Skip to main content Skip to local navigation

Sam Benchimol

Sam Benchimol

Picture of Sam Benchimol
Sam Benchimol
Full Professor

Department

Biology

Contact

Office Location Life Sciences Building, 429F
Phone Number (416)736-2100 x 20726

Research Focus

The p53 tumour suppressor gene represents the most common target for mutational inactivation in human cancer. At the cellular level, p53 protein regulates cell cycle progression, senescence, apoptosis and various metabolic processes. p53 is a sequence-specific DNA-binding transcription factor. In response to abnormal proliferative signals and many stress signals including DNA damage, p53 protein is stabilized and activated through a succession of post-translational modifications including phosphorylation and acetylation. Once activated, p53 regulates the expression of a number of target coding genes and non-coding RNAs that collectively contribute to p53-dependent cellular responses. p53 protein can induce cells to undergo a transient arrest in the G1 phase of the cell cycle that is believed to allow time for repair of damaged DNA before the initiation of S phase. Activated p53 can also eliminate cells through mechanisms that involve prolonged arrest in G1 (senescence) or apoptosis. The elimination of damaged, stressed or abnormally proliferating cells by p53 explains in part the tumour suppression function of p53.

My research program has three goals:

1. To understand how the p53 protein regulates cell growth and suppresses tumorigenesis.
2. To evaluate the role of p53 as a determinant of chemosensitivity in cancer cells.
3. To understand how DNA replication stress contributes to premature cellular senescence, aging, and p53 activation.

Representative Publications

Pham TD, Ma W, Kazakova L and Benchimol S. (2018). Erythropoietin inhibits chemotherapy-induced cell death and promotes a senescence-like state in leukemia cells. Submitted.

Wheaton K, Campuzano D, Ma W, Sheinis M, Ho B, Brown G and Benchimol S. (2017). Progerin-induced replication stress facilitates premature senescence in Hutchinson Gilford Progeria Syndrome. Mol. Cell. Biol. 37: e00659-16.

Ma W, Lin Y, Xuan W, Iversen PL, Smith LJ, Benchimol S. (2012). Inhibition of p53 expression by peptide-conjugated phosphorodiamidate morpholino oligomers sensitizes human cancer cells to chemotherapeutic drugs. Oncogene 21: 1024-1033.

Assaily W, Rubinger DA, Wheaton K, Lin Y, Ma W, Xuan W, Brown-Endres L, Tsuchihara K, Mak TW and Benchimol S. (2011). ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 44: 491-501.

Hakem A, Bohgaki M, Lemmers B, Tai E, Salmena L, Matysiak-Zablocki E, Jung YS, Karaskova J, Kaustov L, Duan S, Madore J, Boutros P, Sheng Y, Chesi M, Bergsagel PL, Perez-Ordonez B, Mes-Masson AM, Penn L, Squire J, Chen X, Jurisica I, Arrowsmith C, Sanchez O, Benchimol S and Hakem R. (2011). Role of Pirh2 in mediating the regulation of p53 and c-Myc. PLoS Genet. November 7(11): e1002360.

Wheaton K, Muir J, Ma W and Benchimol S. (2010). BTG2 antagonizes Pin1 in response to mitogens and telomere disruption during replicative senescence. Aging Cell 9: 747-760.

Sub-Disciplines

p53 Tumour Suppressor Gene, Apoptosis, Senescence, Cancer and Progeria

Research Areas

Cell and Molecular Biology
Categories: