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homomorphism between computational
and neural mechanisms of evidence
accumulation

Richard P. Heitz and Jeffrey D. Schall

Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology,
Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-781, USA

The stochastic accumulation framework provides a mechanistic, quantitative

account of perceptual decision-making and how task performance changes

with experimental manipulations. Importantly, it provides an elegant account

of the speed–accuracy trade-off (SAT), which has long been the litmus test for

decision models, and also mimics the activity of single neurons in several key

respects. Recently, we developed a paradigm whereby macaque monkeys

trade speed for accuracy on cue during visual search task. Single-unit activity

in frontal eye field (FEF) was not homomorphic with the architecture of

models, demonstrating that stochastic accumulators are an incomplete

description of neural activity under SAT. This paper summarizes and extends

this work, further demonstrating that the SAT leads to extensive, widespread

changes in brain activity never before predicted. We will begin by reviewing

our recently published work that establishes how spiking activity in FEF

accomplishes SAT. Next, we provide two important extensions of this work.

First, we report a new chronometric analysis suggesting that increases in per-

ceptual gain with speed stress are evident in FEF synaptic input, implicating

afferent sensory-processing sources. Second, we report a new analysis demon-

strating selective influence of SAT on frequency coupling between FEF

neurons and local field potentials. None of these observations correspond to

the mechanics of current accumulator models.
1. The stochastic accumulator framework
The act of choice is a commitment to one course of action instead of other potential

actions. A decision process whereby available evidence for the alternatives

is weighed guides the most effective choices. Decades of research—using behav-

ioural analysis and computational modelling of manual or saccadic choice

reaction times and accuracy rates—has led to the broad consensus that the decision

process can be understood as a stochastic accumulation of evidence [1–4]. Sensory

evidence sampled from the environment for each alternative is accumulated,

and a choice is enacted when the first accumulation process reaches some criterion.

Although there are several variants on this framework, all have several aspects in

common: a baseline or starting level of each accumulator, which can be affected

by biases or expectations, an accumulation rate determined by the strength or

reliability of the evidence provided in the perceptual input and a threshold level

of accumulation mapped to a particular response [5] (figure 1).

With just a few parameters, stochastic accumulator models account for a

large proportion of behavioural variability—predicting the shapes of reaction

time distributions and error rates, while simultaneously explaining how those

distributions and error rates change as a function of various experimental

manipulations. Of particular importance is the speed–accuracy trade-off (SAT)

[6], a universal and pervasive phenomenon that must be accommodated by any
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Figure 1. Basic model framework. Accumulators begin each trial with some
pre-set level of activity, A. Following stimulus onset, accumulators begin to
rise towards a threshold level of activity that acts as a decision trigger, b.
When the threshold is lowered, responses are generally faster, but more
prone to error. When raised, responses tend to be slower, but have the benefit
of more samples of information. The rate at which information accumulates
depends on the quality of the sensory evidence; when stimuli are identical,
this drift rate, v should be constant on average, though intra- and inter-trial
variability are allowed in several model variations. Here and throughout this
work, green traces correspond to a speed stress (fast) condition, and red
traces correspond to an accuracy stress (accurate) condition.
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tenable decision model. According to stochastic accumula-

tor models, SAT is achieved through a modification of the

accumulation threshold: when set lower, response time (RT)

is shortened due to the smaller excursion accumulators must

traverse to terminate the decision process. However, this also

reduces the amount of noise that can be averaged out of the

accumulation process, thereby also increasing the error rate.

The reverse holds true for observers placed under accuracy

stress. One should appreciate that the model does not simply

predict the difference in mean RT and error rate between

speed and accuracy conditions, however. The elegance of the

model is borne out in the fact that the shapes of participants’

RT distributions change in specific ways, and stochastic accu-

mulator models predict these shapes precisely [1,2,5,7–15].

Given the success of the framework, it is natural to investigate

how the brain accomplishes these perceptual decisions. Will

the form of neural processes parallel the form of the accumula-

tors? Here, we review our recent work in non-human primates,

suggesting that neural activity differs substantially in several

ways from the architecture of current accumulator models.

Next, we present several novel analyses that further substantiate

our conclusion that psychological accumulator models do not

capture the diverse reality of neural activity during decision for-

mation. These include chronometric analyses of single units,

local field potentials (LFPs) and electroencephalogram (EEG),

as well as the results of a time-frequency, spike-field coherence

(SFC) analysis.
2. Brain regions and cell classes
The relationship between stochastic accumulation and neural

activity is most well characterized in the macaque oculomotor

system using tasks that require monkeys to make saccadic

eye movements to indicate choice [16–20] (but see [21,22]).

According to the framework, saccades occur once accumu-

lated sensory evidence reaches a decision threshold. In a

sense, the decision process can be likened to a transformation

of sensory information into motor execution. It should thus

not be surprising that the brain regions critical for saccadic
decisions are also those identified with sensorimotor inte-

gration, including the frontal eye field (FEF), superior

colliculus (SC) and lateral intraparietal area (LIP). These

structures are composed of many functionally distinct cell

classes [23–25]. The heterogeneity of neural activity during

decision-making tasks has been highlighted in many recent

studies [23,26–29]. Here, we will focus on two. Pre-saccadic

movement neurons exhibit weak or no response to visual

stimulation, but increase their firing rate in the period prior

to a saccade (figure 2a). In comparison, visual neurons exhibit

a vigorous burst of activity following the presentation of a

stimulus falling within its receptive field (RF), but have no

pre-saccadic modulation. As illustrated in figure 2b, visual

neurons exhibit an initially non-selective visual response

that evolves to discriminate target items (solid lines) from

distractor items (dashed lines) presented in their RF.

Pre-saccadic movement neurons demonstrate several prop-

erties that suggest they embody the stochastic accumulation

process. First, models predict that the accumulation rate

should be proportional to the strength of sensory evidence.

For instance, manipulations that alter the visibility of a critical

stimulus should be best accounted for by a model allowing

the rate parameter to vary across conditions. This has been vali-

dated in quantitative fits to human behaviour: manipulations

that affect the strength or quality of perceptual information

are best captured by models that allow accumulation rate to

vary between conditions [10,30,31]. Similarly, the rate at

which pre-saccadic neural activity in FEF [17,18,29,32], LIP

[16,33,34] and SC [19,35] builds up prior to saccade varies

monotonically with the strength of sensory evidence. Second,

accumulator models suggest that all else being equal, variability

in RT is due to the amount of time required for accumulation to

reach a fixed threshold. In other words, accumulator models

can capture wide variability in RT without the need for a vari-

able threshold. This remains true even when conditions differ

in difficulty, such as with a visual search1 set size manipulation

[36,37]. This, too, is borne out in the pre-saccadic activity

of movement neurons: for several types of tasks, the level

of neural activity at decision is invariant over RT quantiles

and task manipulations [16–19], particularly when monkeys

cannot predict the nature of the upcoming trial. A small

number of studies have shown changing neural threshold

when task conditions are presented in blocks or cued trial-

to-trial [38,39]. While less specific than single-unit neuro-

physiology, it is noteworthy that the covariation between

model parameter and neural activity has been verified on

the larger scale of brain networks in humans, using func-

tional brain imaging [40–45], magnetoencephalography [46]

and EEG [47,48] (for a review, see Bogacz et al. [4]).

Still more evidence is gleaned from countermanding tasks

that require subjects to occasionally cancel a prepared sac-

cade. Movement neurons in both SC and FEF are observed

to initially increase but then decline in activity following a

stop or change signal [27,49,50]. Crucially, whether or not

monkeys can cancel a saccade depends on whether or not a

threshold discharge rate was reached [51,52] (for a review,

see [53,54]).

The identification of movement neurons with stochastic

accumulators also follows from anatomical considerations.

Because stochastic accumulators trigger overt choice at the

moment the accumulation reaches threshold, so too must

accumulator neurons trigger movement at some physiologi-

cal threshold. Movement neurons are well suited for this,

http://rstb.royalsocietypublishing.org/
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Figure 2. (a) Representative FEF movement neuron. The cell demonstrates no visual response, and remains at baseline for eye movements directed away from the
RF. In comparison, neural activity gradually increases before eye movements into the RF. (b) Representative FEF visual neuron. The cell is initially non-selective, but
evolves to discriminate target from distractor stimuli. The time at which the neuron statistically discriminates target from distractor items placed in its RF (the target
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having direct projections to brainstem nuclei responsible for

initiating eye movements [55–59].

In comparison, when tested under conditions of visual

search, visually responsive neurons in FEF, SC and LIP rep-

resent the salience of stimuli presented in their RF through a

modulation of firing rate [60–67] (but see [68,69], cf. [70]).

Here, salience refers to both the physical conspicuousness

of an item, such as luminance, contrast or status as a feature

singleton (bottom-up salience), as well as its behavioural

relevance determined by the requirements of the task

(top-down salience). The union of top-down and bottom-up

influences provides a viable mechanism for segregation of

the visual field—a process that is a central role in several

behavioural models of visual search [71–74]. The evolution

of the salience map can be quantified by comparing neural

activity on trials when a target fell in the RF versus trials in

which a distractor appeared in the RF. The time at which

neural activity statistically discriminates target from non-

target stimuli (the target selection time, TST) as well as the

magnitude of discrimination has behavioural consequences.

For instance, slower (faster) RTs are associated with a later

(earlier) differentiation of target and non-target stimuli [75].

Increasing the number of competitor stimuli both delays

and reduces the difference between target and non-target

stimuli [76,77], and errors tend to result when the salience

map favours distractor over target stimuli [78,79]. Thus, the

salience map represented by visual neurons may be the per-

ceptual evidence that is input to stochastic accumulators

leading to guided action.
3. Gated accumulator model
The above suggests a straightforward model to explain visual

search: visual neurons represent the salience evidence that is

accumulated by movement neurons, and saccadic decisions

occur when movement neuron activity reaches a fixed

threshold. To test this, we used a neurally constrained model-

ling approach [37]. The model, depicted in figure 3, takes as

input spike trains recorded from FEF visual neurons2 and pro-

duces as output predicted behaviour (RT and accuracy rate)

as well as several key properties of FEF movement neurons.

Specifically, the time-course of accumulation suggested by
the best-fitting model closely matched the dynamics of real

neural activity exhibited by FEF movement cells. The success

of this model (and a subsequent extension [80]), constrained

by neural data, indicates that the general framework is

viable. To summarize, data stemming from computational

modelling, behavioural experiments and single-unit electro-

physiology consistently agree that stochastic accumulator

models are more than a convenient approximation, but are

realized in the neural mechanisms responsible for perceptual

decision-making.
4. Speed – accuracy trade-off with non-human
primates

One gap in the above is that changes in SAT have never

been observed in non-human species. As a consequence, the

linchpin observation of decreasing threshold with increasing

speed stress has not been validated in single-unit responses.

The identification of FEF movement neurons with stochastic

accumulators leads to an exceptionally clear prediction: the

threshold neural activity—the spiking output in the moments

prior to saccade—should vary with SAT condition, such that

neural threshold is highest under accuracy stress and lowest

under speed stress, consistent with the consensus derived

from behavioural and modelling studies described above. To

test this hypothesis directly, we trained monkeys to alter SAT

settings on cue [81] and recorded single neuron activity from

movement and visual neurons in FEF.

Monkeys performed visual search for a target item presen-

ted among seven distractor items (figure 4a). SAT conditions

( fast, neutral3 and accurate) were presented in short blocks of

10–20 trials each, cued only by the colour of the fixation

point. The speed condition placed more emphasis on fast

responding than correct responding through several reward

and punishment (timeout) contingencies. Monkeys earned

juice reward for responding correctly, but only if their RT

met a response deadline predetermined through pilot testing

(see [81]). If monkeys met the response deadline, but chose

incorrectly, they were not rewarded but were also not pena-

lized. Responses of any type that did not meet the deadline

were followed by a long 4 s timeout. The converse was true

http://rstb.royalsocietypublishing.org/
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for the accuracy condition: monkeys were rewarded for slow,

correct responses, but were given timeout if their response

was incorrect. We also included a neutral condition that

had no response deadline. The use of response deadlines to

control RT is highly effective and follows a long tradition in

human SAT research [6,82]. We observed that this paradigm

was equally effective in monkeys, who produced a classic

SAT, characterized by decreasing RT and increasing error

rate with speed emphasis (figure 4b). Just as importantly,

monkeys adapted their behaviour instantaneously upon pres-

entation of a new SAT cue, demonstrating a voluntary and

flexible change of state.

The critical neural data were unambiguous: SAT-related

changes in neural activity were not homomorphic with accu-

mulator model architecture. Quite to the contrary, threshold

neural activity varied with speed stress (figure 5a), but in

the direction opposite to predictions (higher threshold for
speed stress than accuracy stress). At the same time, threshold

remained invariant with RT within conditions, suggesting

that threshold variability was yoked not to RT per se, but to

a cognitive state elicited by SAT cues. Moreover, SAT instruc-

tions affected not just one aspect (threshold) of neural

activity, but also perceptual processes as well, as evidenced

by changes in visually responsive neurons (figure 5b). Specifi-

cally, speed stress led to increases in baseline neural activity,

the magnitude of visual responses to otherwise identical

stimuli, and also the time required for visual neurons to

select target from distractor items placed in its RF.
5. The integrated accumulator model
We found that SAT is accomplished through a multitude of

adjustments in multiple processing stages. Despite these

http://rstb.royalsocietypublishing.org/
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findings showing that conventional accumulator models do

not map gracefully onto neural mechanisms, we thought it

hasty to dismiss the stochastic accumulator framework

altogether. Thus, we sought to reconcile these neural findings

with the accumulator model framework based on one con-

straint of a performance parameter that did not vary with

SAT in our task—the velocity and amplitude of the saccades

produced under different speed–accuracy instructions were

invariant (figure 6).

Saccade brainstem physiology operates like a trigger: the

eyes move precisely when omnipause neurons receive

threshold inhibition [83] from afferents originating in FEF,

SC and elsewhere4 [55–58]. The metrics of the resulting sac-

cade—its velocity and amplitude—are a precise function of

the level of omnipause hyperpolarization received [84]. The

fact that saccade velocity did not vary with SAT instruction

requires that brainstem recipients of FEF output must reach

an invariant state at saccade onset. Saccades are ballistic

movements, such as the flight of an arrow. Equivalent dis-

tance and velocity of an arrow requires equivalent final

tension in the bow at release. However, the bow can be

drawn quickly or slowly. Therefore, we reasoned that the

threshold neural activity observed in FEF (and we conjecture

throughout the pre-saccadic circuit including the SC) must be

constrained by the brainstem nuclei that directly receive the

accumulating premotor signal.

We believe this appreciation of the final motor circuitry

provides an important insight into why the FEF movement

neuron activity varies as it does under SAT. The variation

in movement neuron threshold with SAT is translated to a

fixed threshold in the brainstem. This insight provided the

foundation for a reconciliation of our findings with the sto-

chastic accumulator framework by assuming that: (i) FEF

movement neuron output is itself integrated in the brainstem

(we conjecture that this integration is implicit on the mem-

branes of omnipause neurons); (ii) saccades are produced

when this integrated activity reaches a fixed threshold

(otherwise saccade velocity and amplitude could not be

equivalent); and (iii) the input varies as a function of SAT

(the bow string can be drawn slowly or quickly to the desired

amount of tension). Our model, known as the integrated accu-
mulator provided fits to behaviour that were comparable with

the standard accumulator models and it also replicated key
features of the neurophysiology [81]. Validation of this

model will require recordings from the brainstem during

SAT; this is the focus of ongoing work.
6. Speed – accuracy trade-off leads to
system-wide modulations

A strength of the integrated accumulator model is the appeal

to a multi-stage accumulation process. The standard stochas-

tic accumulator model considers only the deliberative stage of

decision, making few assumptions about the nature and rep-

resentation of the perceptual input, and no provision for any

changes in the mechanisms following decision threshold cross-

ing that are required to engage eye movements (or any other

body movement). It is equally unclear exactly where stochas-

tic accumulation occurs, and at what level the threshold is

implemented (is each neuron an equally weighted accumula-

tor, or is there a consensus within a given area?) [85]. In what

follows, we highlight the argument for a multi-stage accumu-

lation process. Specifically, we will show that that SAT affects

the processing of visual stimuli and that this modulation is

influenced by sources outside of FEF. This is problematic

for any model that localizes stochastic accumulation to a

single stage or brain area.

http://rstb.royalsocietypublishing.org/
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We conducted a chronometric analysis of FEF spikes and

LFP5, and also the non-human primate N2pc [79,87,88], an

attention-sensitive, target-selective EEG component [89–92]

widely considered to reflect activity in extrastriate visual

cortex such as V4 [93,94]. We confirmed previous work in

showing that: (i) the initial visual response occurs earlier in

FEF LFP than in single-unit responses, owing to its reflection

of dendritic activity and hence input to an area [95,96]; but

(ii) FEF single neurons become selective for context-specific

stimuli (the TST) earlier than LFP [87,88,95], suggesting that

FEF computes selective responses from initially unselective

input; and (iii) target selectivity emerges earliest in single

units and latest in N2pc, with LFP becoming selective at

intermediate times. This is consistent with other work

suggesting that target selectivity computed by FEF neurons,

from initially unselective inputs, is later transmitted to extra-

striate cortex [97]. Finally, we confirmed that, at least for FEF

single neurons, (iv) TSTs for otherwise identical stimuli are

earlier under speed stress than under accuracy stress.

We were specifically interested in the moment in time

when neural activity significantly increased from baseline

(onset time)6, the moment in time when neural activity discri-

minated the fast and accurate conditions (SAT discrimination
time), and the moment in time when neural activity discrimi-

nated target from distractor items placed in its RF (TST).

In a new analysis, we computed these metrics in 144 neur-

ons, 224 LFP recordings, and 33 N2pc recordings7 from two

monkeys performing the SAT visual search task, all recorded

simultaneously. Onset times were computed using ms-by-ms

non-parametric t-tests, testing against 0 after baseline correc-

tion 2100 to 0 ms prior to target onset. The same procedure

was followed for the SAT discrimination time, testing the

fast condition against the accurate condition. Similarly, we

compared trials when target items appeared in the RF

versus when distractor items fell there to compute the TST

[88]. Values were computed and tested statistically using

a jack-knife bootstrapping procedure [99]. All statistical

comparisons were computed at the population level.

The results were largely consistent with previous work

(figure 7). Onset times were slightly but consistently earlier

for LFPs (41 ms) than for single neurons (46 ms). The onset

time for N2pc was more variable, but similar on average to

single neurons (45 ms). The visual onset time did not differ

significantly between SAT conditions, for any signal.

Next, we computed the single unit, LFP and N2pc TSTs.

For each signal, TSTs were significantly earlier for the fast

when compared with accurate condition (single neurons:

143 versus 162 ms; LFP: 156 versus 167 ms, N2pc: 169

versus 177 ms). It is also clear that for each condition, the

linear ordering was such that single units selected earliest,

and N2pc selected latest [88].

Finally, and most importantly, we calculated the SAT

encoding time: the moment at which the magnitude of

neural activity discriminated the fast from accurate conditions.

We observed that the visual response was magnified for the

fast when compared with accurate condition earliest in the

LFP (45 ms), followed by single neurons (79 ms) and N2pc

(110 ms; blue lines). To emphasize this point, we plotted

mean activity in the window 50–55 ms post-array onset for

each signal type; this was only significant for LFP voltage

(expressed as a larger negativity in the fast condition; figure

7, right-hand panels). These results suggest when monkeys

were faced with speed stress, the system was pre-configured
to amplify incoming visual signals. Thus, the amplification of

perceptual gain is not local to FEF as it is evident in FEF

input before spiking output. It is not puzzling that the fast

and accurate conditions can be discriminated very early; mon-

keys were aware of which condition was to be presented by the

colour of a fixation point presented 750–3000 ms prior to the

critical stimulus. It is puzzling, though, that SAT condition

affected the visual response so much earlier in the LFP when

compared with spikes and the N2pc. This result demonstrates

that SAT is accomplished by adaptations occurring in multiple

brain regions for both visual processing and saccade planning.

An important lesson to be learned from this is that if stochastic

accumulator models are to be mapped onto brain processes,

they should not be identified with one stage, one brain

region, or one cell class.
7. Spike-field coherence correlates of
speed – accuracy trade-off

Interest has increased in the role of SFC in mediating percep-

tual, cognitive and motor processes. Briefly, SFC emerges

when neurons become entrained with the surrounding net-

work in particular frequency bands over time. A body of

evidence suggests that disparate brain regions may communi-

cate not through spike counts per se, but rather through the

timing of individual spikes and how those spikes are coupled

to the greater surrounding network(s), also oscillating at a par-

ticular frequency [100,101]. Particularly important is that of

oscillations in the gamma-range, approximately 30–50 Hz, or

even higher. Several studies have demonstrated that gamma-

band coherence is selectively enhanced when attention is

directed into a shared RF [97,102–104]. The SFC for two signals

is computed using a variety of methods, most of which involve

two steps: transforming each continuous signal into the fre-

quency domain while retaining temporal information using

windowed Fourier transform8, and second, computing a nor-

malized correlation between these power spectra over time

[105]. Coherence magnitude ranges from 0 to 1 and increases

to the extent that signals demonstrate phase and amplitude

locking over trials.

Given the strong evidence for increases in gamma-band

coherence with attention, we wondered how SFC varied

with SAT instruction given the dramatic behavioural and

neural changes between conditions. We hypothesized that

gamma-band coherence would be increased in the accurate

condition relative to the fast condition, because the former

required more deliberate responses, whereas the latter

simply stressed speed. To examine this, we computed the

SFC9 between 353 simultaneously recorded FEF single units

and LFPs.

The evidence was consistent with the hypothesis. Figure 8

quantifies the relationship for an exemplar session by sub-

tracting coherence magnitude in the accurate condition

from the fast condition. As is evident, coherence in the accu-

racy condition is significantly increased in the gamma band,

centred at about 40 Hz (areas enclosed in white are signifi-

cant at the p , 0.05 level). This elevated SFC was evident

across the population of 353 neuron–LFP pairs (figure 9).

This is particularly interesting, given that by most metrics,

the fast condition elicited more spiking events and greater

LFP amplitude. Still, on this finer scale, we observe that when

monkeys were instructed to make very accurate decisions,

http://rstb.royalsocietypublishing.org/
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there was an increase in gamma-band coherence between

approximately 30 and 40 Hz.

Evident also in figures 8 and 9 is a marked increase in

low-frequency coherence for the fast condition over the accu-

rate condition. At first blush, this seems to be an uninteresting

reflection of the overall greater magnitude of responses
discussed earlier. However, this is not the case, as coherence

requires trial-by-trial, moment-by-moment phase and ampli-

tude locking. At least in early visual cortex, increases in low-

frequency power have been associated with increased

response gain for relevant stimuli and speeded reaction

times, just as witnessed here [107,108].

http://rstb.royalsocietypublishing.org/
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8. Conclusions
The stochastic accumulator framework continues to inspire

and constrain theoretical and empirical work on perceptual

decision-making. We have summarized evidence showing

that while stochastic accumulator models provide efficient

quantitative explanations of overt behaviour, the mapping

between model parameters and neural processes is much less

clear than others and we had originally imagined. The various

analyses reported here highlight the fact that the SAT is a

multifaceted phenomenon, accomplished by multiple, distinct

modulations of neurons instantiating different stages of proces-

sing. Thus, the formal model explanation of SAT by a single

parameter cannot be mapped meaningfully onto brain pro-

cesses. For that matter, no psychological accumulator model

includes the varietyof effects we report here involving discharge

rates, field potentials and coherence. That said, we wish to stress

that our objective is not to invalidate the conventional accu-

mulator model. To the contrary, the stochastic accumulator

framework continues to provide a sophisticated, formal account

of behaviour in many tasks. Furthermore, we have demonstrated

that an extension of the framework that incorporates multiple

stages of accumulation can reconcile model and neural pro-

cesses. However, the data used to formulate and constrain the

integrated accumulator model were obtained from just one

node in a complex network. FEF, while a critical node in the

saccade decision circuit, is extensively interconnected with mul-

tiple afferent and efferent cortical and subcortical structures.

A more complete understanding of SAT, and how the brain

accomplishes perceptual decisions generally, awaits further data.
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Endnotes
1A visual search task requires observers to locate some target item pre-
sented among non-target distractor items. The stimuli commonly
consist of simple or complex shapes or colours, and trials can vary
in the number of and characteristics of distractors present. Observers
respond in a variety of ways, commonly by button press (item is pre-
sent or not present) or by eye movement (look at and maintain
fixation on the one target item).
2The activity of visual-movement neurons was also sufficient for
the model.
3Here, we will present only the fast and accurate conditions. For
details on the neutral condition, see Heitz & Schall [81].
4It is known that the influence of movement neurons on omnipause
neurons is ultimately inhibitory, though the details of this microcircuit
are not understood [83].
5The local field potential (LFP) reflects the synchronous activity of neur-
ons approximately 100–250 mm near the recording electrode [86].
6The reader should note that for many neurons, baseline firing rate was
significantly greater in the fast condition than in the accurate condition,
as detailed in Heitz & Schall [81]. This effect persisted across blocks of
trials and itself indicates a persistent cognitive state change. Here, we
were interested in effects apart from the baseline shift; therefore,
although it is not standard practice, we baseline-corrected spike density
functions in the same manner as the LFP and EEG.
7During each experimental session, eight independent electrodes were
lowered into FEF; each electrode provided one LFP and some number
of single units, typically 1–2 (and occasionally 0). Meanwhile, monkeys
were outfitted with several EEG electrodes. Electrodes T5 and T6 in the
10–20 system [98] were used to compute the N2pc and averaged).
Unfortunately, electrode T5 was unusable for one monkey and was
not included (for details, see Heitz et al. [79]).
8We used a 200 ms Hanning window.
9We included only LFPs and single units if they were recorded on sep-
arate electrodes to ensure that LFPs were not contaminated by spectral
leakage. Statistical significance between the fast and accurate con-
ditions was evaluated using a jack-knife bootstrapping technique [106].
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