus showed two disks
of radius 0.11° positioned 0.50° to the left and right of a fixation point.
The baseline luminance of the disks was 3 cd/m2 above the background
luminance of 30 cd/m2, and on each trial, one of the disks had a luminance
increment. The luminance increment was set to each observer’s 70%
threshold, based on pilot trials. Threshold luminance increments ranged
from 1.2 cd/m2 to 2.1 cd/m2 across observers. The observer pressed a key to
indicate which disk was brighter, and received auditory feedback. In Murray
et al.’s (4) experiments 2 and 3, observers gave rating responses on a six-point
scale, and we converted these to two-alternative responses by grouping
ratings 1–3 to mean “left disk brighter” and grouping ratings 4–6 to mean
“right disk brighter.” The stimuli were shown in Gaussian white noise: The
luminance of each pixel of the stimulus was randomly perturbed by a value
drawn from a normal distribution with mean zero and SD 6 cd/m2. The stimuli
were 1.0° vertical × 2.0° horizontal (38 × 76 pixels). The stimulus duration was
200 ms. Viewing distance was 1.0 m. Stimuli were shown on an AppleVision
monitor (640 × 480 resolution, pixel size 0.467 mm, refresh rate 67 Hz). Al-
though the stimulus contrast was set to an estimate of each observer’s 70%
threshold, performance ranged from 69% to 80% correct across observers.

Proxy Decision Spaces. We calculated each observer’s classification image
using the weighted sum method for 2AFC tasks (6). To reduce measurement
noise, we radially averaged each classification image around the center of
the signal (6) and set the classification image to zero at locations far from
the center. To calculate proxy decision variables p1 and p2 for the two
stimulus intervals, we took the dot product of the observer’s classification
image with the two stimuli on each trial.

We constructed three 20 × 20 matrices, K = ðkijÞ, N= ðnijÞ, and P = ðpijÞ, to
represent the proxy decision space, as follows. We chose 20 evenly spaced
values, x1, ..., x20, that spanned the range of the proxy decision variables in
increments of Δx. Each element nij was set to the total number of trials for
which xi −Δx=2≤p1 < xi +Δx=2 and xj −Δx=2≤p2 < xj +Δx=2. Each element
kij was set to the number of trials in this range where the observer gave
response 2 (“black disk first” in experiment 1, “right disk brighter” in
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experiment 2). Each pij was set to kij=nij. In Fig. 2, we show the matrix P
rotated 90° counterclockwise.

We used the same trials to calculate classification images and proxy de-
cision spaces, but there is little danger of overfitting the classification images:
We used ∼10,000 trials to estimate each small, radially pooled classification
image, which had effectively just six or seven free parameters. In any case,
we show in SI Text, Properties of the Proxy Decision Space, that any mea-
surement error in the classification images simply increases the blur in the
proxy decision spaces.

Modeling. The GDD function has five parameters: θ1 and δ1 that control the
orientation and position, respectively, of the first decision line; θ2 and δ2 that
control the second decision line; and γ that controls the probability of re-
sponse 2 in the guessing regions. According to the GDD function, the
probability of response 2 when the decision variables are d1 and d2 is

DGDDðd1,d2; θ1, θ2, δ1, δ2, γÞ= PðR= 2jd1,d2Þ [1]

DGDDðd1,d2; θ1, θ2, δ1, δ2, γÞ

=

8><
>:

1

0

γ

if  ðd1,d2Þ•ðcosðθ1Þ, sinðθ1ÞÞ≥ δ1   and  ðd1,d2Þ•ðcosðθ2Þ, sinðθ2ÞÞ≥ δ2

if  ðd1,d2Þ•ðcosðθ1Þ, sinðθ1ÞÞ< δ1   and  ðd1,d2Þ•ðcosðθ2Þ, sinðθ2ÞÞ< δ2

otherwise

.

[2]

Here, • is the vector dot product. The other models we considered are special
cases of this function. The difference model is

DDðd1,d2; δÞ=DGDDðd1,d2; 3π=4,3π=4, δ, δ, 0Þ. [3]

The double detection model is

DDDðd1,d2; δ1, δ2, γÞ=DGDDðd1,d2; π, π=2, δ1, δ2, γÞ. [4]

The single-interval model for the first interval is

DS1ðd1,d2; δÞ=DGDDðd1,d2; π, π, δ, δ, 0Þ. (5)

The single-interval model for the second interval is

DS2ðd1,d2; δÞ=DGDDðd1,d2; π=2, π=2, δ, δ, 0Þ. (6)

The difference model with guessing is

DDMGðd1,d2; δ1, δ2, γÞ=DGDDðd1,d2; 3π=4,3π=4, δ1, δ2, γÞ. (7)

In Eqs. 3, 5, and 6, we set γ =0 because there are no guessing regions in
these models.

We fit thesemodels to the proxy decision spacematrices K andN described
in Proxy Decision Spaces as follows. We will use the double detection model
DDD for illustration. This model has three parameters: δ1, δ2, and γ. Observers’
responses had only small biases, so we fixed the guessing parameter to
γ = 0.5. As we show in SI Text, Properties of the Proxy Decision Space, the
proxy decision space is the true decision space convolved with a Gaussian

kernel, so we added another parameter σ to account for this blurring effect.
Thus, we optimized parameters Θ= ðδ1, δ2, σÞ. For a given choice of param-
eters, we first calculated a 20 × 20 matrix MðΘÞ= ðmijÞ representing the
predicted decision space, setting mij =DDDðxi , xj ; δ1, δ2, γÞ where xi and xj are
the values used to construct the proxy decision space matrices as described in
Proxy Decision Spaces. Next, we blurred MðΘÞ by a Gaussian kernel GðσÞwith
scale constant σ to obtain a 20 × 20 matrix representing the predicted proxy
decision space, QðΘÞ= ðqijÞ=MðΘÞ *GðσÞ, where * is 2D convolution. To avoid
edge effects, we extendedMðΘÞ by 3σ on each side. To make the model fitting
more robust against occasional keypress errors or lapses in attention, we made
the probabilities in the proxy decision space saturate at 0.01 and 0.99, by de-
fining ~QðΘÞ= ð~qijÞ= ðmaxðminðqij , 0.99Þ, 0.01ÞÞ. We used MATLAB’s fminsearch
function to find the parameter values that minimized the negative log
likelihood of the observed proxy decision space matrices N and K,

Θ̂=argmin
Θ

−
X
ij

log
�
b
�
kij ,nij , ~qijðΘÞ

��
. [8]

Here, bðk,n,pÞ is the binomial probability mass function. To make the fitting
routines more reliable, we took the best fit of 20 fits with randomly chosen
starting points. In Fig. S3, we show the results of 20 independent fits of the
GDD function to each observer’s proxy decision space, to show that the
fitting algorithm reliably converged to the global minimum.

The data from both experiments and MATLAB code that implements all
our analyses are available online at purl.org/NET/rfm/pnas2015.

Cross-Validation. For cross-validation, we randomly divided each observer’s
trials into 10 equally sized blocks. On each cross-validation run, we used nine
blocks for training and one block for validation. We measured the observer’s
classification image, decision variables, and proxy decision space on the
training blocks, using the methods described in Proxy Decision Spaces. To
find the cross-validation error for a given model (e.g., the difference model),
we fitted the model to the proxy decision space from the training trials,
using the methods described in Modeling. We then used the fitted model to
find the negative log likelihood of the observer’s responses in the valida-
tion block. We did this by taking the dot product of the classification
image (measured from the training blocks) with the two stimulus intervals
of each validation trial, producing two proxy decision variables ðp1,p2Þ. We
then calculated the probability p of the observer making response 2 given
the proxy decision variables ðp1,p2Þ, according to the fitted model being
tested. If we let r = 1 on trials where the observer gave response 2 and r = 0
where the observer gave response 1, then the negative log likelihood of
the observer’s response is −logðrp+ ð1− rÞð1−pÞÞ. The negative log likeli-
hood of all responses in the validation block is the sum of this negative log
likelihood over all validation trials.
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SI Text

Properties of the Proxy Decision Space
Definitions and Notation. We start by introducing definitions and
notation. We use uppercase letters for random variables and
lowercase letters for constants. We use bold font letters for 2D
images and templates, which we represent as n × 1 vectors, and
italic font letters for scalars.
In each of the two stimulus intervals (k = 1, 2) of a 2AFC task,

the observer views a signal sk in external noise Nk, so the stimulus
is sk +Nk. Each noise vector Nk is an n × 1 multivariate normal
random variable. Here we assume that the noise is white, Gaussian,
and identically distributed at each pixel. The observer’s responses
are based on decision variables D1 and D2 calculated from the two
intervals. The two signals s1 and s2 appear in random order, and we
represent the signal order with a random variable S that takes value
1 or 2. We also represent the observer’s responses with a random
variable R that takes value 1 or 2.
The linear observer model states that the decision variables for

the two stimulus intervals are the dot product of a template twith
the stimuli, plus independent samples of zero-mean, normally
distributed internal noise Ik:

Dk = ðsk +NkÞTt+ Ik. [S1]

We define the “externally determined component of the decision
variable” as

Ek = ðsk +NkÞTt [S2]

and so Dk =Ek + Ik.
The classification image is t+ t*, the template t plus a mea-

surement error term t*. The proxy decision variable is the dot
product of the classification image with the stimulus,

Pk = ðsk +NkÞTðt+ t*Þ [S3]

Pk = Ek +E*k [S4]

where E*k = ðsk +NkÞTt* is the error in the proxy decision variable
due the measurement error in the classification image. If the
external noise Nk is normally distributed, then so is E*k .

Convolution of the Decision Space. The above definitions imply
that the decision variable and the proxy decision variable are
related as

Pk =Dk − Ik +E*k . [S5]

We define the “proxy decision variable error” as

Qk =−Ik +E*k [S6]

and so Pk =Dk +Qk. The error term Qk is a normal random
variable with mean and variance

μQk =E½E*k � [S7]

σ2Qk = σ2Ik + σ2E*k . [S8]

The decision space is Dðx1, x2Þ=PðR= 2jD1 = x1,D2 = x2Þ, a
function that gives the probability of the observer choosing re-
sponse 2, conditional on values of the decision variables D1 and
D2. The proxy decision space, which is what we can actually
measure, is Y ðx1, x2Þ=PðR= 2jP1 = x1,P2 = x2Þ, where P1 and P2

are the proxy decision variables. The proxy decision space is the
decision space convolved with a 2D Gaussian kernel,

Y ðx1, x2Þ=PðR= 2jP1 = x1,P2 = x2Þ [S9]

Y ðx1, x2Þ=
Z∞

−∞

Z∞

−∞

PðR= 2jD1= y1,D2= y2,P1= x1,P2= x2Þ

×PðD1 = y1,D2 = y2jP1 = x1,P2 = x2Þdy1dy2
[S10]

Y ðx1, x2Þ=
Z∞

−∞

Z∞

−∞

PðR= 2jD1 = y1,D2 = y2ÞPðQ1 = x1 − y1Þ

×PðQ2 = x2 − y2Þdy1dy2
[S11]

Y ðx1, x2Þ=
Z∞

−∞

Z∞

−∞

Dðy1, y2Þϕ
�
x1 − y1, μQ1, σQ1

�

×ϕ
�
x2 − y2, μQ2, σQ2

�
dy1dy2

[S12]

Y ðx1, x2Þ= ðD pKÞðx1, x2Þ [S13]

where p is 2D convolution, ϕðx, μ, σÞ is the normal probability den-
sity function, and K is the Gaussian convolution kernel Kðx, yÞ=
ϕðx, μQ1, σQ1Þϕðy, μQ2, σQ2Þ. If the error term t* in the classification
image is small, then the kernel offset ðμQ1, μQ2Þ is small as well.

Classification Images and Decision Rules. Here we show that a
standard method of calculating classification images (6) is more
general than has been assumed, and that it does not depend on the
difference rule. This method gives an unbiased (although not
necessarily minimum variance) estimate of the observer’s tem-
plate for a wide range of decision rules, including all of the de-
cision rules illustrated in Fig. 1.
We can write a noise field asN=Njj +N⊥, whereNjj = tðNTtÞ=jtj2

is parallel to the template t and N⊥ =N−Njj is perpendicular to the
template. We will work in an orthonormal basis where the first basis
vector is parallel to the template, so the coordinate representation
of N is ðNjj,N⊥1,N⊥2, ...Þ, where the scalar Njj is the magnitude of
the vector Njj, and N⊥i represent N⊥.
Consider the expected value E½N1jS= 1,R= 2�, where N1 is the

noise field in the first stimulus interval.

E½N1j S= 1,R= 2�=
Z

Rn

xPðN1 = xjS= 1,R= 2Þdx. [S14]

By Bayes’ theorem,

E½N1j S= 1,R= 2�=
Z

Rn

x
PðR= 2jN1 = x,S= 1ÞPðN1 = xjS= 1Þ

PðR= 2jS= 1Þ dx.

[S15]
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We can divide N1 into Njj and N⊥ as defined above. Also, to
shorten the notation, we define p12 =PðR= 2jS= 1Þ.

E½N1j S= 1,R= 2�= 1
p12

Z∞

−∞

Z

Rn− 1

ðx, yÞP�R= 2jNjj = x,N⊥ = y,S= 1
�

×P
�
Njj = x,N⊥ = y

�
dydx.

[S16]

The linear model implies that the observer’s responses are in-
dependent of N⊥. Furthermore, if the noise is white and Gaussian,
then Njj and all components of N⊥ are mutually independent.

E½N1j S= 1,R= 2�= 1
p12

Z∞

−∞

Z

Rn− 1

ðx, yÞP�R= 2jNjj = x, S= 1
�

×P
�
Njj = x

�
PðN⊥ = yÞdydx

[S17]

E½N1j S= 1,R= 2�= 1
p12

Z∞

−∞

Z

Rn− 1

ðx, yÞPðN⊥ = yÞdy

×P
�
R= 2jNjj = x, S= 1

�
P
�
Njj = x

�
dx

[S18]

E½N1j S= 1,R= 2�= 1
p12

Z∞

−∞

ðx, 0ÞP�R= 2jNjj = x, S= 1
�

×P
�
Njj = x

�
dx.

[S19]

This shows that the conditional expected value ofN1 is either zero
or an unbiased estimate of the template. We can continue the
evaluation to see when it is nonzero.

E½N1j S= 1,R= 2�= 1
p12

Z∞

−∞

ðx, 0Þ
Z∞

−∞

Z∞

−∞

×P
�
R= 2jNjj = x, S= 1, I1 = u,D2 = v

�

×P
�
I1 = u,D2 = vjNjj = x, S= 1

�
dudv

×P
�
Njj = x

�
dx

[S20]

E½N1j S= 1,R= 2�= 1
p12

Z∞

−∞

ðx, 0Þ
Z∞

−∞

Z∞

−∞

×P
�
R= 2jNjj = x, S= 1, I1 = u,D2 = v

�

×PðI1 = uÞPðD2 = vjS= 1ÞdudvP�Njj = x
�
dx.

[S21]

The decision variable for the first stimulus interval is

D1 = ðs1 +N1ÞTt+ I1 [S22]

D1 = sT1 t+Njjjtj+ I1. [S23]

We can use this fact to evaluate the first probability inside the
double integral in line S21.

E½N1j S= 1,R= 2�= 1
p12

Z∞

−∞

ðx, 0Þ
Z∞

−∞

Z∞

−∞

×D
�
sT1 t+ xjtj+ u, v

�
ϕðu, 0, σIÞ

×ϕ
�
v, sT2 t, σD

�
dudvϕðx, 0, σNÞdx.

[S24]

Here, Dðx1, x2Þ is the decision space, σI = std½I1�= std½I2� is the SD
of the internal noise, σN is the pixelwise SD of the external noise
N1, and σD = std½D1�= std½D2�= ðσ2N jtj2 + σ2I Þ1=2 is the SD of the
decision variable. Corresponding expressions give E½NkjS= i,R= j�
for other values of k, i, and j.
In the classification image method we used (6), the classifi-

cation image is a weighted sum of the external noise fields that
were shown to the observer. When the external noise is white, the
weighted sum can be written as

X
i, j, k=1,2

cijk
X

l∈Tði, jÞ
nlk

(compare equation 12 in ref. 6). Here i, j, and k range over the
stimulus orders S= 1,2, the observer’s responses R= 1,2, and the
stimulus intervals 1 and 2, respectively. We number the trials
1, ...,N, and Tði, jÞ is the set of trial numbers on which the stim-
ulus order was S= i and the response was R= j; nlk is the noise
field on trial number l in stimulus interval k; and cijk are weights
assigned to noise fields in stimulus interval k on trials where the
stimulus order was S= i and the observer responded R= j. The
weights cijk depend on the external noise variance and the num-
bers of trials in categories Tði, jÞ, but not directly on the noise
samples nlk. We showed above that the expected value of the
noise field in each stimulus–response class of trials is propor-
tional to the observer’s template. It follows that any weighted
sum of the noise fields, such as the above expression, also has an
expected value that is proportional to the observer’s template.

Uncertain Observer Simulations
We simulated amodel observer with intrinsic uncertainty in a 2AFC
detection task. The two stimulus intervals were represented by two
normal random variables, X1 and X2. On trials where the signal was
in interval 1, the expected value of X1 was μX and the expected
value of X2 was zero. On trials where the signal was in interval 2,
the expected values were reversed. The random variables X1 and
X2 had SD σX = 1. We chose μX to give the model observer 70%
correct performance (see below for values). We used X1 and X2 as
the proxy decision variables. In each stimulus interval, the model
observer monitored a relevant mechanism and some number U of
irrelevant mechanisms. The response of the relevant mechanism
was X1 or X2 plus a normal random variable representing internal
noise, with mean zero and SD σI = 1. The irrelevant mechanisms
were also normal random variables, with mean zero and SD σI = 1.
We set σI = σE to mimic typical internal-to-external noise ratios for
human observers (22). The observer’s decision variable for each
stimulus interval was the maximum of the relevant and irrelevant
mechanism responses for that interval. The observer chose the
interval with the largest decision variable as the one containing the
signal. We simulated this model observer on 10,000 trials with
zero, one, two, and eight irrelevant mechanisms (U = 0, 1, 2, and
8, for which μX = 1.1, 1.3, 1.4, and 1.8, respectively, gave 70%
performance), and we measured the decision space in the same
manner as for human observers. The results are shown in Fig. 2C.
Even though we fit the GDD function to the decision spaces of

uncertain observers in Fig. 2C, it is important to note that the
GDD function does not give a good description of the full de-
cision space of uncertain observers. For example, at high signal
levels, uncertainty has little effect, and so the decision space is
simply divided in two by a single line, as in the difference model;
this is not consistent with Fig. 2C, where the GDD fits for U > 0
show a triangular guessing region in the top right corner of each
panel (where there is no data). What we wish to show, however,
is that within the limited stimulus range where we tested human
observers (around 70% threshold), their decision spaces are similar
to the decision spaces of uncertain model observers (also at 70%
threshold), a conclusion supported by the fits of the GDD function
in Fig. 2 B and C.
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Fig. S1. Typical stimuli in (A) experiment 1 and (B) experiment 2. See Materials and Methods for detailed information on stimulus properties.
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Fig. S2. The blue line is the probability of the difference model with guessing making response 2, as a function of the distance of the decision variables from
the center of the guessing region. Here the guessing region has width 0.30, and the SD parameter has value 0.25. The dashed green line is the probability of
the difference model making response 2, as a function of the distance of the decision variables from the decision line. Here the SD parameter has value 0.30.
The two functions are practically identical, and their plots are largely superimposed. Thus, model fitting can give little support to the difference model with
guessing over the difference model when the guessing region is this small relative to the SD parameter. The difference model will be preferred, because it gives
an equally good fit with fewer parameters.
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Fig. S3. Results of 20 independent fits of the GDD function to each observer’s proxy decision space. As in Fig. 2, A shows results in experiment 1 and B shows
results in experiment 2. Each fit of the GDD function is represented by a pair of thin red lines. The repeated fits are so similar that the 20 pairs of thin red lines
are nearly superimposed and appear as a pair of thick red lines. In fact, the fits were so consistent that we slightly jittered the thin red decision lines in these
plots so that they were not completely superimposed across repeated fits.

Table S1. AIC for four models (Fig. 1 A–D) fitted to proxy decision spaces in experiment 1 (Fig. 2A)

Difference model Difference model with guessing Double detection model Single-interval model

Observer 1 793.0 795.0 1,093.4 2,527.3
Observer 2 820.7 822.7 1,524.3 2,914.1
Observer 3 952.0 953.8 1,273.4 2,677.6

Movie S1. A typical stimulus sequence in experiment 1.

Movie S1
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Movie S2. A typical stimulus sequence in experiment 2.

Movie S2
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