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We obtained behavioral data to evaluate two alternative hypotheses about the neural mechanisms of
gaze control. The ‘‘fixation’’ hypothesis states that neurons in rostral superior colliculus (SC) enforce fix-
ation of gaze. The ‘‘microsaccade’’ hypothesis states that neurons in rostral SC encode microsaccades
rather than fixation per se. Previously reported neuronal activity in monkey SC during the saccade
stop-signal task leads to specific, dissociable behavioral predictions of these two hypotheses. When sub-
jects are required to cancel partially-prepared saccades, imbalanced activity spreads across rostral and
caudal SC with a reliable temporal profile. The microsaccade hypothesis predicts that this imbalance will
lead to elevated microsaccade production biased toward the target location, while the fixation hypothesis
predicts reduced microsaccade production. We tested these predictions by analyzing the microsaccades
produced by 4 monkeys while they voluntarily canceled partially prepared eye movements in response to
explicit stop signals. Consistent with the fixation hypothesis and contradicting the microsaccade hypoth-
esis, we found that each subject produced significantly fewer microsaccades when normal saccades were
successfully canceled. The few microsaccades escaping this inhibition tended to be directed toward the
target location. We additionally investigated interactions between initiating microsaccades and inhibit-
ing normal saccades. Reaction times were longer when microsaccades immediately preceded target
presentation. However, pre-target microsaccade production did not affect stop-signal reaction time or
alter the probability of canceling saccades following stop signals. These findings demonstrate that imbal-
anced activity within SC does not necessarily produce microsaccades and add to evidence that saccade
preparation and cancelation are separate processes.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The saccade stop-signal task has provided tremendous insight
into the neurophysiological basis of eye movements (Asrress &
Carpenter, 2001; Atsma et al., 2014; Bissett & Logan, 2013; Born,
Mottet, & Kerzel, 2014; Boucher et al., 2007; Brown et al., 2008;
Cabel et al., 2000; Camalier et al., 2007; Corneil & Elsley, 2005;
Emeric et al., 2007; Goonetilleke, Wong, & Corneil, 2012;
Gulberti, Arndt, & Colonius, 2014; Hanes & Carpenter, 1999;
Hanes & Schall, 1995, 1996; Joiner, Lee, & Shelhamer, 2007;
Kornylo et al., 2003; Lo et al., 2009; Logan & Irwin, 2000;
Morein-Zamir & Kingstone, 2006; Pouget et al., 2011; Ray,
Pouget, & Schall, 2009; Scangos & Stuphorn, 2010; Stevenson,
Elsley, & Corneil, 2009; Stuphorn, Brown, & Schall, 2010; Walton
& Gandhi, 2006; Wessel, Reynoso, & Aron, 2013; Wong-Lin et al.,
2010). Participants are occasionally instructed to cancel saccades
shortly after a cue to respond (Fig. 1). By analyzing subjects’ accu-
racy and reaction times as the outcome of a race between go and
stop processes, investigators can estimate the time required for
subjects to inhibit actions (Logan, 1994; Logan & Cowan, 1984).
This metric, referred to as stop-signal reaction time (SSRT),
specifies the duration in which neurons participate in initiating
or withholding motor responses. Investigators have reported
detailed profiles of neural activity recorded from many ocular
motor structures during the saccade stop-signal task (Hanes,
Patterson, & Schall, 1998; Stuphorn, Brown, & Schall, 2010; see also
Brunamonti, Thomas, & Paré, 2008; Mirabella, Pani, & Ferraina,
2011; Murthy, Ray, Shorter, Schall, & Thompson, 2009; reviewed
by Schall & Godlove, 2012a), and these data can be used to gener-
ate novel predictions about oculomotor behavior. For instance,
when monkeys inhibit eye movements during the stop-signal task,
pools of neurons in caudal and rostral superior colliculus (SC) are
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Fig. 1. The saccadic stop-signal (countermanding) task. Top: No-stop trials were
initiated when monkeys fixated a central point. After a variable time, the center of
the fixation point was extinguished leaving an outline. A peripheral target was
presented simultaneously at one of two possible locations. Monkeys were required
to fixate targets with quick saccades. On correct trials, a speaker sounded a tone
indicating success and a juice reward was delivered. Bottom: Stop-signal trials were
initiated in the same way. After a variable time (SSD), the center of the fixation
point was reilluminated in a different color, instructing the monkeys to withhold
movement. Successful inhibition of saccades resulted in rewarded Canceled trials,
but errant saccades resulted in unrewarded Noncanceled trials accompanied by a
different speaker tone.
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Fig. 2. Timing and spatial distribution of imbalanced activity in superior colliculus
(SC) during the stop-signal task. (A) Application of Logan’s race model to reaction
time and accuracy data yields estimates of stop-signal reaction time (SSRT blue).
This is the median time necessary for movements to be canceled. Given the
presentation of a stop-signal on a particular trial, motor processes on trajectory to
reach threshold after SSRT will not result in movement, effectively truncating the
reaction time distribution. (B) Imbalanced activity in SC shows a predictable spatial
and temporal evolution during the saccade stop-signal task. Thick traces represent
activity on canceled trials. Thin traces depict activity on latency matched no-stop
trials. Diagram is adapted from data presented by Paré and Hanes (see their Figs. 3
and 7). (C) Spatial activity in SC is stereotyped around SSRT. Putative neural activity
is taken from gray window in (B). Rostral and caudal SC show coactivation just
before and concomitant with SSRT on canceled trials.
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simultaneously active before and during SSRT producing an imbal-
ance across the saccade trajectory map in this area (Paré & Hanes,
2003; Fig. 2). As detailed below, these data lead to predictions
about the patterns of microsaccades that should be elicited when
monkeys cancel saccades during the stop-signal task.

It is well-accepted that neurons in the intermediate layers of SC
encode target positions and are arranged in an orderly saccade
polar coordinate map (Gandhi & Katnani, 2011; Krauzlis, 2008;
Lee, Rohrer, & Sparks, 1988; Munoz & Schall, 2004; Munoz et al.,
2000; Robinson, 1972). But disagreement persists about the func-
tion of neurons in rostral SC at the origin of this coordinate system.
An early line of work indicated that neurons in rostral SC enforce
fixation (Büttner-Ennever et al., 1999; Gandhi & Keller, 1997;
Munoz, Waitzman, & Wurtz, 1996; Munoz & Wurtz, 1993a,
1993b; Paré & Guitton, 1994). According to this view, neurons in
the rostral pole of SC inhibit saccades regardless of the activity
level of neurons in caudal SC. This view assumes the existence of
two different neuron types in SC, one responsible for gaze-shifting
and another responsible for gaze-holding. To describe the function
of the rostral SC, we will refer to this as the fixation hypothesis.

More recent work emphasizes the contribution of all neurons in
the intermediate layers of SC to gaze-shifting (Goffart, Hafed, &
Krauzlis, 2012; Hafed, Goffart, & Krauzlis, 2008; Hafed & Krauzlis,
2012; Krauzlis, Basso, & Wurtz, 1997). According to this view, neu-
rons in rostral SC simply contribute to saccades near the point of
fixation, and gaze-holding is accomplished by maintaining equilib-
rium across the saccade map. When the equilibrium of SC activity
becomes imbalanced toward a target location (as illustrated in
Fig. 2C) microsaccades or larger gaze shifts are initiated. To
describe the function of the rostral SC, we will refer to this as the
microsaccade hypothesis.

Given the pattern of activity that was previously reported in SC
when monkeys canceled eye movements during the stop-signal
task (Paré & Hanes, 2003; see also Hanes, Patterson, & Schall,
1998), the microsaccade hypothesis and fixation hypothesis make
different predictions about the pattern of microsaccades that
should be observed before and during SSRT. The microsaccade
hypothesis predicts that imbalanced activity in SC during the inter-
val that normal saccades are inhibited (i.e. SSRT) will lead to
increased microsaccade production with most directed toward
the target. The fixation hypothesis predicts that elevated activity
of gaze-holding neurons in rostral SC will lead to decreased micro-
saccade production.

To test predictions of the microsaccade and fixation hypotheses
explicitly, we used high-resolution eye tracking and analysis tech-
niques to record micro- and normal saccades from four monkeys
trained to perform the saccade stop-signal task. The use of mon-
keys instead of humans provides several advantages. They were
highly trained and would readily complete thousands of trials
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per experimental session. Neural activity has also been described
in several monkey ocular motor structures including SC and FEF
allowing us to test predictions of the microsaccade and fixation
hypotheses in a reliable animal model. The results provide new
evidence that saccade initiation and inhibition are distinct and
dissociable processes and that fixation need not depend on equilib-
rium in SC as previously suggested (Goffart, Hafed, & Krauzlis,
2012). We discuss how these findings relate to general mecha-
nisms of response inhibition and to recent anatomical studies,
and we suggest that the fixation hypothesis bears reappraisal. Parts
of this paper have been published previously in a conference
abstract and a doctoral dissertation (Godlove, 2013; Schall &
Godlove, 2012b).
2. Material and methods

2.1. Animal care

Data were collected from 3 male bonnet macaques (Macaca rad-
iata 6.9–8.5 kg) and one female rhesus macaque (Macaca mulatta
6 kg). Animal care exceeded policies set forth by the USDA and
Public Health Service Policy on Humane Care and Use of Laboratory
Animals and all procedures were carried out with supervision and
approval from the Vanderbilt Institutional Animal Care and Use
Committee. Titanium headposts were surgically implanted to
facilitate head restraint during eye tracking. Surgical methods have
been described in detail (Godlove et al., 2011).

2.2. Stimuli and task

Monkeys were seated in enclosed primate chairs with heads
restrained using surgically implanted head posts. Depending on
primate chair and recording setup, monkeys sat 43–49.5 cm from
a 70 Hz CRT monitor subtending 47.8–51.8� horizontal visual angle
and 34.5–37.4� vertical visual angle. Stimulus presentation, task
contingencies related to eye position, and delivery of liquid
reinforcement were all under computer control in hard real time
(TEMPO, Reflective Computing, Olympia, WA). Stimuli were
presented using computer-controlled raster graphics (TEMPO
Videosync 640 � 400 pixel resolution, Reflective Computing,
Olympia, WA). Stimulus sizes and eccentricities were automati-
cally adjusted by the computer program to account for subject
viewing distance and had luminance values of 10 cd/m2 on a
0.02 cd/m2 background or 39 cd/m2 on a 10 cd/m2 background
depending on which recording setup was used.

Details about the behavioral training regime and task have been
described previously (Hanes, Patterson, & Schall, 1998; Hanes &
Schall, 1995). Trials were initiated when monkeys fixated a
centrally presented square which subtended 0.34� of visual angle.
After a foreperiod ranging from 600 ms to 1100 ms, the center of
the fixation point was extinguished, leaving an open square
outlined 1 pixel thick, and a target subtending 3� of visual angle
simultaneously appeared centered at 10� to the left or right of
fixation. To minimize anticipation effects, the foreperiod was
approximately non-aging being randomly sampled from a distribu-
tion described by the function:

pðtÞ ¼ e�t=k

where the probability of selecting a specific foreperiod p(t) is an
exponential function with time constant of k. We set k equal to
250 ms and shifted the distribution to fall between 600 and
1100 ms. On no-stop trials (Fig. 1, top), no further visual stimuli
were presented. Monkeys were required to make a saccade to the
target within 800 ms and hold fixation for 600 ms to obtain reward.
Correct trials were rewarded with an audible tone followed 600 ms
later by several drops of juice. On stop trials (Fig. 1, bottom), the
center of the fixation point was re-illuminated either red or green
(constant for each monkey) after a variable delay providing a
stop-signal which instructed the monkeys to cancel their impend-
ing eye movements and maintain central fixation. In practice, two
trial outcomes were then possible. If monkeys successfully withheld
the eye movement and maintained fixation for a minimum of
1600 ms, they obtained tone and juice reward. These trials were
designated as ‘‘canceled’’ (also known as ‘‘signal inhibit’’). If mon-
keys were unable to inhibit the movement, an audible tone signal-
ing timeout sounded and a variable timeout was added to the
normal inter-trial interval. These trials were termed ‘‘noncanceled’’
(also known as ‘‘signal respond’’). Except where noted, canceled tri-
als provided the data for the current study. During some recording
sessions with monkey X, a third trial type was introduced contain-
ing an irrelevant visual stimulus. These trials will be the subject of a
future report, and their presence did not change behavior in the
main task. An initial set of SSDs was selected for each recording ses-
sion based on the animals’ previous behavior. We then manipulated
SSD using an adaptive staircase algorithm that adjusted stopping
difficulty based on performance. When monkeys failed to inhibit
responses, the SSD was decreased by a random step of 1, 2, or 3
increasing the likelihood of success on the next stop trial. Similarly,
when monkeys successfully inhibited an eye movement, the next
SSD was increased by a random step of 1, 2, or 3 decreasing the
future probability of success. This procedure ensured that monkeys
failed to inhibit saccades on �50% of all stop trials but did not expe-
rience predictable changes of SSD. Stop trials comprised 30–50% of
all trials in a given session with a typical session consisting of
several thousand trials.

We adopted the procedures of Logan and Cowan (1984) imple-
mented by Hanes, Patterson, and Schall (1998) to estimate SSRT. In
brief, we estimated this value using one method that assumes that
SSRT is a constant, and another method that assumes that SSRT is a
random variable. Because there is no reason to assume an advan-
tage of either of these methods, we averaged the two estimates
together to obtain final SSRT measures (but see Verbruggen,
Chambers, & Logan, 2013).

2.3. Data acquisition

All data were streamed to a single data acquisition system
(Plexon, Dallas, TX). Time stamps of trial events were recorded at
500 Hz, while eye position was recorded at 1 kHz. Eye position data
were acquired, calibrated, and streamed to the Plexon computer
using the EyeLink 1000 infrared eye-tracking system (SR Research,
Ontario, Canada). This system has an advertised resolution of 0.01�.
Several recent reports (Kimmel, Mammo, & Newsome, 2012;
Otero-Millan et al., 2011) have shown that, with appropriate posi-
tioning, illumination, and calibration, this system can be used to
detect microsaccades with performance approaching that of the
magnetic search coil technique (Robinson, 1963).

2.4. Saccade detection

All saccade analyses were performed in the MATLAB program-
ming environment using custom written code. Eye channels were
first convolved with a 12 ms Gaussian polynomial to remove small
line voltage fluctuations. We used a modified version of the algo-
rithm proposed by Engbert and Kliegl (2003) to detect microsac-
cades. In this method, instantaneous velocity measures are
obtained by calculating the first derivative across a 20 ms window
separately for horizontal and vertical eye positions. This procedure
yields a representation of eye positions in 2 dimensional velocity
space. Values tend to cluster around zero, and outliers signal eye
movements. Trial by trial noise levels are calculated and used to



Table 1
Summary statistics for stop-signal task performance. Values are means ± SD.

Monkey No-stop RT
(ms)

Noncanceled RT
(ms)

p (Error|Stop
trial)

SSRT
(ms)

A 355 ± 44 321 ± 38 0.49 ± 0.02 93 ± 15
F 350 ± 34 315 ± 27 0.47 ± 0.02 120 ± 10
U 399 ± 80 368 ± 73 0.50 ± 0.02 102 ± 18
X 371 ± 43 353 ± 41 0.45 ± 0.03 130 ± 20
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set detection thresholds. Since horizontal and vertical eye
velocities are calculated separately, detection thresholds assume
elliptical shapes in velocity space reflecting horizontal and vertical
noise levels on each trial. Finally, monocular eye movement events
are excluded since microsaccades are binocular. We modified this
procedure in the following ways. Because our task included normal
saccades, we focused on periods of fixational eye movements for
threshold estimation by removing periods when radial eye velocity
exceeded 30�/s. We were unable to judge binocularity with our
monocular eye tracking recordings, so we excluded drift and false
positives using several other common-sense criteria. First, we
excluded post-saccadic drift and eye tracker ringing by removing
eye movements that began less than 50 ms prior to the end of
the preceding eye movement. Respecting the eye tracker limita-
tions, we excluded eye movements with amplitude <0.01�, and
eye movements that strayed outside of the calibrated field of the
central 22� � 22�. (This could occur during an aborted trial or
during the inter-trial interval; we detected all saccades that
occurred from the beginning to the end of the recording session.)
Finally we excluded saccades with excessively short or long dura-
tions. Inspection of color-coded main sequence plots showed that
10–65 ms provided a reasonable range for acceptable saccade
durations. We defined microsaccades as those with amplitude
61� (Martinez-Conde et al., 2009). We obtained qualitatively
identical results when we repeated our analyses using the more
conservative definition of amplitude 6150 (Collewijn & Kowler,
2008). Under the assumption that the smallest microsaccades we
detected were those most likely to be contaminated by artifacts,
we also repeated our analyses using only saccades that were >200 in
amplitude. We obtained identical results using this subset of the data.

2.5. Saccade analysis

We analyzed (1) changes in microsaccade rate in relation to task
events to evaluate predictions of the microsaccade and fixation
hypotheses, (2) the direction of microsaccades relative to target
position as a function of time to study the effects of putative imbal-
anced SC activity on microsaccade direction, and (3) the effect of
microsaccades on subsequent saccade initiation and cancelation
to study possible interactions between producing microsaccades
and canceling normal saccades.

To visualize and analyze microsaccade rate in relation to task
events, we constructed rasters and peri-event time histograms of
microsaccade rate sorted by different trial intervals. We used
standard methods identical to those employed to analyze the num-
ber of action potentials elicited by neurons (Lemon, 1984). To
approximate continuous functions for visualization and analysis
purposes, we convolved each peri-event time histogram with a
Gaussian kernel (r = 10 ms).

To judge the times at which microsaccade rate became signifi-
cantly elevated or depressed relative to baseline levels, we used
a running Wilcoxon rank-sum test. First, we constructed microsac-
cade density functions for each session as described above. To
obtain a baseline rate, the average microsaccade rate was mea-
sured in the 50 ms interval before target presentation. The rate of
microscaccade production was contrasted with this baseline in a
1 ms sliding window advanced in 1 ms increments. Each session
contributed a single observation to each bin for these tests, and
significance was assessed at the p < 0.01 level. The results were
not different if 10 or 50 ms sliding windows were used. This
approach was also used to test for differences between the number
of microsaccades made toward or away from the peripheral target
as a function of time.

To examine more closely the proportion of microsaccades made
toward the target independent of microsaccade rate, we binned
microsaccades made directly toward and opposite the target
(±45�), constructed microsaccade density functions as described
above, and represented them as proportions (Hafed &
Ignashchenkova, 2013; Pastukhov et al., 2013). Because so few
microsaccades were made during SSRT, we collapsed across
subjects for this and the following analyses. To test whether
microsaccades were biased toward or away from the target we
determined the proportion of saccades made toward the target
(±45�) in each session during a given window (±50 ms centered
on SSRT or �100 to 0 ms before target onset). Each session contrib-
uted a single data point to these statistical tests.

To assess the effect of the presence or absence of a pre-target
microsaccade on subsequent RT, we divided no-stop trials (Fig. 1)
into two groups based on whether a microsaccade had been made
during 500 ms preceding target onset. We performed statistical
tests on session median RTs of trials grouped in this way. To assess
the effect of the presence or absence of a pre-target microsaccade
on subsequent SSRT, we similarly grouped all trial types according
to the presence or absence of a pre-target microsaccade. For these
analyses, we matched the number of trials in groups with and
without microsaccades during the pre-target interval. This ensured
that RT and SSRT variability were matched between trials that
contained microsaccades in the pre-target interval and those that
did not

3. Results

3.1. Behavior

To test the predictions of the fixation and microsaccade hypoth-
eses, we recorded data from 4 monkeys while they performed the
saccade stop-signal task (Fig. 1). Table 1 summarizes behavior of
each monkey. RTs and the probability of committing errors show
that monkeys were appropriately sensitive to the stop signal. Mean
noncanceled saccade RTs were less than mean saccade RTs on trials
with no stop signal. Fig. 3 shows normalized inhibition functions
and Weibull distribution fits for each monkey collapsed across all
sessions. Z-scoring inhibition functions normalizes them in time,
allowing them to be compared across recording sessions regardless
of incidental RT differences due to normal fluctuations in arousal
and motivation. These inhibition functions increase monotonically
with SSD; short SSDs yielded near 0% errors while long SSDs
yielded near 100% errors. Error rates on stop signal trials were close
to 50% for all monkeys demonstrating the success of the SSD track-
ing algorithm. Thus, the performance validates the SSRT estimates.
SSRT values fell within the range of those reported previously for
monkeys performing this task. These considerations validate the
use of SSRT as an index of maximally imbalanced activation in SC
based on previous work (Paré & Hanes, 2003).

3.2. Microsaccade dynamics

We used a modified version of Engbert and Kliegl’s (2003) algo-
rithm for saccade detection. The relationship between saccade
velocity, duration, and amplitude, known as the ‘‘main sequence’’
(Bahill, Clark, & Stark, 1975; Zuber & Stark, 1965) is displayed for
each monkey in Fig. 4. Our saccade detection method identified
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eye movements with very small amplitude having the same main
sequence relationship as those with larger amplitude. This finding
replicates well-known observations and demonstrates the robust-
ness of our saccade detection approach.
3.3. Microsaccade rate

We studied microsaccade rate during canceled trials by con-
structing rasters marking the time of each microsaccade and
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deriving density functions collapsed across sessions for each
monkey (Fig. 5).1 Data were aligned on target presentation, on
stop-signal presentation and on average subject SSRT. The raster
plots show the variability in microsaccade rate in relation to trial
events, while the density functions show the trends in microsaccade
rate relative to pre-target levels. We used a running Wilcoxon test to
identify periods of elevated or reduced microsaccade rate relative to
baseline (see Section 2.5). Gray bars beneath microsaccade density
functions show periods of depressed microsaccade rate, while black
bars show periods of elevated microsaccade rate (p < 0.01). Micro-
saccade rate was reduced before and during SSRT when SC activity
is imbalanced across the saccade polar coordinate map.

Following changes in visual stimuli, we observed clear micro-
saccade inhibition. Each monkey made significantly fewer micro-
saccades after target presentation, beginning at very short
latencies2 (Fig. 5 left column gray bars after target onset; latencies
relative to target Monkey A 40 ms, F 65 ms, U 36 ms, X 65 ms).
The rasters of monkeys A and U show distinct microsaccade inhibi-
tion associated with both target and stop-signal presentation. At
shorter SSDs, microsaccade inhibition associated with the target
and the stop-signal overlap. It is less clear if the decrease associated
with the stop-signal is absent for monkeys F and X, or if two periods
of microsaccade inhibition have simply merged into one. Subsequent
to this inhibition and following SSRT, all monkeys showed elevated
microsaccade production beginning �220 ms after the stop-signal
and �50–170 ms after SSRT (Fig. 5 right column black bars after stop
signal and SSRT; latencies relative to stop signal Monkey A 178 ms, F
239 ms, U 276 ms, X 182 ms, latencies relative to SSRT Monkey A
85 ms, F 119 ms, U 174 ms, X 52 ms). The rasters show clearly that
this elevation is synchronized on the stop-signal but occurs well
after SSRT. This late peak in microsaccade production was followed
by reduced microsaccade production throughout the 1600 ms period
until reward delivery (data not shown).

3.4. Microsaccade direction

Based on the observed imbalanced neural activity across the col-
licular map during successfully canceled trials in the stop-signal
task (Paré & Hanes, 2003, Fig. 2), we investigated whether greater
incidence of microsaccades were directed toward the target loca-
tion during SSRT (Hafed, Goffart, & Krauzlis, 2008, 2009). Fig. 6 plots
the rate of microsaccades toward (cyan) and away (magenta) from
the peripheral target (±45�) as a function of time. We used a running
Wilcoxon approach to test for differences between the rate of
saccades directed toward or away from the target within subjects
(see Section 2.5). Black bars beneath microsaccade density func-
tions illustrate periods of significant differences between microsac-
cade directions (p < 0.01). Around 200–300 ms after the target
appeared, all monkeys except for U made significantly more micro-
saccades toward the target location (Fig. 6 left column black bars
after target onset). In contrast, the microsaccades observed after
SSRT (Fig. 6 right column black bars after stop signal and SSRT) were
directed away from the target more often than expected by chance
(A, F, U) or showed no significant directional bias (X). Although
these microsaccades tended to move the eyes away from the target
location, they did not cause the eyes to exit the invisible fixation window.

Because the direction of microsaccades made during SSRT was
obscured by the overall paucity of microsaccades during this
nounced reduction of microsaccades after the stop signal followed by an equally
clear elevation after SSRT.1 In these and following plots, please note differences in ordinate scale of

microsaccade density functions. In particular, all monkeys showed similar baseline
levels of microsaccade production. Monkey U showed the same patterns of
microsaccade modulation as the other monkeys, but peak levels of microsaccade
production were reduced for this monkey compared to the other monkeys. This is
consistent with individual differences noted in humans (Collewijn & Kowler, 2008).

2 Note that the 10 ms Gaussian (non-causal) convolution kernel will make onset
times appear earlier.
period, we pooled the data across monkeys and plotted the propor-
tion of microsaccades made toward the target (±45�) vs. away from
the target (±45�) (Hafed & Ignashchenkova, 2013; Pastukhov et al.,
2013). Across monkeys, there is large variability in the proportion
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of microsaccades made toward the target location following target
onset (Fig. 7, left). But during SSRT, the few microsaccades that
escaped inhibition tended to be directed toward the target location
reflecting the spatial readout of neural activity across the collicular
map on canceled trials reported previously (Fig. 7, black arrow).
During a 100 ms window centered on SSRT, the elevated propor-
tion of microsaccades directed toward the target was marginally
significant (t(90) = 1.98, p = 0.05). For comparison, no bias of
microsaccade direction was observed during a 100 ms window
preceding target onset (t(173) = 0.22, p = 0.83). Polar plots of
microsaccade direction during these time intervals are displayed
in Fig. 8.

3.5. RT and SSRT following microsaccades

Given the well-known postsaccadic refractory period (Carpenter,
1988), we wondered if microsaccades might influence the speed
or accuracy with which task-related saccadic responses were
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executed or inhibited. We first investigated if the presence of
microsaccades early in a trial influences the subsequent RT. To test
this, we divided no stop trials into two groups, those in which
microsaccades were and were not detected during the 500 ms
preceding target onset. We found that median session RTs were
21 ms longer on average when microsaccades preceded target onset
(t(162) = 11.82, p < 0.001; Fig. 9A).

The stop-signal literature shows that responses with longer
latencies are more likely to be inhibited when stop signals occur
(Nelson et al., 2010), and a recent study of microsaccade inhibition
suggests that consecutive saccade motor programs inhibit one
another (Hafed & Ignashchenkova, 2013). Because we found that
pre-target microsaccades lead to longer RTs and because microsac-
cades and later task-related saccades are produced by two motor
programs that might inhibit one another, we predicted that the
presence of microsaccades early in a trial will lead to more efficient
saccade cancelation later in the same trial. To test this prediction,
we first investigated whether SSRT is faster when microsaccades
precede target presentation. SSRT did not differ across sessions
based on the presence or absence of pre-target microsaccades
(t(162) = 0.82, p = 0.41; Fig. 9B). Thus, pre-target microsaccade pro-
duction exhibits behaviorally dissociable effects on subsequent
motor preparation and motor inhibition indexed by RT and SSRT
respectively (Fig. 9C).

We also investigated this issue from the opposite direction by
asking if the presence of a microsaccade early in a given trial is
related to the later probability of successfully canceling normal
saccades. Specifically, we tested if the probability of observing a
microsaccade during the pre-target interval was increased on
successfully canceled trials. Across sessions, microsaccades were
present during the 500 ms pre-target interval on 16.8% of success-
fully canceled trials. Microsaccades were present on 16.2% of
noncanceled trials during the same interval. These percentages
did not differ significantly (Wilcoxon rank sum W = 49,032,
p = 0.36). Thus, even though RTs were longer when they followed
microsaccades, the presence of microsaccades was not directly
related to the success with which saccades were canceled.
4. Discussion

We evaluated predictions of two models of SC function by mea-
suring the rate of microsaccades produced by monkeys as they vol-
untarily cancel eye movements in response to explicit stop signals.
We observed fewer microsaccades (i.e. stable fixation) under
conditions previously shown to have imbalanced activity across
the saccade map in SC (Paré & Hanes, 2003; see also Hanes,
Patterson, & Schall, 1998). This finding is consistent with our pre-
vious discovery of a small but reliable decrease of the extraocular
electromyogram (EMG) before and during SSRT (Godlove et al.,
2011). The few microsaccades that escaped inhibition tended to
be directed toward the target location as expected based on this
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imbalance. These findings are consistent with the fixation hypoth-
esis but are inconsistent with the microsaccade hypothesis. Our
results cannot determine whether population equilibrium in SC
is sufficient to produce fixation, but they demonstrate clearly that
such an equilibrium is not necessary for visual fixation. Therefore,
another mechanism must be invoked to inhibit eye movements
and maintain gaze while activity is not at equilibrium in SC.

We also observed longer task-related saccade RTs when micro-
saccades occurred during the pre-target interval. But the presence
of microsaccades in the pre-target interval did not affect monkeys’
ability to inhibit eye movements as measured by SSRT, and trials
with successfully canceled saccades were no more likely to be pre-
ceded by microsaccades. This behavioral dissociation between RT
and SSRT suggests that separate physiological mechanisms control
saccade preparation and cancelation.

4.1. Microsaccade inhibition during saccade canceling

Anticipating microsaccade data collected during the stop-signal
task, a recent study modeled microsaccade inhibition in terms of
the saccade canceling framework (Hafed & Ignashchenkova,
2013). Microsaccade inhibition refers to the often-reported finding
that an abrupt stimulus change leads to a transient decrease in
microsaccades (Brien et al., 2009; Cui et al., 2009; Engbert &
Kliegl, 2003; Hafed, Lovejoy, & Krauzlis, 2011; Laubrock, Engbert,
& Kliegl, 2005; Valsecchi & Turatto, 2007; reviewed by Rolfs,
Kliegl, & Engbert, 2008). Hafed and Ignashchenkova (2013) pro-
posed that microsaccade inhibition occurs because all peripheral
or central stimuli are treated as implicit stop signals by the oculo-
motor system. Stimuli that appear during the preparation of a sac-
cade are thought to generate competing motor commands that
cancel the ongoing plan. Overall, the pattern of microsaccades that
we observed when monkeys explicitly and voluntarily canceled
eye movements is very similar to that observed under the condi-
tions that were hypothesized to result in microsaccade inhibition
in the previous study lending credence to Hafed and Ignashchenk-
ova’s proposal. But the dissociable effects of microsaccades on
response preparation and response inhibition do not support the
conjecture that these motor programs compete against one
another. In combination with other reports that have studied the
same question (Bissett & Logan, 2013; Camalier et al., 2007;
Ramakrishnan, Sureshbabu, & Murthy, 2012), we consider it unli-
kely that saccade cancelation in the stop-signal task results from
a competition between ocular motor programs per se following
the sudden onset of a stimulus.

In a related vein, one may hypothesize that microsaccade pro-
duction interacts with saccade cancelation. The rationale for this
conjecture may be understood by considering stop-signal experi-
ments carried out in the skeletal motor system. Most stop-signal
investigations involve responses like key presses or joystick deflec-
tions. These movements can be arrested in multiple ways ranging
from preventing contraction of agonist muscles, contracting antag-
onist muscles, or co-contracting both. Contraction of antagonists,
amounting to producing an antisaccade, does not normally occur
in saccade countermanding in our experience. And co-contraction
is not possible for eye movements (Hikosaka et al., 1978;
Scudder, Kaneko, & Fuchs, 2002; Sparks, 2002). However, one
way to prevent task-related saccades may be to produce more
microsaccades. In fact, this could be viewed as the ocular motor
equivalent of a co-contraction strategy. Our data do not, however,
support this conjecture. Very few microsaccades were observed
when subjects canceled normal saccades, and pre-target microsac-
cades were not associated with reduced SSRT or the probability of
successfully canceling saccades during stop trials. Thus generating
microsaccades and canceling normal saccades appear to be
governed by independent and dissociable processes.
4.2. The case for gaze holding fixation neurons

If equilibrium across the SC map is not necessary for visual fix-
ation, then what other sources of saccade inhibition are possible?
Certainly, ominpause neurons (OPNs) in the nucleus raphe
interpositus (nRIP) of the paramedian pontine reticular formation
play a central role (Cullen & Van Horn, 2011; Hafed &
Ignashchenkova, 2013). These neurons fire tonically during fixation
and pause during eye movements (reviewed by Corneil & Munoz,
2014; Goldberg, Eggers, & Gouras, 1991; Krauzlis, 2008; Scudder,
Kaneko, & Fuchs, 2002). Microstimulation of the nRIP prevents
eye movements and can interrupt saccades in mid-flight. OPNs
show a small transient increase in activity following visual stimu-
lation (Dorris, Pare, & Munoz, 1997; Everling et al., 1998; Missal &
Keller, 2002), so these neurons seem well positioned to play a role
in microsaccade inhibition following sudden stimulus onset.

Cells that have historically been considered fixation neurons in
FEF and rostral SC may issue the upstream commands that direct
brainstem OPNs to inhibit eye movements. Fixation neurons dem-
onstrate activity similar to that of brainstem OPNs (Gandhi &
Keller, 1999; Paré & Guitton, 1994; but see Everling et al., 1998).
As in the nRIP, microstimulation in rostral SC can interrupt sac-
cades midflight (Munoz, Waitzman, & Wurtz, 1996; Munoz &
Wurtz, 1993b; Paré & Guitton, 1994). The majority of projections
from SC to nRIP arise from the rostral pole of SC, and these termi-
nate in thick collateral axons suggestive of driving input, whereas
projections to nRIP from more caudal regions terminate in thin
branching axons (Büttner-Ennever et al., 1999; Huerta & Kaas,
1990; Stanton, Goldberg, & Bruce, 1988; Wang et al., 2013). Intra-
cellular recordings confirm that rostral SC neurons form monosyn-
aptic inputs on OPNs, contrasting with the disynaptic projections
from caudal SC to OPNs through brainstem inhibitory burst neu-
rons (Shinoda et al., 2011). Careful double-labeling and immuno-
histochemical experiments also show that some neurons in SC
disynaptically inhibit OPNs through GABAergic projections origi-
nating in the central mesencephalic reticular formation (Wang
et al., 2013). Thus, all of the elements of circuitry necessary for
SC to exert direct control over both saccade execution and inhibi-
tion via the brainstem saccade generator have been confirmed.

Neurons that support visual fixation are a common motif
repeated throughout the oculomotor system. Though monosynap-
tic connections from FEF to functionally defined OPNs have not yet
been identified, fixation neurons in FEF and SC show similar phys-
iological responses (Bizzi, 1968; Hanes, Patterson, & Schall, 1998;
Izawa & Suzuki, 2014; Izawa, Suzuki, & Shinoda, 2009; Paré &
Hanes, 2003). Both movement and fixation neurons in FEF and SC
modulate firing rates on canceled trials in the stop-signal task with
timing sufficient to play a direct role in initiating and canceling
movements (Hanes, Patterson, & Schall, 1998; Paré & Hanes,
2003; Schall & Godlove, 2012a). Additionally, neurons in the sub-
stantia nigra pars reticulate have long been known to contribute
to gaze holding through monosynaptic inhibitory projections to
movement neurons in SC (reviewed by Hikosaka, Takikawa, &
Kawagoe, 2000).

In sum, the bulk of the anatomical and physiological evidence of
which we are aware supports the view that saccade cancelation is
most likely instantiated by a direct gaze holding signal conveyed
by a distributed network including contributions from fixation
neurons in FEF and SC that project directly to the brainstem.

4.3. The case for microsaccade neurons

Other evidence challenges the historical view that individual
neurons in the rostral SC enforce gaze holding per se. Although
often overlooked, the original experiments that characterized some
cells in the rostral SC as fixation neurons also showed that most of
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the neurons interspersed throughout this area also contribute to
saccade initiation (Munoz & Wurtz, 1993b). More recently, several
studies have demonstrated that neurons in rostral SC extend the
saccade polar coordinate map found in caudal SC by encoding
the smallest detectable microsaccades, and that some neurons at
the extreme rostral pole code for ipsilateral microsaccades. Thus,
a complete and partially overlapping map of target position space
is distributed between hemispheres (Hafed, Goffart, & Krauzlis,
2009; Hafed & Krauzlis, 2012). These findings have led to the pro-
posal that gaze holding is achieved indirectly by an equilibrium of
population activity balanced across both superior colliculi
(Engbert, 2012; Goffart, Hafed, & Krauzlis, 2012; Hafed, Goffart, &
Krauzlis, 2009). We have interpreted this view as predicting
increased microsaccade rate on canceled trials during SSRT in the
stop-signal task (Godlove, 2013; see also Rolfs, Kliegl, & Engbert,
2008). But recent work has sought to reconcile the microsaccade
inhibition that occurs concomitant with imbalanced activity in ros-
tral SC following stimulus onset by proposing a secondary saccade
gating mechanism, possibly instantiated by brainstem OPNs
(Hafed & Ignashchenkova, 2013). According to this view, SC activity
must become imbalanced beyond a given threshold to produce a
saccade, and this threshold may be set dynamically at the level
of OPNs. Thus, it may seem that the distinction between fixation
and movement neurons in SC is largely semantic; the activity of
individual neurons can encode either fixation or movement
depending on the population dynamics across the entire system.

4.4. Remaining questions

Based on the current findings and previous studies, we believe
that it is premature to rule out the existence of neurons in rostral
SC that enforce gaze holding directly and irrespective of the popu-
lation activity within SC and the brainstem. In Munoz and Wurtz’s
(1993b) classic recordings in rostral SC, 35% of neurons failed to
increase activity before eye movements in any direction suggesting
that they were unrelated to movement initiation. In the subse-
quent experiments of Hafed, Goffart, and Krauzlis (2009), neurons
were excluded from analysis if they failed to demonstrate build up
activity in the interval before memory-guided saccades. This leaves
open that possibility that fixation neurons may have been inadver-
tently excluded from analysis in the later report. The contrasting
inactivation results from those studies also remain puzzling. In
the former study (Munoz & Wurtz, 1993a) muscimol inactivation
produced

‘‘. . .difficulty maintaining visual fixation and suppressing
unwanted saccades’’
while in the latter study (Hafed, Goffart, & Krauzlis, 2008) mus-
cimol inactivation

‘‘. . .reduces microsaccade rate without otherwise compromising
fixation’’.
4.5. Conclusions

Our results contribute to a better understanding of the neural
mechanisms underlying saccade initiation and inhibition. They
extend our finding that partial muscle contraction does not occur
when saccades are successfully canceled (Godlove et al., 2011).
Furthermore, they demonstrate that gaze holding does not require
equilibrium activity across the SC map and that motor preparation
and inhibition are dissociable processes. We conclude that saccade
inhibition in a stop-signal task is accomplished by explicit motor
inhibition enforcing gaze holding, and that this inhibition is likely
carried out by a distributed network that includes brainstem OPNs
and explicit fixation neurons in rostral SC and in FEF.
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