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We review recent work on the role of natural illumination in

human vision. We discuss research showing that visual

perception depends on stable statistical properties of natural

light in order to solve the underconstrained problem of

estimating the shape, color, and material properties of surfaces

and objects. We focus on assumptions about the distribution of

luminous flux over 3D directions and spatial locations. We also

review work showing that implicit assumptions about lighting

color may explain the remarkable individual differences in

percepts of #thedress. We conclude by discussing the

unsolved problem of how the human visual system represents

lighting, and outlining promising directions for future work that

has been made possible by recent advances in physically

based rendering and light measurement.

Addresses
1Department of Psychology and Centre for Vision Research,

York University, Canada
2School of Psychology, University of Southampton, United Kingdom

Corresponding authors:

Murray, Richard F (rfm@yorku.ca),

Adams, Wendy J (w.adams@soton.ac.uk)

Current Opinion in Behavioral Sciences 2019, 30:48–54

This review comes from a themed issue on Visual perception

Edited by Hannah Smithson and John S Werner

https://doi.org/10.1016/j.cobeha.2019.06.001

2352-1546/ã 2019 Elsevier Ltd. All rights reserved.

Introduction
Illumination in the natural environment has shaped the

evolution of the human visual system [1], and it plays a

key role in circadian rhythms [2], affect and mental health

[3], social organization [4], and aesthetics [5]. Less obvious

but equally important is how human vision relies on stable

propertiesoflighting inordertoperceivefundamentalobject

properties such as shape and color. Visual perception is a

highly underconstrained problem, in that a typical retinal

image can be produced by many different combinations of

lighting, shape, and materials (e.g. Ref. [6]). As a result, the

visual system must use statistical knowledge (usually

implicit) about typical scene properties to infer the external

world that a retinal image is most likely to be depicting. It has

long been understood that ecological statistics play a central
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role in human vision (e.g. Refs. [7,8]), and recent advances in

measuring devices and computational modelling have made

it possible to investigate this role quantitatively [9]. Discov-

ering how vision relies on illumination statistics has been an

important part of this story.

Here we review recent work on key properties of

illumination, mostly focusing on the distribution of light

over directions and spatial locations, as well as illumination

color. We examine how human vision exploits these regu-

larities to estimate the shape and material composition of

objects. We conclude by noting some unsolved problems

and outlining promising directions for future work.

Perceptually important properties of
illumination
Illumination direction

Objects are illuminated by both primary light sources and

light reflected from nearby surfaces, so the complete

lighting conditions at a point in space are usually com-

plex. We can describe the lighting at a given point with an

illumination map, a real-valued function of spherical coor-

dinates f ðu; fÞ that reports the luminance in each direc-

tion ðu; fÞ at that point [10,11]. Just as a 2D image can

represented as a sum of sinusoids via Fourier analysis, an

illumination map can be represented as a sum of spherical

harmonics (Figure 1), and this representation is useful for

quantifying several basic properties of lighting.

One of the simplest and most important properties of

lighting is its direction, the 3D orientation at which a 2D

surface patch receives the greatest luminous flux.This is also

the 3D orientation of the first-order spherical harmonic

representation (Figure 1). In natural scenes there is a strong

tendency for light to come from above, and classic ambigu-

ous figures show that people tend to see shaded stimuli as if

theyare illuminatedfromoverhead([12,13]; seeFigure2). In

Bayesian terms, people have a ‘light-from-above prior’ [14]

that modulates the perception of shape, reflectance, and

visual search for shaded targets [15].

The light-from-above prior appears to be at least partially

learned, with a surprisingly long time course. It emerges by

seven months [16] and continues to develop at least until ten

years of age [17]. Even for adults, robust lighting direction

cues from shading and shadows can have a stronger influence

on shape-from-shading judgements than the light-

from-above prior, reflecting how Bayesian priors are com-

binedwithinformationfromsensorycues([18];seeFigure2).

Furthermore, the light-from-above prior reflects recent

experience with the environment: when an observer is

immersed in a visual-haptic environment where the
www.sciencedirect.com
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Figure 1
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(a) Real-valued spherical harmonics up to order 2, shown in Mollweide projection. (b) Approximations to an illumination map that include all

spherical harmonics up to orders 0, 1, and 2, as well as the full illumination map. (c) A matte object and (d) a glossy object rendered with the

illumination maps in column (b).
illumination direction differs from their prior, they update

their prior accordingly [14]. Such learning may be context-

specific, as people can learn at least two distinct lighting

direction priors for use in different visual environments [19].
Figure 2
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Simple objects rendered under natural illumination. To most observers,

objects on the left appear convex, and those on the right appear

concave. However, in the lower row the light-from-above prior

competes with information from cast shadows (caused by illumination

from below) making perceived shape more ambiguous: the lower right

object might appear convex.

www.sciencedirect.com 
Illumination diffuseness

Another important property of lighting is diffuseness, the

degree to which luminous flux is distributed across the

full range of 3D directions, e.g., diffuse light on a cloudy

day versus more directed light on a sunny day. In a

spherical harmonic expansion (Figure 1), diffuseness is

shown by the magnitude of the zero-order component –

which is constant in every direction – relative to the

higher-order components. There are several ways of

making this definition more precise, and measures of

diffuseness are a topic of ongoing research [20�,21].

Lighting diffuseness plays a key role in lightness constancy, the

ability to perceive greyscale surface reflectance correctly

under a wide range of lighting conditions. Diffuseness

affects the relationship between surface reflectance, surface

orientation, and image luminance: under directional light,

the luminance ofa surface depends on its orientationrelative

to the dominant light source, whereas under highly diffuse

light, luminance is approximately the same at all orienta-

tions. Thus mis-estimating diffuseness should result in

errors in perceived reflectance. In fact, human observers

do show deviations from lightness constancy that are consis-

tent with an overestimation of diffuseness [22,23]. Further-

more, illumination in natural environments is typically more

diffuse than in the experiments where these partial failures

of lightness constancy were observed [24]. This suggests that

people may learn a prior for high diffuseness in natural

environments, and that this prior influences lightness judge-

ments in artificial environments even when diffuseness cues

such as shadow penumbrae provide information about the

atypical lighting conditions.

In addition to making the probably implicit judgements

of diffuseness that guide lightness perception, people

can, to some extent, make explicit judgements of diffuse-

ness. These judgements are often inaccurate, but they are
Current Opinion in Behavioral Sciences 2019, 30:48–54
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monotonically related to the true diffuseness level in the

scene [25,26�]. People tend to overestimate diffuseness,

especially in scenes with relatively directional light,

which is consistent with the evidence cited above that

people have a prior for diffuse light [26�,27]. People also

tend to overestimate diffuseness when light comes from

the viewer’s direction (the ‘diffuseness-direction

ambiguity’; [25,26�]) but this bias seems to have a differ-

ent origin: in images that are illuminated either diffusely

or from the direction of the viewer, light is distributed

more evenly over a wide range of surface orientations, and

so these two lighting conditions produce images that are

physically quite similar, and hence confusable.

Higher order features of illumination

Natural illumination tends to be complex, but it follows

certain regularities. For example, in addition to lumi-

nance increasing with elevation (i.e. light from above),

the luminance distribution tends to be highly skewed

(with a few very bright small regions) and follows a 1=f 2

power distribution [28,29].

Figure 1 shows matte and glossy objects rendered in an

illumination environment that has been approximated

with various orders of spherical harmonics. High fre-

quency variations in illumination (beyond 2nd order)

have little effect on the image of a matte, convex object

[30,31]. However, cast shadows become sharper when

high frequencies are included, and thus even in a Lam-

bertian world, higher-order illumination structure has

implications for image segmentation: cast shadow bound-

aries must be distinguished from other types of image

edges, such as object boundaries [32,33]. Glossy objects

change dramatically in appearance as higher-order com-

ponents are introduced, which modify the pattern of

specular highlights.

The influence of illumination on gloss perception is

illustrated by failures of gloss constancy when the illumi-

nation changes [34–36]. To understand which features of

illumination are important for gloss perception, we can

probe the perceptual effects of different illumination

manipulations. For example, changing the luminance

skew, or luminance contrast of the illumination environ-

ment modulates the apparent gloss of the illuminated

object [29]. A glossy sphere rendered under phase scram-

bled illumination (or 1/f noise) appears to be a 2D matte

object, highlighting the importance of illumination

structure [37].

When the illumination is modified, the effects on gloss

perception can be understood in terms of resultant

changes to specular highlights: perceived gloss increases

with the brightness, sharpness, and coverage of highlights

[38–40]. However, Bayesian theories of perception sug-

gest that observers should infer an object’s gloss from its

specular highlights (in line with how these are generated
Current Opinion in Behavioral Sciences 2019, 30:48–54 
under natural illumination), but also take account of

sensory evidence about the current illumination. When

provided with contextual information about the

illumination conditions, observers do not become not

fully gloss constant, but their gloss judgements are mod-

ulated by some statistics of the visible illumination

environment [29].

Illumination distribution over space

Mury et al. [41–43] measured spatial variations in illumi-

nation within natural scenes, and found that lower order

illumination components (which typically encompass

more energy) are relatively stable across spatial locations,

and reflect coarse scene geometry. Scene geometry causes

greater spatial variation in illumination under sunny

conditions, via cast shadows and inter-reflections. Low-

order illumination structure can change abruptly, how-

ever, such as in a forest on a sunny day, when spatially

intermittent overhead foliage modulates both low and

high order components.

To probe our ability to estimate spatially varying illumi-

nation, observers have been asked to directly adjust the

illumination of a planar patch or spherical ‘probe’, or to

estimate the reflectance or shape of objects. Observers

can adjust the intensity, direction and diffuseness of

illumination on spherical probes at different locations

with reasonable accuracy within a simple photographed

scene [27] or in real scenes [26�,44]. Light field estimates

are somewhat simplified compared to ground truth struc-

ture, and biased toward diverging light fields (i.e. light

radiating from a source; [45]) but do represent different

‘light zones’ [46].

Gilchrist [47] demonstrated that observers’ reflectance

judgements can change dramatically depending on the

perceived location, and therefore the perceived local illu-

mination of a surface patch. Although he emphasized

discrete zones, or ‘frameworks’ for reflectance estimation

[48], subsequent studies have shown that observers can

compensate for smooth changes in illumination (e.g. Refs.

[49,50]), using cast shadows, shading and specular high-

lights to infer and interpolate illumination conditions [51].

When perceived illumination is inferred from the per-

ceived shape of simple shaded disks (similar to Figure 2),

a prior for spatially invariant illumination is apparent:

although the perceived shape (convex versus concave)

of an array of such disks can be perceptually bistable, all

are perceived in accordance with the same illumination

direction at any one time [52]. This prior can be overruled

by additional information (e.g. shape information from

stereopsis or touch; [53]), or even the presence of specular

highlights, which promote a convex interpretation [54].

van Doorn et al. [55,56] presented annuli of shaded disks,

arranged to approximate complex light fields, including
www.sciencedirect.com
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Figure 3
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Pixelwise chromaticity of #thedress in DKL color space. The red line

shows the daylight locus. (From Ref. [64]).
diverging (from an invisible central illuminant), converg-

ing (as though objects are surrounded by a ring of illumi-

nation) or rotational (simulated illumination follows a

circular path). Observers’ shape perception did not follow

the simulated converging or rotational illumination pat-

terns, but the use of simple disks with linear luminance

gradients (rather than more realistic rendering) may have

affected observers’ ability to perceive these more unusual

illumination configurations.

Wilder et al. [57] demonstrated that observers can

estimate shape from shading for an undulating surface

when illumination direction varies rapidly from place to

place. This work highlights a striking disconnect between

implicit and explicit representations of illumination:

observers were able to accommodate large changes in

illumination when judging shape, but they were unable to

explicitly detect these changes. Similarly, Ostrovsky et al.
[58] showed that observers are surprisingly insensitive to

large inconsistencies in illumination across different

objects in a scene. In addition, observers’ explicit esti-

mates of illumination can differ substantially from the

implicit illumination estimates that would account for

their reflectance judgements [59]. Although accounting

for illumination is critical for accurate perception of shape

and reflectance, we rarely need to explicitly estimate or

report it.

Illumination color: #thedress

The image known as #thedress gives a striking illustration

of the fact that visual perception is a subjective inference

based on deeply ambiguous stimuli. People disagree

strongly about the color of the depicted dress: some

see a white dress with gold trim, while others see a

deep blue dress with black trim. Low-level factors may

contribute to these large individual differences, including

differences in pre-retinal filtering and spectral sensitivi-

ties [60�,61,62], although a twin study indicates individual

differences in perceived dress color are mostly due to

environmental rather than genetic factors [63]. The

explanation supported by most research is that people

make different estimates of the lighting conditions in this

picture, and so when color constancy mechanisms dis-

count the lighting, very different estimates are produced

of the material color of the dress [60�] (We have not

reproduced the dress image here due to copyright restric-

tions, but for the original image and the chromatic var-

iants of it discussed below, see Gegenfurtner et al. [64].)

A key property of the dress image seems to be that its

chromaticities fall on the same axis in color space as

natural daylight (Figure 3). If the image is rotated in

color space, it is much less ambiguous [64]. Even if

inverted in color space, it is less ambiguous: this transfor-

mation preserves chromaticities, but changes the correla-

tion between chromaticity and luminance so that it no

longer matches that of natural daylight, where deeper
www.sciencedirect.com 
blues tend to be darker [64,65]. This is intriguing, but a

complete understanding of how the daylight axis contrib-

utes to individual differences in the illusion will require a

more thorough computational analysis [60�].

The most direct evidence that lighting estimates play an

important role in the illusion is that the dress image is

much less ambiguous when shown with strong lighting

cues ([66,67]; but see Ref. [68]). Furthermore, people

who perceive the dress color differently also perceive

different lighting chromaticities in the image [69,70].

Interestingly, after naive observers see the dress image

in a context that biases them toward one color interpre-

tation, they mostly retain that interpretation when sub-

sequently viewing the original, more ambiguous image,

suggesting a role for one-shot learning [71�]. However,

perceived dress color is not strongly correlated with

the location of first fixation [71�] or chronotype [72], so

there is still much to learn about the sources of these

remarkable individual differences.

Future directions
The work reviewed here shows that human vision relies

heavily on priors and cues to lighting conditions. Never-

theless, there is no standard model of how the visual

system represents lighting, and our understanding of how

lighting conditions are estimated and used to infer impor-

tant visual features is tentative and incomplete. Some

current models suggest that human vision represents

lighting direction and diffuseness [22,23], and possibly

illuminance as well [73], while others claim that we do not

represent lighting at all for some purposes [74,75]. Thus

there is a strong need for more general and robust theories
Current Opinion in Behavioral Sciences 2019, 30:48–54
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of perceptual models of lighting. In recent years it has

become easier to carry out experiments to test such

theories, as advances in physically based rendering,

including models of materials with complex reflectance

functions and subsurface scattering, have made it possible

to create and manipulate lighting cues in highly realistic

stimuli (e.g. Ref. [76]). It has also become easier to

measure and characterize natural lighting, as devices

for measuring illumination maps have advanced from

custom-built tools [11,24,42] to off-the-shelf, high-

resolution, high dynamic range omnidirectional cameras

(e.g. Ref. [77�]).

A better understanding of perceptual models of lighting

would have many applications. Virtual reality (VR) sys-

tems are becoming more widely used in many practical

settings, but perceptual judgements can be quite differ-

ent in real and virtual environments (e.g. Ref. [24]; but

see Ref. [78]). Fully realistic, physically based rendering

is too demanding for typical VR systems to perform in real

time, so virtual environments must provide viewers with

an adequate and more easily computable subset of task-

relevant information. Improved models of how human

vision represents and estimates lighting conditions would

be useful for understanding how computational resources

should be allocated to maximize human performance in

rendered environments.

A more general theory of perceptual models of lighting

would also improve our understanding of several related

topics, including lightness and color constancy, shape from

shading, and material perception, in addition to perception

of the light field itself [79]. Lighting perception has

received much less attention than other core topics in vision

[80, pp. 213–223], which is surprising as it is intrinsically

bound up with many of them. Technical developments in

experimental methods, new applications, and its central

theoretical role make this topic a promising area for advanc-

ing our understanding of human vision.
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