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The interactive race model of saccadic countermanding assumes that response inhibition results from an
interaction between a go unit, identified with gaze-shifting neurons, and a stop unit, identified with
gaze-holding neurons, in which activation of the stop unit inhibits the growth of activation in the go unit
to prevent it from reaching threshold. The interactive race model accounts for behavioral data and
predicts physiological data in monkeys performing the stop-signal task. We propose an alternative model
that assumes that response inhibition results from blocking the input to the go unit. We show that the
blocked-input model accounts for behavioral data as accurately as the original interactive race model and
predicts aspects of the physiological data more accurately. We extend the models to address the
steady-state fixation period before the go stimulus is presented and find that the blocked-input model fits
better than the interactive race model. We consider a model in which fixation activity is boosted when
a stop signal occurs and find that it fits as well as the blocked input model but predicts very high
steady-state fixation activity after the response is inhibited. We discuss the alternative linking proposi-
tions that connect computational models to neural mechanisms, the lessons to be learned from model
mimicry, and generalization from countermanding saccades to countermanding other kinds of responses.
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The ability to inhibit thought and action is an important com-
ponent of cognitive control. It improves over childhood and de-
clines in old age. It is strong in healthy adults and weak in people
with psychiatric and neurological disorders. It varies between
individuals with different personalities and cognitive abilities. It is
often studied in the stop-signal paradigm, in which people are
asked to inhibit a response they are about to execute (for reviews,
see Logan, 1994; Verbruggen & Logan, 2008). The inhibitory
process in the stop-signal paradigm is not directly observable, so it
must be assessed by applying a mathematical model to the data.
For 25 years stop-signal behavior was explained in terms of Logan

and Cowan’s (1984) independent race model, which assumes that
stop-signal performance depends on the outcome of a race between
a go process that produces an overt response and a stop process
that inhibits it. The independent race model provides estimates of
the latency of the unobservable response to the stop signal (stop-
signal response time or SSRT), which is the primary measure of
inhibitory control in stop-signal studies of development, aging,
psychopathology, and neuropathology (also see Logan, Van Zandt,
Verbruggen, & Wagenmakers, 2014). The independent race model
addresses whether and when a response is inhibited but does not
address how the response is inhibited. It describes the processes
that run in the race; it does not describe what happens at the end
of the race when the stop process wins. Recently, Boucher, Palm-
eri, Logan, and Schall (2007) proposed an interactive race model
that describes what happens when the stop process wins: They
assumed that a stop unit inhibits the growth of activation in a go
unit to prevent it from reaching a threshold that triggers the
response (also see Lo, Boucher, Paré, Schall, & Wang, 2009;
Ramakrishnan, Sureshbabu, & Murthy, 2012; Wong-Lin, Eckhoff,
Holmes, & Cohen, 2010; cf. Salinas & Stanford, 2013). Boucher et
al. showed that the interactive race model accounts for behavior as
well as the independent race model and goes beyond it to predict
important properties of the underlying neurophysiology.

The purpose of this article is to evaluate alternatives to the
interactive race model that provide different explanations of how
responses are stopped. We focus on blocked-input models that stop
responses by blocking the input to the go unit instead of inhibiting
the growth of activation in the go unit (Band & van Boxtel, 1999;
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Logan, 1983; Logan & Cowan, 1984). Blocked-input models as-
sume that actions can be stopped by disabling the mapping be-
tween the perceptual system and the motor system (Logan, 1983)
or by deleting the goals that enable responding (Logan & Cowan,
1984). We show that the blocked-input model fits behavioral data
as well as the interactive race model and predicts aspects of
neurophysiological data more accurately.

We extend both models to account for steady-state activity in
the fixation period before the trial begins to provide stronger
constraints on the model parameters. Both of the new models
predict neurophysiological data more accurately, and the blocked-
input model fits the behavioral data better than the interactive race
model. We extend the interactive race model by adding a top-down
boost in fixation activity, and find that this boosted fixation model
fits behavior as well as the blocked input model but predicts very
high steady-state fixation activity after successful inhibition. Our
results call for a revision of the linking propositions Boucher et al.
(2007) proposed to connect the interactive race model to a network
of mutually inhibitory gaze-holding and gaze-shifting neurons in
frontal eye fields and superior colliculus, which identified the stop
process exclusively with inhibition from gaze-holding neurons.
The blocked-input and boosted fixation models provide new per-
spectives on the neural instantiation of the stop processes, showing
that a stop process located outside the gaze control network tips the
balance between gaze-holding and gaze-shifting neurons to stop a
response.

The Stop-Signal Paradigm

The stop-signal paradigm engages subjects in a go task whose
purpose is to produce overt responses to a go stimulus on a
majority of trials. The go stimulus is usually visual and the go
response is usually manual, but the same patterns of behavior are
observed with other go stimuli and other go responses, including
saccadic eye movements (e.g., Hanes & Schall, 1995; Logan &
Irwin, 2000), wrist and arm movements (e.g., Brunamonti, Fer-
raina, & Paré, 2012; Scangos & Stuphorn, 2010), head movements
(Corneil & Elsley, 2005), and speech (e.g., Xue, Aron, & Poldrack,
2008). Occasionally, a stop signal is presented, which instructs
subjects to inhibit the go response on that trial. The stop signal is
usually auditory, but the same patterns of results are observed with
visual (e.g., Lappin & Eriksen, 1966) and tactile stop signals (e.g.,
Åkerfelt, Colonius, & Diederich, 2006). There are two possible

outcomes on stop-signal trials: Subjects may inhibit the go re-
sponse, producing what is called a signal-inhibit or canceled trial,
or they may fail to inhibit the go response, producing what is called
a signal-respond or noncanceled trial with a response time (reac-
tion time, RT) that is called signal-respond RT. The probability of
inhibiting the go response given a stop signal (p(inhibit)) or the
complementary probability of responding (p(respond|signal)) and
signal-respond RT are the major dependent variables. The most
important independent variable is the delay between the onset of
the go stimulus and the onset of the stop signal, which is called
stop-signal delay (SSD). When SSD is short, subjects often suc-
ceed at inhibiting; when SSD is long, subjects often fail to inhibit.
The plot of p(inhibit) or p(respond|signal) against stop-signal delay
is called the inhibition function, and a major goal of models of the
stop-signal paradigm is to explain the shape of the inhibition
function.

Stop-signal delay also affects signal-respond RT. Signal-
respond RT is short when SSD is short and long when SSD is long.
It is typically shorter than RT on trials on which no stop signal is
presented (called no-stop-signal trials), approaching no-stop-
signal RT as SSD increases. Cumulative distributions of signal-
respond RTs typically begin at the same point as cumulative
distributions of no-stop-signal RTs but reach asymptote at pro-
gressively earlier times the shorter the SSD. Another major goal of
models of the stop-signal paradigm is to explain these relations
between signal-respond RT and no-stop-signal RT and the way
they change with SSD.

Figure 1 presents behavioral data from a seminal stop signal
experiment by Hanes, Patterson, and Schall (1998), in which
behavioral and neural data were collected on the same trials from
monkeys performing a saccadic stop signal task. Boucher et al.
(2007) fit models to these data, and so do we. On each trial,
monkeys were presented with a central fixation point. At a variable
time after they fixed their eyes on this point, it extinguished and
was replaced by a peripheral target, which was a point of the same
size that fell in the receptive field of the cell they were recording
from or on the opposite side of the display. Monkeys were re-
warded for executing a saccade to the target as quickly as possible.
On a minority of trials, the fixation point was reilluminated as a
stop signal, and monkeys were rewarded for inhibiting their sac-
cades on those trials. The monkeys performed this task well,
producing behavioral data that were typical of the stop-signal

Figure 1. Inhibition functions (first and third panels) and the cumulative distribution functions for no-signal
and signal-respond trials (second and fourth panels) for monkeys C and A. No-signal RTs are plotted in black.
Signal-respond RTs are plotted in gray with lighter shades for shorter stop signal delays (SSD).
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paradigm. Their inhibition functions, plotted in Figure 1, showed
the characteristic increase in p(respond|signal) with SSD. Their
signal-respond RTs were faster than their no-stop-signal RTs and
the distributions, also plotted in Figure 1, were ordered appropri-
ately according to SSD.

The Independent Race Model

Logan and Cowan (1984) developed the independent race model
to account for the major results in the stop-signal paradigm and to
provide methods for estimating SSRT. The independent race
model assumes that a go process races with a stop process on
stop-signal trials and performance is determined by the winner of
the race. The stop process wins the race if SSRT � SSD � go RT;
the response is inhibited and a signal-inhibit trial occurs. The go
process wins the race if go RT � SSRT � SSD; the response is
executed and a signal-respond trial occurs. Go RT and SSRT are
assumed to be independent random variables, so the outcome of
the race is stochastic. Increasing SSD handicaps the race in favor
of the go process, so the stop process wins less often. Thus,
p(inhibit) decreases and p(respond|signal) increases as SSD in-
creases, producing the inhibition function. The stochastic nature of
the race also explains the relation between signal-respond RT and
no-stop-signal RT and how it changes with SSD. When SSD is
short, only the fastest go RTs are faster than SSRT � SSD, so
signal-respond RT is very short, reflecting the lower tail of the
go-RT distribution. As SSD increases, more go RTs are fast
enough to win the race, so signal-respond RT increases. If SSD is
long enough, all go RTs will win the race and signal-respond RT
will approach no-stop-signal RT.

The independent race model provides several related methods
for estimating the unobserved SSRT from the observed
p(respond|signal), the observed signal-respond RT distribution,
and the observed no-stop-signal go RT distribution (see Logan,
1994; Logan & Cowan, 1984). The integration method is com-
monly used and intuitively clear. It assumes that SSRT is a
constant, which is implausible, but it produces accurate estimates
of SSRT if the stop process and go process are independent (see
Band, van der Molen, & Logan, 2003; Colonius, 1990; De Jong,
Coles, Logan, & Gratton, 1990; Logan & Cowan, 1984; Verbrug-
gen, Chambers, & Logan, 2013). If SSRT is constant, then the
finishing time of the stop process (i.e., SSRT � SSD) is a single
point in time. All go RTs that occur after that point will be
inhibited; all go RTs that occur before it will not be inhibited. That
point is not directly observable but it can be estimated from the
observed distribution of go RTs on no-stop-signal trials and the
observed p(respond|signal) at a particular SSD. The probability of
responding given a stop signal at a particular SSD equals the
percentile of the no-stop-signal go RT distribution at which go RT
equals SSRT � SSD, so SSRT can be estimated by subtracting
SSD from the no-stop-signal go RT at that percentile. The inde-
pendent race model provides other methods for estimating SSRT
that make the more realistic assumption that SSRT is a random
variable (Colonius, 1990; De Jong et al., 1990; Logan & Cowan,
1984; Logan et al., 2014; Matzke, Dolan, Logan, Brown, &
Wagenmakers, 2013), which usually produce estimates that are
similar to estimates from the integration method (but see Verbrug-
gen et al., 2013). These measures of SSRT form the basis of
conclusions about changes in inhibitory control with individual

differences, development, aging, psychopathology, and neuropa-
thology (see Logan, 1994; Verbruggen & Logan, 2008).

Interactive Race Model 1.0

The independent race model addresses only the finishing times
of the stop and go processes. It does not consider the processes that
give rise to them or the process that causes the go response to stop.
In the years since the model was developed, tremendous strides
have been made in understanding the computational (Logan et al.,
2014; Ratcliff & Smith, 2004; Usher & McClelland, 2001) and
neural processes (e.g., Hanes et al., 1998; Paré & Hanes, 2003) that
underlie the stop and go processes. Boucher et al. (2007) took
advantage of these advances and modeled the go process as a
stochastic accumulator that integrates activation over time until it
reaches a threshold, whereupon a response is executed. They
modeled the stop process a stochastic accumulator that stops
responses by inhibiting activation in the go accumulator to prevent
it from reaching threshold. The architecture of the model, describ-
ing the units and the connections between them is presented in
Figure 2. A timing diagram, describing the relation between pa-
rameter values and trial events, is also presented in Figure 2.

Go and stop units accumulate activation over time according to
the following stochastic differential equations (Usher & McClel-

Figure 2. Interactive race model 1.0 of movement initiation: Architecture
(A) and timing of events on a trial (B).
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land, 2001), which specify the change (dago and dastop) in each
unit in each time step dt (dt/� was set to 1.0):

dago �
dt

�
[�go � kgo · ago(t) � �stop · astop(t)] ��dt

�
· �go

(1)

dastop �
dt

�
[�stop � kstop · astop(t) � �go · ago(t)] ��dt

�
· �stop

(2)

where ago(t) and astop(t) are the activation values for the go unit
and the stop unit, respectively. The model has 11 parameters: �go,
which represents the threshold on the go process, Dgo and Dstop,
which represent afferent processing time (i.e., nondecision time),
�go and �stop, which represent the mean growth in activation, kgo

and kstop, which are leakage terms representing the loss of activa-
tion over time, �go and �stop, which reflect the inhibition of the
stop process from the go process and the go process from the stop
process, and �go and �stop, which are Gaussian noise terms with
means of zero and SDs of 	go and 	stop, respectively. The leakage
parameters kgo and kstop were set to 0 to reduce the number of
parameters because nonzero values did not improve the goodness
of fit (Boucher et al., 2007). A go response occurs when activation
in the go unit reaches a threshold �go.

The timing diagram in Figure 2 describes the relation be-
tween parameter values and trial events. At the beginning of a
trial, �go and �stop are set to 0. After a latent period called Dgo

that represents afferent processing time (i.e., nondecision time),
�go becomes greater than 0, so activation begins to accumulate
toward the threshold. On stop signal trials, �stop becomes
greater than 0 after SSD and a subsequent latent period called
Dstop, whereupon the stop unit begins to inhibit the go unit. The
response is inhibited if the stop unit becomes active soon
enough to prevent the go unit from reaching threshold. Inhibi-
tion fails when the stop unit comes on too late (e.g., when SSD
is long) or when it is not activated enough to prevent the go unit
from reaching threshold.

Boucher et al. (2007) proposed linking propositions (Schall,
2004; Teller, 1984) that map the components of the computational
model to the underlying neural circuitry, taking advantage of
recent investigations of stopping behavior and neurophysiology in
monkeys who performed a saccadic stop-signal task (Hanes et al.,
1998; Paré & Hanes, 2003). Saccades are generated by a network
of mutually inhibitory gaze-holding and gaze-shifting neurons that
extends from cortex through basal ganglia, superior colliculus, and
thalamus, to the brain stem. Boucher et al. identified the go unit
with gaze-shifting neurons, the stop unit with gaze-holding neu-
rons and the inhibitory connections from gaze-holding to gaze-
shifting neurons.

The linking proposition that connects stochastic accumulation in
the go unit to movement-related neurons in frontal eye fields and
superior colliculus was first expressed by Hanes and Schall (1996)
and has become well established: Activity in movement-related
neurons rises to a threshold that is constant within conditions and
the rate of growth varies randomly within conditions and system-
atically between conditions, as in stochastic accumulator models
fitted to the data (Ding & Gold, 2012; Gold & Shadlen, 2007;

Hanes & Schall, 1996; Pouget, Logan, Palmeri, Boucher, Paré, &
Schall, 2011; Purcell et al., 2010, 2012; Ratcliff, Cherian, &
Segraves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Seg-
raves, 2007; Shadlen & Kiani, 2013). The linking proposition that
connects the stop unit to fixation neurons and their inhibitory
connections to movement neurons is less well established. A major
purpose of this article is to evaluate that linking proposition.

Fitting Interactive Race Model 1.0 to Behavioral Data

Boucher et al. (2007) used Equations 1 and 2 to fit simulations
of interactive race 1.0 to the behavioral data from the two monkeys
reported by Hanes et al. (1998). The fitting routine minimized
Pearson’s 
2 between observed and predicted frequencies at each
stop signal delay for inhibition functions and at each quintile of
each signal-respond and no-stop signal RT distribution. In fitting
the model, Boucher et al. fixed the threshold (�go � 1,000), and set
Dgo to the afferent delay time measured from the activity profile of
movement-related neurons (35 ms for monkey C and 80 ms for
monkey A). Boucher et al. set k � 0 because they found that
variation in the amount of leakage did not affect the goodness of
fit. We generated our own fits of interactive race 1.0, following the
procedure described in Appendix A, and explored several varia-
tions of the model. We compared Boucher et al.’s (2007) assump-
tion that �go was constant and 	go was a free parameter with a
more common assumption that �go was a free parameter and 	go

was fixed at 1.0 (e.g., Donkin, Brown, & Heathcote, 2009; Ratcliff
& Smith, 2004). We compared their assumption that Dstop was a
constant with variants in which Dstop was stochastic to allow
variability in SSRT. We compared their assumption astop(t) grows
over time with variants in which astop is constant. All variants of
the model produced equivalent fits to the behavioral data and
equivalent predictions of the physiological data (see Appendix B).
Consequently, we chose a variant of the interactive race model in
which Dstop had no stochastic component, threshold was a free
parameter and 	go was fixed to follow common practice in fitting
stochastic accumulator models to data (Ratcliff & Smith, 2004)
and to compare with the fits of the blocked input model and other
models we consider later in the article.

The fits of interactive race 1.0 with 	go fixed and �go free are
shown in Figure 3 (top row). The best-fitting values of the free
parameters are presented in Table 1. As Boucher et al. (2007)
found, �stop was much larger than �go, suggesting that inhibition
from the stop unit to the go unit is more potent than inhibition from
the go unit to the stop unit. As Boucher et al. also found, Dstop was
quite large and occupied most of SSRT. This, and the large value
of �stop, led Boucher et al. to conclude that inhibition from the stop
unit to the go unit must be late and potent. The stop process is
independent of the go process for most of its duration (i.e., for
Dstop ms) but then interacts briefly and potently with the go unit to
reverse the accumulation of go-unit activation toward the thresh-
old.

Predicting Neural Data With Interactive Race
Model 1.0

Interactive race 1.0 uses the dynamics of activation over time to
account for behavioral measures of stopping and going. Boucher et
al. (2007) argued that the dynamics of the model were predictions

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

4 LOGAN, YAMAGUCHI, SCHALL, AND PALMERI



of the dynamics of movement neurons whose activity was re-
corded while the behavioral data were collected. If so, then the
model dynamics should match the neural dynamics in important
respects. Figure 4 shows the dynamics predicted from fixed pa-
rameter values that were estimated separately in behavioral fits.
The trends in the simulated activation functions are qualitatively
similar to the neural data (see Figure 5). The predicted activation
rises from baseline to threshold, modulates around SSRT, and
decays after it modulates. Here, we ask whether the predicted
growth rate, modulation time, and decay rate match the neural data
quantitatively. As Boucher et al. (2007) correctly emphasized,
these predictions are true predictions, in that they are calculated
from the parameters that fit the behavioral data best without any
further adjustment.

The neural data. Boucher et al. (2007) addressed the neuro-
physiological data that Hanes et al. (1998) collected on the same
trials as the behavioral data. The mean normalized firing rates for
movement-related neurons on signal-inhibit trials and latency-
matched no-stop-signal trials are plotted for different SSDs and
monkeys in Figure 5. Each panel shows modulation of firing rate
on signal-inhibit trials. The signal-inhibit and no-stop-signal func-
tions follow each other to a point and then diverge. The no-stop-
signal function continues to grow but the signal-inhibit function
decays to baseline. These results were replicated with monkeys in
superior colliculus (Paré & Hanes, 2003), frontal eye fields (Mur-
thy, Ray, Shorter, Schall, & Thompson, 2009), and dorsal premo-

tor cortex (Mirabella, Pani, & Ferraina, 2011) and with rats in
basal ganglia (Schmidt, Leventhal, Mallet, Chen, & Berke, 2013).
We use the models to predict the rate of growth before the
modulation, the time at which the modulation occurs relative to
SSRT, and the rate of decay after the modulation. We focus
primarily on signal-inhibit trials because they include the crucial
neural data—growth, modulation, and decay. We do not model the
modulation and decay of neural activity on no-stop-signal trials
because they reflect the correlates and consequences of moving the
eyes, which are not relevant to stopping an eye movement before
it begins. There are no eye movements on signal-inhibit trials, so
the effects are caused by the mechanism that stops the eye move-
ments.

The activation functions for monkey C look different from the
activation functions from monkey A in the initial rise from base-
line and in the return to baseline after modulation on signal-inhibit
trials. The neurons from monkey C were mostly visuomovement
neurons, showing a visual response and a movement response,
whereas the neurons from monkey A were mostly movement
neurons (Bruce & Goldberg, 1985; Cohen et al., 2009; Schall,
1991). This classification is based on a delayed saccade task, in
which monkeys must maintain fixation while a peripheral target is
flashed and extinguished, and then move their eyes to the remem-
bered location when a go signal is presented. Visual neurons are
active during the initial flash but not the movement, movement
neurons are active during the movement but not during the initial

Figure 3. The observed and predicted inhibition function (first and third panels) and the cumulative distribution
functions for no-signal and signal-respond trials (second and fourth panels) for monkeys C and A. No-signal RTs
are plotted in black. Signal-respond RTs are plotted in gray with lighter shades for shorter stop signal delays
(SSD). The predictions are from models of movement initiation. The interactive race model predictions are in
the top panels. The blocked-input model predictions are in the bottom panels.
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flash, and visuomovement neurons are active during both. Hanes et
al. (1998) analyzed both movement and visuomovement neurons,
and found that both modulated their activity on signal-inhibit trials.
Movement neurons provide the strongest test of the model because

there is no visual response to contaminate measures of growth rate,
modulation time, and decay rate (see monkey A in Figure 5).
Visuomovement neurons provide a weaker test. The visual re-
sponse occurs early and persists after the response is inhibited, and
that obscures measures of growth and decay rates (see monkey C
in Figure 5). However, visuomovement neurons modulate at about
the same time as movement neurons (Ray, Pouget & Schall, 2009).
Thus, both cell types can be used to test model predictions about
modulation time, using the methods of Boucher et al. (2007).

Predicted growth rate. The rate of growth to threshold is an
essential component of the linking proposition that identifies
movement neurons with stochastic accumulator models. In neu-
rons, the rate of growth varies randomly within conditions and
systematically between conditions, just as drift rate varies in sto-
chastic accumulator models fitted to the data (Gold & Shadlen,
2007; Hanes & Schall, 1996; Pouget et al., 2011; Purcell et al.,
2010, 2012; Ratcliff et al., 2003; 2007; Shadlen & Kiani, 2013).
Our models of saccadic countermanding assume there is one
accumulator for the go response, and its drift rate is the same on
no-stop-signal and stop-signal trials (this is the context indepen-
dence assumption that all race models make; Colonius, 1990;
Logan et al., 2014). From Equation 1, we see that the rate of
growth in the go unit on signal-inhibit trials before the point of
modulation (i.e., for values of t 	 SSD � Dstop) is �go – kgo ·
ago(t). The stop process has not engaged yet, so �stop · astop(t)
drops out of the equation. Equation 1 predicts that the rate of
growth for no-stop-signal trials should be the same as on signal-
inhibit trials, because the stop unit is never engaged (i.e., SSD is
essentially infinite, so t is always less than SSD � Dstop).

Table 1
Models of Movement Initiation

Monkey C Monkey A

Interactive
race 1.0

Blocked input
1.0

Interactive
race 1.0

Blocked input
1.0

�go 0.217 0.307 0.204 0.275
	go 1.000 1.000 1.000 1.000
�go 0.007 — 0.002 —
kgo — 0.003 — 0.003
Dgo 35 35 80 80
�stop 0.686 0.995 0.797 1.069
	stop 1.626 1.429 1.463 1.656
�stop 0.703 — 0.758 —
kstop — 0.000 — 0.000
NDstop — 22.51 — 10.80
Dstop 84.32 — 68.33 —
� 41.93 47.74 38.99 39.54
Afferent time 84a 70b 68a 48b

Pearson’s 
2 41.93 39.54 124.96 123.81
Boucher et al.

(2007) 
2 50.64 120.94

Note. Best fitting parameter values and measures of goodness of fit for
the interactive race model and the blocked input model for monkeys C and
A. Values in bold italics were fixed a priori.
a Afferent time � Dstop.

b Afferent time � NDstop � �/�stop.

Figure 4. Predicted activation of go and stop units over time for interactive race model 1.0 and blocked input
model 1.0 for monkey C and monkey A. Both models address movement initiation. For each model, the left panel
shows activation of the go unit and the right panel shows activation of the stop unit. The horizontal line
represents the threshold, estimated from model fits. The leftmost vertical line represents stop-signal onset. The
rightmost vertical line represents stop signal RT, estimated from the simulated data using the independent race
model, plus stop signal delay. The dashed vertical line represents mean divergence time. Cancel time is
divergence time minus stop signal RT.
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We compared signal-inhibit growth rates predicted from inter-
active race 1.0 with growth rates observed in neural data recorded
from movement and visuomovement neurons. We analyzed
growth rate and decay rate on the same signal-inhibit trials. Growth
rate before modulation reflects only the dynamics of the go unit; decay
rate after modulation reflects the interaction of the stop and go
units. We ran simulations of the model with the best-fitting pa-
rameters, and measured the rate of growth of simulated activation
(normalized) using the same methods we used to measure the rate
of growth in neural firing rates (normalized; for details, see Ap-
pendix C). Observed and predicted values appear in Figure 6.
Predicted growth rates fell within the 95% confidence intervals
(CIs) of the observed growth rates in both monkeys, obtained by

bootstrapping. This supports the linking proposition that identifies
movement neurons with the go unit (Boucher et al., 2007).

Predicted decay rate. Predicted and observed decay rates
were measured from model simulations and neural data, using
the methods we used to measure growth rates (see Appendix C).
The predicted decay rate after the point of modulation is given
by Equation 1 for values of t � SSD � Dstop. It includes
continued growth of go activation from the go stimulus (i.e.,
�go – kgo · ago(t)) and growing inhibition from the stop unit
(i.e., �stop · astop(t)) that overcomes go activation. The pre-
dicted and observed values, plotted in Figure 6, were quite
different. Predicted decay rate fell outside the 95% CIs of the
observed decay rate for both monkeys, obtained by bootstrap-

Figure 5. Mean normalized firing rate for movement-related neurons in frontal eye fields of monkeys C (top
two) and A (bottom four) on signal inhibit trials (solid dark line) and latency-matched no-signal trials (dashed
gray line). Each panel depicts a different stop signal delay (68 and 117 ms for monkey C; 84, 101, 134, and 184
ms for monkey A). The vertical gray line on the left represents the onset of the stop signal. The vertical gray line
on the right represents stop signal RT, estimated from the independent race model, plus stop signal delay. The
dashed vertical line represents the average time at which signal-inhibit and no-signal functions diverged
significantly (mean divergence time). Mean cancel time is mean divergence time minus stop signal RT.
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ping. The effect, quantified here, can be seen in the predicted
activation functions in Figure 4, where the decay of activation
in the go unit after modulation is almost instantaneous. The
decay rate reflects the interaction between the stop unit and the
go unit. The analyses of growth rates suggest that the model
predicted the go unit well, so the strong decay must reflect the
influence of the stop unit. The inhibition from the stop unit to
the go unit (�stop) may be too strong. Simulations described in
Appendix D suggest that �stop can vary substantially without
much effect on the goodness of fit to the behavioral data. This
large misprediction was surprising and motivated our investi-
gation of the next set of models, described below (see Models
of Fixation and Movement Initiation).

Predicted cancel times. Boucher et al. (2007) used model
activation functions to predict cancel time, which is the time at
which go activation modulates on stop-signal trials relative to
SSRT. Cancel time is important in neuroscience because it is an
essential criterion for determining whether modulation of neural
activity happens early enough to participate in response inhibition.
Activity modulates on stop signal trials in many areas of the brain,
but some modulation happens well after SSRT, so it must be a
consequence and not a cause of response inhibition (Hanes et al.,

1998). For example, all visual neurons in FEF (Hanes et al., 1998)
and all neurons in supplementary eye field (Stuphorn, Brown, &
Schall, 2010; Stuphorn & Schall, 2006) and supplementary motor
area (Scangos & Stuphorn, 2010) modulate after SSRT when
monkeys countermand saccades, suggesting that these neurons are
not part of the circuit that actually stops the response. Instead, they
may participate in proactive control.

Following Hanes et al. (1998), we defined cancel time as the
time at which go unit activation on signal-inhibit trials became
significantly less than go unit activation on latency-matched no-
stop-signal trials minus SSRT (see Appendix D for details). We
generated predicted cancel times by simulating the model with the
best-fitting parameters from the fits to the behavioral data.

The mean predicted and observed cancel times are plotted in Figure 7.
There was much more variability in observed cancel times in mon-
key C than in monkey A, but the predicted cancel times fell within
the bootstrapped 95% CIs of the observed cancel times for both
monkeys. Replicating Boucher et al. (2007), interactive race 1.0
predicts neural cancel times accurately.

Blocked-Input Model 1.0

Interactive race 1.0 assumes that the stop unit inhibits go unit
activation. Here, we examine blocked-input models that assume

Figure 6. Mean growth and decay rates for observed and predicted
activation functions for monkeys C and A. Observed growth and decay
rates are estimates from neural activity that was recorded from frontal eye
fields (FEF) while the behavioral data that were modeled were gathered.
Predicted growth and decay are from interactive race model 1.0 and
blocked input model 1.0. Error bars are bootstrapped 95% CIs of the
observed data.

Figure 7. Mean observed and predicted cancel times for monkeys C and
A. Observed cancel times are estimates from neural activity that was
recorded from frontal eye fields (FEF) while the behavioral data that were
modeled were gathered. Predicted cancel times are from interactive race
model 1.0 and blocked input model 1.0.
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that the stop unit does not inhibit go activation directly (Band &
van Boxtel, 1999; Logan, 1983; Logan & Cowan, 1984; also see
Awh, Matsukura, & Serences, 2003). Instead, the stop signal
activates a top-down process that turns off go activation, setting
�go to 0, when it reaches its threshold, like turning off the ignition
to stop a motor. If the input is blocked early enough, go unit
activation will not rise to threshold and the response will be
inhibited, producing a signal-inhibit trial. If go activation reaches
threshold before its input is blocked, inhibition will fail and the go
response will be executed, producing a signal-inhibit trial.

Blocked-input models are motivated by cognitive psychology,
addressing the arbitrary nature of the voluntary responses that are
involved in the stop-signal task and other cognitive paradigms.
Humans and monkeys are not compelled to respond as they do by
hard-wired reflex-like connections between stimuli and responses.
Instead, cognitive control processes establish temporary connec-
tions between stimuli and responses that address the demands of
the current task but can be changed whenever task demands
change (Logan & Gordon, 2001; Miller & Cohen, 2001). The
temporary connections act as prepared reflexes, so responses can
be triggered automatically when a relevant stimulus appears
(Cohen-Kdoshay & Meiran, 2009; Hommel, 2000; Logan, 1978),
but they can be disabled on a moment’s notice when the stimulus
is no longer relevant. Blocked-input models assume that temporary
connections can be disabled quickly in response to stop signals,
disconnecting the input that drives the responses (Band & van
Boxtel, 1999; Logan, 1983; Logan & Cowan, 1984).

Indeed, there is evidence that the monkeys whose data we
analyzed used temporary connections between stimuli and re-
sponses, like prepared reflexes. They performed the stop task as if
visually responsive neurons drove movement neurons reflexively
(Purcell et al., 2010, 2012), yet visual neurons do not always drive
movement neurons. During each session with the stop task, each
monkey performed a memory-guided saccade task to classify the
neurons whose activity was recorded. In this task, monkeys fixate
a central point and a peripheral target is flashed. The monkeys
must maintain fixation on the central point after the target is
extinguished, and then move their eyes to the remembered location
of the target when the central point is extinguished. Visual neurons
increase their firing rate when the target appears but not when the
eyes move; movement neurons increase their firing rate before the
eyes move but not when the target appears; and visuomovement
neurons respond at both times (Bruce & Goldberg, 1985; Schall,
1991). In the memory-guided saccade task, visual neuron activity
does not drive movement neuron activity. Visual neurons respond
to the onset of the target without activating movement neurons
(some sustain a lower level of activity during the delay period),
and movement neurons respond at the offset of the fixation point
without a burst in visual neuron activity to drive them. However,
a few minutes later, after the neurons have been classified, mon-
keys switch to the countermanding task, and visual neurons now
appear to drive movement neurons. Some process prevents visual
neurons from driving movement neurons in the memory-guided
saccade task and allows visual neurons to drive movement neurons
in the countermanding task. The blocked-input model assumes that
this process is recruited to countermand saccades.

Following Purcell et al. (2010, 2012), we might identify the stop
process with a gate between visual neurons that select the target

and movement neurons that generate a movement to it. The stop
process may raise the gate, blocking input to the movement neu-
rons and thereby preventing them from reaching threshold. This is
consistent with the observation that visual neurons do not modu-
late before SSRT on signal-inhibit trials but movement neurons do.
The gate prevents the continued activation in visual neurons from
driving the movement neurons to threshold. The gate may also be
raised during the memory-guided saccade task to prevent visual
neurons from driving movement neurons; when signaled to make
a saccade, the gate may be lowered to allow visual neurons with
sustained activity to drive movement neurons.

The architecture of blocked input 1.0 is presented in Figure 8.
The model assumes there is no direct inhibition between the stop
and go units (i.e., �go � �stop � 0), so the go unit is governed only
by its drive (�go) and leakage. Equation 1 becomes

dago �
dt

�
[�go � kgo · ago(t)] ��dt

�
· �go (3)

The afferent stage of the stop process is governed by the
following stochastic differential equation:

dastop �
dt

�
[�stop � kstop · astop(t)] ��dt

�
· �stop. (4)

Figure 8. Blocked input model 1.0 of movement of initiation: Architec-
ture (A) and timing of events on a trial (B).
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When the afferent stage is finished, �go is set to 0.
The timing diagram, relating model events to stimulus events, is

also presented in Figure 8. At the beginning of each trial, �go �
�stop � 0. After an afferent processing time of Dgo ms, �go

becomes greater than 0, and go activation begins to accumulate
toward the threshold �go. On stop signal trials, �stop becomes
greater than 0 at SSD plus the nondecision time for the stop
process (NDstop), and stop activation begins to accumulate toward
the threshold �stop. When stop activation reaches threshold, the
stop process blocks the input to the go process, setting �go � 0,
which stops or reverses the growth of go activation toward thresh-
old. If kgo � 0 (i.e., if there is no leakage), go activation will
hover around the level it reached before �go was set to 0 as
noise adds and subtracts small amounts of activation. If kgo �
0, then go activation will decay. The greater the value of kgo, the
more rapidly activation is lost. In either case, go activation will
no longer grow toward threshold and the response will be
inhibited unless the noise is substantial.

Fitting Blocked Input Model 1.0 to Behavioral Data

We fit two versions of blocked-input 1.0 to the behavioral data.
Both assumed 	go � 	stop � 1.0 and both allowed �go and �stop to
vary freely. One assumed a constant afferent component of the
stop process and the other assumed a stochastic afferent compo-
nent. Both blocked-input models fit the data as well as any of the
interactive race models we considered (see Appendix B, Table
B1). The values of the best-fitting parameters and measures of
goodness of fit for the model that assumed a stochastic afferent
stop unit appear in Table 1. In this model, the afferent stage of the
stop process has two components, a nonstochastic phase represent-
ing nondecision time (characterized by the constant NDstop) and a
stochastic phase representing growth of activation to a threshold
(characterized by �stop and �stop). The predicted inhibition func-
tions and distributions of signal-respond and no-signal RTs from
this model are presented in Figure 3 (bottom row). Blocked input
1.0 fit the data as well as interactive race 1.0. The 
2 values were
numerically smaller but very similar, within three units. Thus, we
conclude that the fits were equivalent.

The fact that blocked input 1.0 fit as well as interactive race 1.0
is important because it indicates that direct inhibition of the stop
process on the go process is not necessary to account for stop-
signal behavior. Models that assume no direct inhibition from the
stop process account for the data just as well. This calls for a
reevaluation of the linking proposition in the original interactive
race model that identifies the stop process with fixation neurons
and their inhibitory connections with movement neurons. Other
linking propositions may provide equally satisfactory accounts of
the data (also see Schall, 2004).

Boucher et al. (2007, p. 392) fit a blocked-input model with
noise variable and threshold constant at 1,000 and found that it did
not fit as well as the interactive race model. Their poor fit may
have stemmed from the regions of the parameter space that were
sampled. The starting values we used may have been better tai-
lored to the data. As described in Appendix A, unlike Boucher et
al., we first fit the no-stop-signal RTs; then we fixed those param-
eters and fit the stop-signal data; finally, we used the parameters
from the first two fits to generate a range of starting values for fits
in which all parameters were free to vary. This procedure may

have led us to a better-fitting region of the parameter space. The
important point is that our current fits of blocked input 1.0 were as
good as our fits of interactive race 1.0.

Predicting Neural Data With Blocked-Input Model 1.0

We generated predicted activation functions for blocked input
1.0 for both monkeys by simulating the model with the best-fitting
parameters. The predicted activation functions, shown above in
Figure 4, show the same qualitative effects as the neural activation
functions: growth to a threshold, modulation around SSRT, and
decay. Here, we evaluate the predictions quantitatively.

Growth rate. From Equation 3, the predicted growth rate
before the point of modulation (i.e., for t 	 SSD � NDstop �
�stop/�stop) is �go – kgo · ago(t). This is exactly the same growth
rate predicted by interactive race 1.0 (see above), except for
differences in parameter values. Predicted growth rates for blocked
input 1.0, plotted in Figure 6, fell within the 95% CIs of the
observed growth rates for both monkeys.

Decay rate. From Equation 3, the predicted decay rate after
the point of modulation (i.e., for t � SSD � NDstop � �stop/�stop)
is –kgo · ago(t). After that point, �go � 0, so �go does not contribute
to the decay rate. The predicted decay rate for interactive race 1.0
is more complex, including terms for continued growth of go
activation (i.e., �go � 0) and inhibition from the stop unit to the go
unit (i.e., �stop · astop(t)). Predicted decay rates for blocked input
1.0, also plotted in Figure 6, fell within the 95% CIs of the
observed growth rates for both monkeys.

Cancel time. Predicted cancel times are plotted in Figure 7.
The predicted cancel times fell within the 95% CIs of the observed
cancel times for both monkeys.

Interim Summary and Evaluation 1.0

Interactive race 1.0 and blocked input 1.0 fit the behavioral data
equally well. This was surprising because Boucher et al. (2007)
found that a blocked input model fit worse than the interactive race
model. We found equivalent fits across several model variants (see
Appendix B), suggesting substantial mimicry. Following Boucher
et al., we turned to neurophysiological data to break the mimicry.
Interactive race 1.0 predicted cancel times and growth rates accu-
rately but mispredicted decay rates for both monkeys. We attrib-
uted the misprediction to the strong inhibitory connections be-
tween stop and go units (i.e., large �stop). Blocked input 1.0
predicted growth rates, decay rates, and cancel times accurately.
Thus, the neurophysiological data break the mimicry in favor of
blocked input 1.0.

We sought constraints on inhibition and leakage parameters that
might improve the accuracy of neurophysiological predictions
without compromising goodness of fit to the behavioral data. We
found useful constraints by extending the models to account for the
interaction between gaze-shifting and gaze-holding neurons in the
fixation period before the movement begins. We show below that
steady-state activation in the fixation period depends on the ratio
of growth rate to leakage (i.e., �/k), which constrains leakage.
Inhibition from stop to go (i.e., �stop) cannot be so large that it
suppresses all growth in go activation.
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Models of Fixation and Movement Initiation

Boucher et al. (2007) developed the interactive race model to
explain response inhibition in terms of the network of mutually
inhibitory gaze-holding and gaze-shifting neurons that controls
saccadic eye movements, which extends from cerebral cortex to
the brain stem. They identified the stop unit exclusively with the
activation of gaze-holding neurons and their inhibitory connec-
tions to gaze-shifting neurons, which prevent the activation of
gaze-shifting neurons from reaching the threshold required to elicit
an eye movement. A key assumption of their model was that
response inhibition occurred within the gaze control network.
Blocked input 1.0 assumes that response inhibition occurs outside
the gaze control network: Responses are stopped by blocking the
inputs that drive the activation of gaze-shifting neurons toward
threshold, like stopping an engine by turning off the ignition. The
fits to behavioral data showed substantial mimicry between inter-
active race 1.0 and blocked input 1.0. We sought to resolve the
mimicry by modeling more of the dynamics of the network of
gaze-shifting and gaze-holding neurons, extending the model back
in time to include the period in which the eyes are fixated at the
beginning of a trial. If stop and go units tip the balance in the gaze
control network, we should model the processes that achieve that
balance. As we show below, modeling steady-state fixation con-
strains the interaction between gaze-holding and gaze-shifting
units, and those constraints affect how the gaze control network
can implement response inhibition.

We consider two models that explain response inhibition within
the network and two models that explain response inhibition
outside the network. The first within-network model is the baseline
model, which assumes there is symmetrical inhibition between
fixation and movement units (�stop � �go) and stopping and going
are driven by stimulus events (the onsets of the go signal and the
stop signal) that tip the balance in the gaze control network. True
to its title, this model serves as a baseline for evaluating the
additional processes in the other models. The second within-
network model is interactive race 2.0, in which the inhibition
between fixation and movement units is asymmetrical (�stop �
�go). This model makes the same linking propositions as interac-
tive race 1.0 (Boucher et al., 2007), identifying the stop process
with fixation units in the network and identifying the mechanism
of inhibition with strong asymmetrical inhibition from fixation
units to movement units.

The first model that explains response inhibition outside the
gaze control network is blocked input 2.0, in which a top-down
stop process blocks the input to the movement units (setting �move

to 0) when it reaches threshold. The second model that explains
response inhibition outside the gaze control network is boosted
fixation model 1.0, in which a top-down stop process increases the
activation of fixation unit beyond the level required to maintain
fixation (multiplying �fix by a constant b � 1) when it reaches
threshold.

For this set of models we define the units more neutrally as
fixation (fix) and movement (move) units, linking them generally
to gaze-holding and gaze-shifting neurons in the network extend-
ing from cerebral cortex to the brain stem and specifically to
fixation and movement neurons in frontal eye fields from which
the neural measures we analyze were taken. We do not presume
that the fixation unit is the stop unit. That is an assumption and a

linking proposition in the baseline model and interactive race 2.0,
but not in blocked input 2.0 or boosted fixation 1.0. The model fits
will determine the plausibility of that assumption. In all four
models, activation in movement and fixation units is described by
the following stochastic differential equations:

damove �
dt

�
[�move � kmove · amove(t) � �fix · afix(t)] ��dt

�
· �move

(5)

dafix �
dt

�
[�fix � kfix · afix(t) � �move · amove(t)] ��dt

�
· �fix

(6)

The move unit accumulates activation until it reaches a thresh-
old, �go, whereupon an eye movement is executed. If move-unit
activation fails to reach threshold, the response is withheld.

All models address the steady-state activation in the fix and
move units during the fixation period before the go stimulus
appears. During the fixation period, �go � 0 and �fix � 0.
Consequently, amove(t) will be driven to 0 and remain there be-
cause we assume activation cannot be negative. Fixation activity
afix(t) will reach a maximum value that is determined by the ratio
of �fix to kfix, which can be derived from Equation 6 by setting
dafix � 0 and solving for afix(t). During steady-state fixation �go ·
ago(t) � 0, so

dafix � �fix � kfix · afix(t) � 0.

Solving for afix(t) yields

afix(t) �
�fix

kfix
. (7)

The maximum value of afix(t) is constant over time because the
�fix and kfix parameters that determine it are constant over time.
Thus, we can model steady-state fixation activity with no new
parameters.

Modeling steady-state fixation activity imposes important con-
straints on the activation and inhibition in the move and fix units.
Eye movements can only occur if activation in the move unit (�go)
and inhibition from the move unit to the fix unit (�go) are large
enough to overcome steady-state activation in the fix unit and if
inhibition from the fix unit to the move unit (�stop) is not large
enough to suppress move activation entirely.

We fit the four models to the data from the two monkeys using
the procedure described in Appendix A. In all model fits, 	fix �
	move � 1.0 (Donkin et al., 2009; Ratcliff & Smith, 2004). Trials
started with go-stimulus onset. Move unit activation was set to 0
and fix unit activation was set to the steady-state value, �fix/kfix.
We performed two sets of fits: a constrained set, in which param-
eters were forced to be equal for the fix and move units (i.e., �fix �
�move, kfix � kmove, and Dfix � Dmove for all models; �fix � �move

for baseline, blocked input 2.0, and boosted fixation 1.0), and an
unconstrained set, in which parameters were allowed to vary freely
between fix and move units. In the constrained model fits, the
baseline model is nested in the other three models, so we can test
the significance of the effects of adding the additional mechanisms
expressed in their parameters by evaluating differences in 
2. In
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the unconstrained fits, interactive race 2.0 is nested in blocked
input 2.0 and boosted fixation 1.0, so we can test the significance
of the effects of adding mechanisms outside the network of mu-
tually inhibitory units that control saccades. The unconstrained
baseline model is the same as interactive race 2.0, so we only fit
three unconstrained models.

Baseline Model

The baseline model assumes that performance is driven entirely
by the stimuli. The architecture is presented in Figure 9A and the
timing diagram is presented in Figure 10A. In the model, �fix is set
to the best-fitting value when the fixation point is present, set to
zero D_fix ms after the fixation point disappears and the target
appears, and set to the best-fitting value again Dfix ms after the stop
signal appears; �move is set to zero during fixation and remains at
zero for Dgo ms after the target appears, whereupon it is set to the
best-fitting value.

Fits to behavior. The predicted inhibition functions and RT
distributions for the baseline model are plotted along with the
observed values in Figure 11 for monkey C and Figure 12 for
monkey A. The best-fitting parameters and measures of goodness
of fit appear in Table 2. The baseline model did not fit the
behavioral data very well. It mispredicted the inhibition functions
and signal-respond RTs for both monkeys, suggesting that some
factor other than stimulus presentation is necessary to account for
response inhibition.

Neural predictions. The mean predicted activation functions
for move and fix units appear in Figure 13. The predicted functions
show growth, modulation, and decay that resemble neural activa-
tion qualitatively. Predicted growth rates and decay rates fell
within the 95% CIs of the observed rates (see Figure 14). Predicted
cancel times were longer than observed in monkey C and shorter
than observed in monkey A (see Figure 15).

Interactive Race Model 2.0

Interactive race Model 2.0 is the same as the baseline model,
except that it assumes asymmetrical inhibition between fixation
and movement units, so �fix � �move, in keeping with the original
interactive race model (Boucher et al., 2007). Its architecture is
presented in Figure 9. Its timing diagram is presented in Figure 10.

Fits to behavior. The predicted inhibition functions and RT
distributions from the unconstrained fits are plotted in Figure 11;
the best-fitting parameters and measures of goodness of fit from
the constrained and unconstrained fits appear in Tables 2 and 3,
respectively. In the constrained fits, interactive race 2.0 fit better
than the baseline model for both monkeys: 
2(1) � 291.68 and
143.73 for monkeys C and A, respectively, both ps � .001.
However, it predicted longer signal-respond RTs than observed for
both monkeys. The unconstrained fits, which allowed �move and
�fix to differ and Dmove and Dfix to differ, were better than the
constrained fits, 
2(3) � 10.09, p � .02, and 54.48, p � .001 for
monkeys C and A, respectively.

Figure 9. Architectures of four models that address fixation and movement initiation (A: Baseline model; B:
interactive race 2.0; C: blocked input 2.0; D: boosted fixation 1.0).
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The constraint of accounting for steady-state fixation activity
required the leakage parameter to be greater than 0 and required a
smaller asymmetry in the inhibition between fix and move units.
For monkeys C and A, respectively, �fix was 2.2 and 3.5 times as
large as �move in the constrained fits and 2.4 and 4.3 times as large
in the unconstrained fits. These ratios were much smaller than the
corresponding ratios in Boucher et al.’s (2007) fits, where �fix was
43 and 22 times as large as �move for monkeys C and A, respec-
tively, and much smaller than the ratios in our fits of interactive
race 1.0, where �fix was 100 and 379 times as large as �move for
monkeys C and A, respectively. When we used the �fix and �move

parameters from those models in interactive race 2.0, we could not
generate any go responses. The inhibition from the fix units was
too strong to allow the move units to accumulate activation. The
reduction in �fix that was necessary to allow interactive race 2.0 to
produce responses resulted in poorer fits to the data (compare 
2

values in Tables 2 and 3 with those in Table 1).
Neural predictions. The mean activation functions, which

appear in Figure 13, show growth, modulation, and decay that
resemble neural activation functions qualitatively. Predicted
growth and decay rates (see Figure 14) and cancel times (see
Figure 15) fell within the 95% CIs of the observed values for both

monkeys. Apparently, the constraints that arose in modeling the
fixation period improved the accuracy of the neurophysiological
predictions.

Blocked Input Model 2.0

Blocked-input Model 2.0 is the same as the baseline model
except that it includes a top-down process outside the gaze control
network that responds to the stop signal. Its architecture is pre-
sented in Figure 9 and its timing diagram is presented in Figure 10.
The top-down process changes �move to 0 at SSD � Dcontrol. If the
change occurs early enough, the response is inhibited. In the
constrained fits, �move � �fix, �move � �fix, kmove � kfix, and
Dmove � Dfix. In the unconstrained version, they were allowed to
differ. For simplicity, both constrained and unconstrained fits
assumed that Dcontrol is a constant. Appendix B shows that sto-
chastic and constant values of Dcontrol produced equivalent fits of
blocked input 1.0.

Fits to behavior. The predicted inhibition functions and RT
distributions for the unconstrained version are plotted in Figure 11
for monkey C and Figure 12 for monkey A. The best-fitting
parameters and measures of goodness of fit for constrained and

Figure 10. Timing diagrams for move and fixation processes for the baseline model (A), interactive race model
2.0 (B), blocked input model 2.0 (C), and boosted fixation model 1.0 (D). All models address fixation and
movement initiation.
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unconstrained versions appear in Tables 2 and 3, respectively.
Both versions fit well; both fit better than blocked input 1.0
considered earlier (cf. interactive race 2.0, which produced worse
fits than interactive race 1.0). In the constrained fits, blocked input
2.0 fit better than the baseline model for both monkeys: 
2(1) �
314.37 and 217.76 for monkeys C and A, respectively, both ps �
.001. The unconstrained fit was not significantly better than the
constrained fit for monkey C, 
2(4) � 5.37, p � .251, but it was
for monkey A, 
2(4) � 31.58, p � .001. More important, in the
unconstrained fits, blocked-input 2.0 fit better than interactive race
2.0 for both monkeys: 
2(1) � 17.97 and 51.13 for monkeys C and
A, respectively, both ps � .001. Modeling fixation activity before
the target appears to have broken the mimicry between the
blocked-input model and the interactive race model.

Neural predictions. The mean activation functions, plotted in
Figure 13, show growth, modulation, and decay, like the neurons.
Predicted growth and decay rates (see Figure 14) and predicted cancel
times (see Figure 15) fell within the 95% CIs of observed values for
both monkeys. Again, the constraint of modeling fixation activity
appears to have improved the accuracy of neurophysiological predic-
tions.

Boosted Fixation Model 1.0

We considered a fourth model in which a top-down process
outside the gaze control network boosts the activity in the fixation
unit after the afferent stage of the stop process reached threshold.

Its architecture is presented in Figure 9 and its timing diagram is
presented in Figure 10. Boosted fixation 1.0 is the same as blocked
input 2.0 except that the external, top-down process multiplies �fix

by a constant, b (for “boost”), Dcontrol ms after the stop signal
appears. In the constrained fits, �move � �fix, �move � �fix, kmove �
kfix, and Dmove � Dfix; in the unconstrained fits, they were allowed
to differ. Both constrained and unconstrained fits assumed that
Dcontrol is a constant.

Fits to behavior. The predicted inhibition function and RT
distributions for the unconstrained version of the model are plotted in
Figure 11 for monkey C and Figure 12 for monkey A. The best-fitting
parameter values and measures of goodness of fit are presented in
Tables 2 and 3, respectively. In the constrained fits, boosted fixation
1.0 fit better than the baseline model for both monkeys: 
2(2) �
308.77 and 242.84 for monkey C and A, respectively, both ps � .001.
The unconstrained fits were not significantly better than the con-
strained fits for either monkey: 
2(4) � 8.26, p � .082, and 
2(4) �
4.09, p � .394 for monkey C and A, respectively. However, in the
unconstrained fits, boosted fixation 1.0 fit better than interactive race
2.0 for both monkeys: 
2(4) � 15.26 and 48.72 for monkey C and A,
respectively, both ps � .001.

Boosted fixation 1.0 did not fit substantially better than blocked-
input 2.0. The models are not nested, so we cannot compare the fits
with inferential statistics. For monkey C, the 
2 values were numer-
ically larger for boosted fixation 1.0 in both constrained and uncon-
strained fits, but the differences were small. For monkey A, 
2 for

Figure 11. Observed and predicted inhibition functions and cumulative response time distributions for
no-signal and signal-respond trials for monkey C. No-signal RTs are plotted in black. Signal-respond RTs are
plotted in gray with lighter shades for shorter stop signal delays (SSD). Predicted values are generated from the
constrained fit of the baseline model, and the unconstrained fits of interactive race model 2.0, blocked input
model 2.0, and boosted fixation model 1.0. All models address fixation and movement initiation.
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boosted fixation 1.0 was smaller in the constrained fits but larger in
the unconstrained fits. Thus, we conclude that the fits were equivalent.

The equivalence of the fits of boosted fixation 1.0 and blocked
input 2.0 lead us to conclude that some top-down process that inter-
prets the reappearance of the fixation point as a stop signal seems
necessary to tip the balance between gaze-holding and gaze-shifting
neurons. Boosting activation in fix units and reducing activation in
move units have essentially the same effect on predicted behavior.

Neural predictions. The mean activation functions for move-
ment units, plotted in Figure 13, show growth, modulation, and decay
that resemble the neural data. Predicted growth and decay rates (see
Figure 14) and predicted cancel times (see Figure 15) fell within the
95% CIs of observed values for both monkeys. However, the mean
activation functions for fixation units, plotted in Figure 13, show a
very steep rise in fixation activity that extends off the top of the scale
after the boost parameter takes effect. This is not observed in fixation
neurons (Hanes et al., 1998; Paré & Hanes, 2003) or in the other
models, where fixation activity returns to the steady-state premove-
ment level.

The steep rise and off-scale limit results from the very large boost
parameters the model required to achieve good fits: For the con-
strained fits, b � 3.71 and 17.96 for monkeys C and A, respectively;
for the unconstrained fits, b � 2.99 and 17.69 for monkeys C and A,
respectively. These boost parameters result in predicted posttrial
steady-state fixation activities after successful inhibition of 159 and
955 for monkeys C and A, respectively, compared with pretrial
steady-state fixation activities of 53 and 54, respectively. The postin-
hibition fixation activities are very high. We simulated no-stop-signal

trials after signal inhibit trials using these steady-state fixation activ-
ities to assess their predictions about slowing after successful inhibi-
tion, and found mean RTs of 395 and 719 ms for monkeys C and A,
respectively. These values are much longer than the observed mean
no-stop-signal RTs (254 and 271 ms for monkeys C and A, respec-
tively), suggesting extremely large poststop-signal slowing (114 and
448 ms for monkeys C and A, respectively; cf. Bissett & Logan, 2011;
Emeric et al., 2007; Nelson, Boucher, Logan, Palmeri, & Schall,
2010). The observed poststop-signal slowing in these monkeys aver-
aged 18 ms (Pouget et al., 2011).

Boosted fixation 1.0 will require some modification to capture
poststop-signal slowing and the dynamics of fixation neuron activity
more accurately. Perhaps boosting fixation for a short period would be
sufficient to capture behavior and neural dynamics. However, that
would add at least one other parameter to the model (the duration of
the boost), which increases the complexity of the model without much
potential for improving goodness of fit. Blocked input 2.0 accounts
for the behavioral data and neural data as well with fewer parameters.

Interim Summary and Evaluation 2.0

Extending the models to account for steady-state fixation
added constraints that improved the accuracy of neurophysio-
logical predictions: predicted growth rates, decay rates, and
cancel times were similar to observed values for all models. The
constraints produced differences in goodness of fit to the be-
havioral data: The baseline model fit significantly worse than
all other models. Interactive race 2.0 fit significantly worse than

Figure 12. Observed and predicted inhibition functions and cumulative response time distributions for
no-signal and signal-respond trials for monkey A. No-signal RTs are plotted in black. Signal-respond RTs are
plotted in gray with lighter shades for shorter stop signal delays (SSD). Predicted values are generated from the
constrained fit of the baseline model, and the unconstrained fits of interactive race model 2.0, blocked input
model 2.0, and boosted fixation model 1.0. All models address fixation and movement initiation.
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blocked input 2.0, breaking the mimicry between the 1.0 ver-
sions of these models. Boosted fixation 1.0 fit better than
interactive race 2.0 and fit just as well as blocked input 2.0.
However, it predicted very high steady-state activity in fixation
cells after successful inhibition. Rectifying this prediction
would add complexity to boosted fixation 1.0, so parsimony
would favor blocked input 2.0. However, parsimony is a weak
criterion. Both models require additional top-down processes
that have not yet been specified computationally or identified
with specific neurons. Without implementing the additional
processes for both models, it is not possible to say which is
simpler.

We compared models that assumed the stop process was
inside the gaze control network (baseline and interactive race
2.0) with models that assumed the stop process was outside the
gaze control network (blocked input 2.0 and boosted fixation
1.0). Baseline and interactive race 2.0 fit behavior significantly
worse than blocked input 2.0 and boosted fixation 1.0, suggest-
ing that a top-down stop process outside the network is neces-
sary to explain response inhibition. This conclusion calls into
question the linking proposition that identifies the stop process
with fixation neurons and their inhibitory connections to move-

ment neurons (Boucher et al., 2007). Instead, the inhibition is
mutual and maintains a balance between fixation and movement
that is tipped in favor of inhibition by an outside process that
blocks the input or generates a boost in fixation activity.

Discussion

The main goal of this article was to evaluate models of
saccadic countermanding that explain how responses are
stopped, asking whether the stop process resides inside or
outside the network of mutually inhibitory gaze-holding and
gaze-shifting neurons that extends from cortex to brain stem.
Here, we discuss model mimicry, the implications for linking
propositions that connect the computational models to neurons,
and the potential for generalizing our models beyond saccades
to other responses.

Model Mimicry

An important result of our investigation is extensive model
mimicry. Blocked input 1.0 mimicked interactive race 1.0, and
boosted fixation 1.0 mimicked blocked input 2.0. Mimicry is
common in fits to behavioral data (e.g., Ratcliff & Smith,
2004). Following Boucher et al. (2007), we found that neuro-
physiological data could break some of the mimicry among
models (also see Hanes & Schall, 1996; Purcell et al., 2010,
2012). We found that requiring the models to account for
steady-state fixation led to mimicry in neurophysiological pre-
dictions (see Figures 14 and 15). Following Newell (1990), we
think that model mimicry is an informative result: It reveals
fundamental constraints on an important computational prob-
lem that appear in many attempts to solve it.

Mimicry reveals fundamental constraints. The independent
race model identified fundamental constraints on the computa-
tional problem of inhibiting responses with a stop process that
races against a go process: the stop process has to beat the go
process to inhibit the response (Logan & Cowan, 1984). The
model was designed to produce mimicry: It was formulated in
terms of generic distributions of finishing times for the stop and go
processes without specifying the underlying processes, so every
model of the underlying processes must make the same predictions
(see Logan et al., 2014). Thus, the relationships between finishing
time distributions identified in the independent race model repre-
sent fundamental constraints on all race models of stopping.

The models we considered in this article address the computa-
tional problem of stopping responses that are generated by a
stochastic accumulation process. In all of the models, the go unit
accumulates activation until it reaches a threshold for a response.
The fundamental constraint in these models is that responses must
be stopped by preventing go unit activation from reaching thresh-
old (also see Salinas & Stanford, 2013). This can be done by
raising the threshold or by reducing the rate of accumulation. The
physiological data rule out raising the threshold (Hanes et al.,
1998; Paré & Hanes, 2003; also see De Jong et al., 1990, 1995).
All of the models we considered stop responses by reducing the
rate of accumulation. Equation 5, which describes the rate of
accumulation in the go unit, allows three possibilities: blocking the
input (reducing �go), increasing inhibition from the stop unit
(increasing astop(t) or �stop), or increasing leakage (increasing kgo).

Table 2
Constrained Models of Fixation and Movement Initiation

Baseline
Interactive
race 2.0

Blocked
input 2.0

Boosted
fixation 1.0

Monkey C
�move 0.694 0.556 0.439 0.458
	move 1.000 1.000 1.000 1.000
�move 0.006 0.005 0.004 0.005
kmove 0.015 0.014 0.009 0.009
Dmove 44.92 37.84 44.77 37.15
�fix 0.694 0.556 0.439 0.458
	fix 1.000 1.000 1.000 1.000
�fix 0.006 0.011 0.004 0.005
kfix 0.015 0.014 0.009 0.009
Dfix 44.92 37.84 44.77 37.15
� 45.83 38.84 36.68 39.21
Dcontrol — — 88.29 72.90
b — — — 3.71
Pearson’s 
2 354.82 63.14 40.45 46.05

Monkey A
�move 1.261 0.826 0.362 0.365
	move 1.000 1.000 1.000 1.000
�move 0.010 0.004 0.005 0.009
kmove 0.022 0.018 0.007 0.006
Dmove 55.28 50.49 49.25 41.53
�fix 1.261 0.826 0.362 0.365
	fix 1.000 1.000 1.000 1.000
�fix 0.010 0.014 0.005 0.009
kfix 0.022 0.018 0.007 0.006
Dfix 55.28 50.49 49.25 41.53
� 45.83 46.31 46.31 26.07
Dcontrol — — 62.33 61.03
b — — — 17.96
Pearson’s 
2 311.36 167.63 93.60 68.52

Note. Best fitting parameter values and measures of goodness of fit for
the baseline model, interactive race model, blocked input model, and the
boosted fixation model for monkeys C and A. In all model fits move and
fix parameters were constrained to be the same (indicated by underline)
unless the model assumes they are different. Values in bold italics were
fixed a priori.
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All models that change these parameters without further constraint
should produce equivalent changes in behavior, though they may
predict different neural dynamics. Changing the rate can stop
responses only if the change occurs before the go unit hits thresh-
old, so go RT will be faster on signal-respond trials than on trials
with no stop signals, as observed. Changing the rate can stop
responses only if the change occurs before SSRT, so cancel-times
will be zero or less, as observed.

Breaking mimicry with neurophysiological data. In our ap-
proach, successful models had to fit behavioral data well and
predict neural data accurately (Boucher et al., 2007; Purcell et al.,
2010, 2012). Neural data broke the mimicry between interactive
race 1.0 and blocked input 1.0. Interactive race 1.0 predicted decay
rates that were much steeper than the rates observed in movement
neurons. Neural data did not distinguish between models of fixa-
tion and movement initiation. All models predicted cancel times

Figure 13. Predicted activation functions for move and fix units in the baseline model, interactive race model
2.0, blocked-input model 2.0, and boosted fixation model 1.0 for monkey C and monkey A. All models address
fixation and movement initiation. For each model, the left panel shows activation of the go unit and the right
panel shows activation of the stop unit. The horizontal line represents the threshold, estimated from model fits.
The leftmost vertical line represents stop-signal onset. The rightmost vertical line represents stop signal RT,
estimated from the simulated data using the independent race model, plus stop signal delay. The dashed vertical
line represents mean divergence time. Cancel time is divergence time minus stop signal RT.
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and growth and decay rates that were similar to each other and
similar to the observed measures from movement neurons. How-
ever, the constraints that corrected the models’ neural predictions
broke the mimicry in the behavioral fits. Baseline fit worse than
any other model, and interactive race 2.0 fit worse than blocked
input 2.0 and boosted fixation 1.0. Neural data may break the
mimicry between blocked input 2.0 and boosted fixation 1.0: After
successful inhibition, boosted fixation 1.0 predicts a rapid rise in
fixation unit activity to a steady state that is 3–17 times higher than
the steady state activity before the movement. Actual fixation
neurons return to premovement firing rates after successful inhi-
bition (Hanes et al., 1998).

Breaking mimicry with converging computational
constraints. Our models suggest the importance of converging
computational constraints on the search for underlying mecha-
nisms. The purported mechanism should serve more than one
computational function, so the constraints required to implement
one function constrain the implementation of the other. The re-
quirement to maintain fixation constrained the interaction between
fix and move units in a way that made it difficult for interactive
race 2.0 to account for response inhibition accurately. This prin-
ciple of converging computational constraints is similar to the

principle of converging operations (Garner, Hake, & Eriksen,
1956) that guided the search for mental operations in the early days
of cognitive psychology. Psychology and neuroscience have ad-
vanced a lot in the meantime, but the principle of converging
constraints remains valid and useful.

Inevitable mimicry of blocking and inhibiting? Our modeling
exercise can be viewed pessimistically as a never-ending compe-
tition between inhibition and blocking as mechanisms of stopping,
in which we constantly revise each model to address challenges
from the other. Interactive race 1.0 assumes that inhibition causes
stopping. Blocked input 1.0 assumes blocking and works as well or
better. Blocked input 2.0 fit better than interactive race 2.0 but no
better than boosted fixation 1.0, which invokes inhibition through
another mechanism (boost, not �stop). Indeed, blocking could be
accomplished by removing input (e.g., by moving the eyes or
closing them) or by inhibiting it, leading to another series of
models and revisions. Much of the research on distinguishing other
forms of inhibition from noninhibitory alternatives has followed a
similar course of revision without resolution (see MacLeod, Dodd,
Sheard, Wilson, & Bibi, 2003). Historically, cognitive research on
broad binary distinctions has followed the same course, leading
Newell (1973) to claim, “You can’t play 20 questions with nature
and win” (p. 283).

Figure 14. Mean growth and decay rates for observed and predicted
activation functions for monkeys C and A. Observed growth and decay
rates are estimates from neural activity that was recorded from frontal eye
fields (FEF) while the behavioral data that were modeled were gathered.
Predicted cancel times are from the baseline model, interactive race 2.0,
blocked input 2.0, and boosted fixation 1.0.

Figure 15. Mean observed and predicted cancel times for monkeys C and
A. Observed cancel times are estimates from neural activity that was
recorded from frontal eye fields (FEF) while the behavioral data that were
modeled were gathered. Predicted cancel times are from the baseline
model, interactive race 2.0, blocked input 2.0, and boosted fixation 1.0.
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We view our modeling effort more optimistically. Broad con-
cepts like inhibition and blocking input cannot be tested rigorously
unless they are instantiated in specific architectures described by
specific equations (also see Newell, 1990; Townsend, 1990;
Townsend & Ashby, 1983). From this perspective, each of the
models we examined is a different instantiation of the general
principle of inhibition or blocking, and our model fits and neural
predictions allowed us to rule out some specific instantiations of
the principles and guide us toward the more effective instantia-
tions. We found problems with each of the inhibition models
(interactive race 1.0 overpredicted decay rates; interactive race 2.0
misfit the behavioral data; boosted fixation 1.0 overpredicted
postinhibition steady-state fixation rates) and no problems with the
blocking models (blocked input 1.0 and 2.0 both fit the behavioral
data well and predicted the neural data accurately). It is hard to say
whether blocking or inhibition is superior in general, but it was
clear in these particular cases. Evaluating models case by case is
the road to progress.

Our models may be less susceptible to mimicry because of our
core assumptions that link model components to specific neurons
and the connections between them. Inhibition and excitation may
be similar mathematically and produce similar effects on behavior,
but they are very different neurophysiologically. Inhibitory and

excitatory neurons have different morphology and are mediated by
different transmitter substances. Animal models allow pharmaco-
logical interventions, stimulation, and surgery that target inhibitory
or excitatory systems to distinguish the alternatives (e.g., Eagle,
Bari, & Robbins, 2008). Recordings from single neurons provide
important converging data that can break mimicry.

In the spirit of competitive hypothesis testing, we have treated
blocking and inhibition as mutually exclusive acts of control, but
there is no strong reason to do so. Equation 5 shows that blocking
and inhibition modulate separate components of growth rate:
blocking changes �move and inhibition changes �fix · afix(t). Noth-
ing in the mathematics or the theory prevents both components
from changing when a stop signal occurs. Indeed, there may be
much to be learned from asking whether people and animals can
use both mechanisms. The possibility of two mechanisms might
give new insights into inhibitory deficits in clinical, developmen-
tal, neurological, and neuroscientific research. Deficits may differ
depending on the inhibitory mechanism that is affected. Sensory or
attentional challenges may affect blocking while motor challenges
may affect inhibition.

Linking Propositions

A main goal of this research is to link computational models of
response inhibition to the underlying physiology. All of the models
we considered assume that the computation underlying the go
process is stochastic accumulation to a threshold, and all of the
models link this computation to gaze-shifting neurons in frontal
eye fields and superior colliculus. This linking proposition is well
established in previous research (Hanes & Schall, 1996; Pouget et
al., 2011; Purcell et al., 2010, 2012; Ratcliff et al., 2003; also see
Gold & Shadlen, 2007; Shadlen & Kiani, 2013) and consistent
with our current findings. Our models differ in their assumptions
about the computational mechanism underlying the stop process
(inhibition, blocking, or boosting) and make different linking
propositions that connect them to the underlying physiology. In-
teractive race 1.0 and 2.0 link the stop process to exclusively
fixation neurons in frontal eye fields and superior colliculus and
the inhibitory connections from fixation neurons to movement
neurons (also see Boucher et al., 2007). Blocked input 1.0 and 2.0
and boosted fixation 1.0 emphasize the contribution of stop pro-
cesses outside the network of fixation and movement neurons that
tip the balance in the network in different ways.

The model fits call into question the linking propositions in the
interactive race models that identify the stop process with fixation
neurons and their connections to movement neurons. Blocked
input 1.0 fit the behavioral data as well as interactive race 1.0,
suggesting that inhibition from fixation neurons to movement
neurons is not necessary to account for response inhibition. Inhi-
bition may be sufficient, but blocking the input is also sufficient.
Interactive race 2.0 did not fit as well as blocked input 2.0 or
boosted fixation 1.0, suggesting that the stop process lies outside
the network of fixation and movement neurons. The stop process
shifts the balance in the network (Schall, 2004) but lies outside it.
However, we have not specified the linking propositions that
connect blocking the input and boosting fixation to actual neurons
or neural networks. That is an important goal for future work.

These conclusions suggest the importance of distinguishing
between the source and the site of response inhibition (Band & van

Table 3
Unconstrained Models of Fixation and Movement Initiation

Interactive
race 2.0

Blocked
input 2.0

Boosted
fixation 1.0

Monkey C
�move 0.585 0.417 0.354
	move 1.000 1.000 1.000
�move 0.005 0.004 0.004
kmove 0.015 0.008 0.007
Dmove 37.89 46.32 42.09
�fix 0.679 0.331 0.425
	fix 1.000 1.000 1.000
�fix 0.012 0.010 0.009
kfix 0.015 0.008 0.008
Dfix 46.12 47.82 53.18
� 25.21 27.89 24.90
Dcontrol — 89.61 77.69
b — — 2.99
Pearson’s 
2 53.05 35.08 37.79

Monkey A
�move 0.613 0.391 0.391
	move 1.000 1.000 1.000
�move 0.003 0.005 0.009
kmove 0.014 0.006 0.006
Dmove 47.11 41.26 38.29
�fix 0.625 0.323 0.324
	fix 1.000 1.000 1.000
�fix 0.013 0.009 0.012
kfix 0.013 0.006 0.006
Dfix 39.82 45.85 38.63
� 38.32 28.98 25.86

Dcontrol — 62.02 68.41
b — — 17.69
Pearson’s 
2 113.15 62.02 64.43

Note. Best fitting parameter values and measures of goodness of fit for
the interactive race model, blocked input model, and the boosted fixation
model for monkeys C and A. In all model fits move and fix parameters
were free to vary. Values in bold italics were fixed a priori.
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Boxtel, 1999). The site is the locus at which go responses are
actually inhibited—the point immediately before the point of no
return (De Jong et al., 1990; Logan, 1981; Osman et al., 1986,
1990). The source is the locus at which the significance of the stop
and go stimuli is apprehended and from which an effect on the site
is propagated. All of the models assume that the site of response
inhibition is the network of gaze-holding and gaze-shifting neu-
rons that ranges from cortex to brain stem. They differ in their
assumptions about the source. Interactive race models assume it is
inside the gaze control network, while blocked input and boosted
fixation models assume it is outside the gaze control network.

Functional MRI (fMRI) studies reveal an extensive network of
brain areas involved in stopping responses, including motor cortex,
premotor cortex, supplementary motor area, anterior cingulate
cortex, inferior frontal cortex, basal ganglia, and subthalamic nu-
cleus (Aron et al., 2007; Ridderinkhof, van den Wildenberg, Se-
galowitz, & Carter, 2004; Swick, Ashley, & Turken, 2011; Zand-
belt, Bloemendaal, Hoogendam, Kahn, & Vink, 2013). The site of
inhibition is likely motor cortex for keypress responses and frontal
eye fields for eye movements (Curtis, Cole, Rao, & D’Esposito,
2005). The source of inhibition could be in one or more of the
other areas. However, activation in these areas may be a conse-
quence of inhibition rather than the cause of it, and distinguishing
consequences from causes requires more temporal precision than
fMRI can provide. Electrophysiology has the required temporal
resolution and may help disambiguate fMRI results. Single cell
recordings from supplementary eye fields (Stuphorn et al., 2000,
2010) and anterior cingulate cortex (Ito et al., 2003) reveal neurons
whose activity modulates on stop-signal trials, but the modulation
occurs well after SSRT, suggesting it is a consequence of inhibi-
tion rather than a cause (also see Chen, Scangos, & Stuphorn,
2010; Scangos Aronberg, & Stuphorn, 2013; Scangos & Stuphorn,
2010; Schmidt, Leventhal, Mallet, Chen, & Berke, 2013).

Ultimately, specifying the source and the site will require spec-
ifying the connections between them. Further developments will
include specifying the connections between perceptual inputs and
the decision mechanism in the source. Imaging studies are devel-
oping methods for identifying connectivity between brain areas in
humans (Aron, Behrens, Smith, Frank, & Poldrack, 2007; Duann,
Ide, Luo, & Li, 2009; Zandbelt et al., 2013). Animal studies afford
more direct measures. In our modeling of saccadic inhibition, we
assume visually responsive neurons are the inputs to movement
related neurons in frontal eye fields (Purcell et al., 2010, 2012).
Specifying the inputs to the visually responsive neurons is an
important goal for our future research.

Beyond Saccades

The models addressed in this article focus on behavior and
physiology in countermanding saccadic eye movements. We be-
lieve eye movements provide an ideal model system in which to
link computation, behavior, and neurophysiology. The computa-
tional constraints and the underlying neurophysiology are well
understood, and that allows us to formulate and test hypotheses
about linking propositions. Eye movements are simple—there are
basically only two degrees of freedom to control, according to
Listing’s law. Body movements involve many more degrees of
freedom, some of which are coupled dynamically to perform the
task at hand. However, the stop signal studies we hope to inform

use keypress responses, which involve simple flexion movements
of single fingers. We believe our models will generalize to key-
presses and other movements.

Saccades may be special: Saccadic SSRTs are faster than man-
ual SSRTs (Boucher, Stuphorn, Logan, Schall, & Palmeri, 2007;
Logan & Irwin, 2000) and are affected by different variables
(Logan & Irwin, 2000). Manual stop-signal tasks pervade the
countermanding literature (Logan, 1994; Verbruggen & Logan,
2008), and manual SSRTs are not different from vocal SSRTs (van
den Wildenberg & Christoffels, 2010; Xue, Aron, & Poldrack,
2008) or foot SSRTs (if measured from the onset of electromyo-
graphic activity; Tabu, Mima, Aso, Takahashi, & Fukuyama,
2012). Brunamonti et al. (2012) found no difference in SSRTs with
finger, wrist, and arm movements. Thus, saccadic SSRTs may be
outliers. Does this challenge our assumption that eye and hand
movements are stopped by the same mechanism (Brunamonti et
al., 2012; Logan & Irwin, 2000)?

From a strict anatomical perspective, the answer must be “yes.”
Stopping a response modulates activity in motor cortex, among
other loci, and eye and hand movements involve different regions
of motor cortex: the frontal eye fields, which control eye move-
ments, are anterior to the motor strip, which controls hand move-
ments. However, we believe the models we considered can be
extended naturally to countermanding of other responses. The
circuits that underlie eye, hand, and body movements in cortex,
basal ganglia, and thalamus are more similar than different. Stop-
ping a manual response requires modulation of activity in motor
and premotor cortex (Mirabella et al., 2011) and basal ganglia
(Schmidt et al., 2013), while stopping a saccade requires modula-
tion of activity in frontal eye field, superior colliculus, and basal
ganglia circuits.

From a functional perspective, the answer is “no.” Differences
in SSRT do not challenge our generalization from eye movements
to other kinds of movements. Eye movements show the same
qualitative and quantitative effects as hand movements, as pre-
dicted by the independent race model: monotonic inhibition func-
tions and signal-respond RTs that are faster than no-stop-signal
RTs (Boucher, Stuphorn, et al., 2007; Hanes & Carpenter, 1999;
Hanes & Schall, 1995; Logan & Irwin, 2000; Middlebrooks &
Schall, 2014). The same models may apply but with different
parameter values to accommodate the differences in RT.

From a theoretical perspective, the answer is also no. There are
two components to our theory: The stochastic accumulator models
and the neurons they are mapped onto by our linking propositions.
The stochastic accumulator models address behavior, and so could
be fit to behavioral data from any stop-signal task, regardless of the
response. If we disregard the process that stops the response
(blocking or inhibition) and assume there is no leakage, then our
models are examples of the “special independent race models” that
Logan et al. (2014) developed for keypress responses. In these
models, one stop diffusion races against N go diffusions, one for
each possible go response. For saccades, choice errors are rare, so
N � 1. Thus, the mathematics and computations of our models
could be extended easily to other responses.

Extending our models to other responses would require us to
change the specific linking propositions that connect components
of the stochastic accumulators to particular neurons. After all,
keypresses are not controlled by the frontal eye fields. However,
other responses invite parallel sets of linking propositions that
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connect model components to the neurons and neural circuits that
control those responses. We hope that our models and analyses
might guide researchers in searching for the neurons that link to
the computations.

The Independent Race Model Revisited

The current models invite comparisons with independent race
models (Logan & Cowan, 1984; Logan et al., 2014). All of the
models predict inhibition functions, signal-respond RT, and SSRT.
The current models go beyond independent race models in asking
how response inhibition occurs. Our demonstrations of model
mimicry reveal several possible mechanisms for stopping re-
sponses but do not allow clear conclusions about which mecha-
nism best accounts for stop-signal data. Inhibiting go activation
works as well as blocking the input (i.e., interactive race 1.0 fit as
well as blocked input 1.0, and boosted fixation 1.0 fit as well as
blocked input 2.0). All of our models assume growth of activation
to a threshold, and any mechanism that stops or reverses that
growth seems sufficient to explain behavioral and physiological
data. Thus, it is reasonable to ask what we gain from modeling the
process that stops the response.

The current model fits cannot be compared with fits of the
original independent race model because that model is nonpara-
metric. The independent race model makes predictions for all
finishing time distributions, regardless of their form, and its pre-
dictions are not evaluated by fitting the model to data (Logan &
Cowan, 1984). Boucher et al. (2007) developed a version of the
independent race model in which stop and go units were stochastic
accumulators and the race ended when the first process hit its
threshold (cf. Logan et al., 2014). They compared this model to the
interactive race model and found equivalent fits (see Boucher et
al., 2007, Table 1). Our own comparisons of the same independent
race model to interactive race 1.0 also produced equivalent fits (see
Appendix B, Table B1).

An important strength of independent race models is that they
provide measures of SSRT (Colonius, 1990; De Jong et al., 1990;
Logan & Cowan, 1984; Logan et al., 2014; Matzke et al., 2013),
which have been useful in clinical science, developmental science,
neurology, and neuroscience (Verbruggen & Logan, 2008). The
measures of SSRT are easy to calculate (no model fitting is
required), so investigators who are primarily interested in SSRT
might find it more convenient to use the Logan and Cowan (1984)
independent race model (see Band et al., 2003; Verbruggen et al.,
2013).

An important strength of the models we consider here is that
they provide measures of the components of SSRT, separating the
afferent processing of the stop signal from the interactive process-
ing that reverses go activation and stops the response: SSRT �
afferent time � interactive time (Boucher et al., 2007). Separating
components may be important beyond our immediate goal of
linking models to neurons. It may provide important insight into
SSRT deficits in clinical science, developmental science, neurol-
ogy, and neuroscience, distinguishing deficits in afferent process-
ing from deficits in executing the interaction. Populations with
sensory or attentional challenges may show prolonged afferent
processing. Populations with motor challenges may show a pro-
longed interactive period. These measures are harder to obtain than

SSRT (model fitting is required), but the potential gain in under-
standing may be well worth the effort.

An important point, emphasized by Boucher et al. (2007), is that
the afferent times are large, relative to SSRT, in all of the models
we analyzed. Thus, the stop process is independent of the go
process for much of its duration. The interaction between stopping
and going that reverses the trajectory of go activation is late and
potent, as Boucher et al. (2007) observed. Thus, the models ap-
proximate the independent race model. Much of their ability to
predict behavior may follow from the closeness of this approxi-
mation. The principles underlying the independent race model may
be doing most of the work.

Conclusions

The Boucher et al. (2007) interactive race model was an impor-
tant step forward in understanding saccadic countermanding be-
cause it specified the mechanism that stops responses, and it
provided an accurate account of behavioral and physiological data.
The present article takes another step forward by proposing and
testing alternative, blocked input models that specify a different
mechanism for stopping responses. We showed that the blocked
input model accounts for behavioral and physiological data as well
as or better than the interactive race model. The blocked input
model provides a different perspective on the linking propositions
that relate computational and physiological mechanisms.
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Appendix A

Description of Fitting Procedure

Standard Fitting Method

All models were fitted separately to two sets of behavioral data
acquired from two monkeys who performed a saccadic counter-
manding task (see Hanes et al., 1998, for details of the data
collection procedure). Model parameters were optimized by min-
imizing 
2 between the behavioral data and model predictions, as
in Boucher et al. (2007).

The behavioral data consisted of p(respond|signal) and RT for
signal-respond trials at each SSD and for no-signal trials (see
Boucher et al., 2007, for detailed descriptions of the data selection
procedure). There were 2,431 trials from monkey C and 2,928
trials from monkey A. For conditions in which the total number of
trials was greater than 40, RTs were binned into five intervals,
each bounded by a quintile above (i.e., 0–20%, 20–40%, . . .
80–100%). For conditions in which the total number of trials was
smaller than 40 (i.e., for short SSDs), all RTs were grouped into a
single bin. The frequency (fij) of RTs for each quintile bin and for
signal-inhibit trials for each condition served as observed data
points to which model predictions were compared (where i indexes
SSD and no-signal conditions and j indexes quintile bins and
signal-inhibit trials).

To generate model predictions, a model was run 1,500 trials for
each SSD and no-signal conditions. For monkey C, there were four
SSDs and one no-stop-signal condition, for a total of 7,500 sim-
ulated trials. For monkey A, there were six SSDs and one no-stop-
signal condition for a total of 10,500 simulated trials. The propor-
tions (pij) of signal-inhibit trials and those of signal-respond trials
that fall within the quintile bins, as defined by the behavioral data,
were computed. The 
2 was calculated by


2 � �
i

�
j

(fij � Ni · pij)
2

Ni · pij
,

where Ni is the total number of trials for the respective SSD and
no-signal conditions for a given subject. The figures showing best
fits to the data include all SSDs in the inhibition functions but only
plot cumulative distribution functions for SSDs that include 40 or
more trials, following Boucher et al. (2007).

A simplex method (Nelder & Mead, 1965) was used to find the
global minima. The model was first fitted to the data of the no-signal
condition to optimize the parameters of the go unit (see Table 1)
except for the lateral inhibition parameter (�go), because the pa-
rameter had no effect in the no-signal trials throughout which the
stop unit is inactive. One hundred random positions were used as
the initial position of the simplex. Next, these go parameters were

fixed at the best values, and the remaining parameters were opti-
mized by fitting to the data of the stop-signal trials, starting with
400 initial positions. Finally, all parameters were set free and the
simplex was implemented, using the best parameter values for the
go and stop units obtained in the preceding steps as the starting
values.

Alternative Fitting Methods

We considered two alternatives to our standard fitting method.
Both alternatives evaluated the model fits with the Bayesian In-
formation Criterion (BIC) as defined for multinomial data:

BIC � �2�
i

�
j

Nipij · ln(�ij) � m · ln��i
Ni� (A1)

where pij and �ij are the proportions of predicted and observed
RTs, respectively, for quintile bin j (i indexes all SSD and no-
signal conditions and j indexes quintile bins and signal-inhibit
trials), Ni is the number of trials in condition i, and m is the number
of free parameters in the model (see Leite & Ratcliff, 2010;
Wasserman, 2000).

First, we replicated our standard fitting method, minimizing the
deviance term in Equation A1 instead of 
2. As before, we fit the
no-signal data by themselves to generate starting values for the go
unit. Then we fixed those values and fit the whole data set,
including stop-signal trials, to generate starting values for the stop
unit. Then we fit the whole data set using the starting values
obtained in the first two steps. The best-fitting parameter values
and BIC measures for fits of interactive race 1.0 and blocked input
1.0 for each monkey are presented in Table A1 along with the
best-fitting parameter values and 
2 measures from our original
fits. The BIC measures led to the same conclusion as the 
2 values:
interactive race 1.0 fit about as well as blocked input 1.0. The
best-fitting parameter values were very similar.

The best-fitting parameter values and BIC values for the base-
line model, interactive race 2.0, blocked input 2.0, and boosted
fixation 1.0 appear in Table A2. The BIC values did not differ
much between the models, ranging from 7256.9 (baseline model)
to 7212.7 (blocked input 2.0) for monkey C, and from 7655.7
(blocked input 2.0) to 7597.6 (baseline model) for monkey A. The
best-fitting parameter values were generally similar to those from
the 
2 fits, although there were some tradeoffs: �move, �fix, Dmove,
Dfix, and � tended to be smaller in the BIC fits than in the 
2 fits,
suggesting a slower growth of activation that began earlier and
reached a lower threshold for both go and stop units.

(Appendices continue)
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Second, we used a genetic algorithm (Haupt & Haupt, 2004) to
generate starting values instead of following our usual procedure,
using BIC as the fit statistic. We used a three-step procedure: First,
we ran a search with 200 simulations per condition with three
colonies and a population size of 30. Second, we ran a search with
1,500 simulations per condition, with one colony and a population
size of 30. One set of starting values was the best-fitting param-
eters from the first search. The other 29 were generated randomly.
Third, we used the best-fitting parameters from the second step for
a final simplex fit. We ran these three steps 400 times for each
model and each monkey.

The best-fitting parameter values and BIC measures for genetic
algorithm fits of interactive race 1.0 and blocked input 1.0 for each
monkey are presented in Table A1 along with the best-fitting

parameter values and 
2 measures from our original fits. The BIC
values were about the same as the ones obtained with our usual
procedure, suggesting there was no strong advantage in using the
genetic algorithm. The genetic algorithm produced BIC values that
were similar for the two models, supporting the conclusion of
model mimicry. The parameter values differed from those from the
other fits: Dstop decreased in interactive race 1.0, NDstop decreased
in blocked input 1.0, and �stop and 	stop increased in both models.

We repeated these procedures for fits of the constrained versions
of the baseline model, interactive race 2.0, blocked input 2.0, and
boosted fixation 1.0. Our initial runs of the genetic algorithm
produced threshold values for the go unit that were much lower
than the asymptotic activation in the fix unit during steady-state
fixation (e.g., for baseline model, � � 5.66 and �fix/kfix � 69

(Appendices continue)

Table A1
Comparing Model Fits Generated With Different Fit Statistics (
2 vs. Bayesian Information Criterion or BIC) and Different Fitting
Methods (Our Standard Method vs. Genetic Algorithm or GA)

Interactive race 1.0 Blocked input 1.0

Pearson’s 
2 BIC GA/BIC Pearson’s 
2 BIC GA/BIC

Monkey C
�go 0.217 0.241 0.229 0.307 0.310 0.299
	go 1 1 1 1 1 1
�go 0.007 0.009 0.332 — — —
kgo — — — 0.003 0.003 0.004
Dgo 35 35 35 35 35 35
�stop 0.686 0.775 2.261 0.995 1.032 8.046
	stop 1.626 1.578 9.89 1.429 1.048 8.33
�stop 0.703 0.780 0.363 — — —
kstop — — — 0 0.001 0.064
NDstop — — — 22.51 18.85 47.59
Dstop 84.32 83.24 51.78 — — —
� 41.93 51.99 48.19 47.74 49.15 44.42
Fit statistic 41.93 7259.6 7227.8 39.54 7220.6 7302.7

Monkey A
�go 0.204 0.217 0.202 0.275 0.260 0.333
	go 1 1 1 1 1 1
�go 0.002 0.002 0.711 — — —
kgo — — — 0.003 0.002 0.005
Dgo 80 80 80 80 80 80
�stop 0.797 0.973 9.398 1.069 1.468 8.887
	stop 1.463 1.722 10.009 1.656 1.383 1.126
�stop 0.758 0.955 0.949 — — —
kstop — — — 0 0.001 0
NDstop — — — 10.8 11.77 48.83
Dstop 68.33 66.43 49.64 — — —
� 38.99 41.06 38.84 39.54 40.90 41.44
Fit statistic 124.96 7672.7 7666.9 123.81 7707.7 7707.0

Note. Fixed parameters are in bold italics.
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for monkey C and � � 0.818 and �fix/kfix � 149 for monkey A; for
interactive race 2.0, � � 0.090 and �fix/kfix � 115 for monkey C and
� � 0.802 and �fix/kfix � 90 for monkey A), so RT was determined
much more strongly by the release of inhibition from fix units than by
the growth of activation in move units. By contrast, go thresholds
were very similar to asymptotic activation in the fix unit in the 
2 fits
(e.g., for baseline model, � � 46 and �fix/kfix � 46 for monkey C and
� � 39 and �fix/kfix � 43 for monkey A; for interactive race 2.0, � �
46 and �fix/kfix � 57 for monkey C and � � 46 and �fix/kfix � 46 for
monkey A), reflecting the similarity of firing rates of gaze-holding
neurons during fixation and gaze-shifting neurons at threshold (Hanes
et al., 1998; Paré & Hanes, 2003). Consequently, we reran the fits
with the constraint that go thresholds could not be less than 50% of the
steady-state activation in fix units (i.e., � � 0.5 � �fix/kfix). The
best-fitting parameter values and fit statistics are presented in Table
A2.

The BIC values in the genetic algorithm fits were somewhat
larger than the BIC values produced by our usual procedure,
suggesting that the genetic algorithm did not find better parameter
values. In the genetic algorithm fits, the BIC values did not vary
much among the models, ranging from 7262.0 (baseline model) to
7240.1 (blocked input 2.0) for monkey C, and from 7691.3 (base-
line model) to 7655.7 (blocked input 2.0) for monkey A. Several
parameters changed substantially from the 
2 fits: �move, �fix,
kmove, and kfix were larger, whereas Dmove, Dfix, and � were smaller.

These analyses led us to conclude that the fitting procedures did
not have much effect on the conclusions we could draw from the
fits. The procedures that used BIC did not distinguish as clearly
among the models. We preferred to use 
2 because it facilitates
comparisons with Boucher et al. (2007), who also used it, and it
allows us to test the significance of differences in goodness of fit
for nested models.

(Appendices continue)

Table A2
Comparing Model Fits Generated With Different Fit Statistics (
2 vs. Bayesian Information Criterion or BIC) and Different Fitting
Methods (Our Standard Method vs. Genetic Algorithm or GA)

Baseline Interactive race 2.0 Blocked input 2.0 Boosted fixation 1.0

Pearson’s

2 BIC BIC/GA

Pearson’s

2 BIC BIC/GA

Pearson’s

2 BIC BIC/GA

Pearson’s

2 BIC BIC/GA

Monkey C
�move 0.694 0.426 0.582 0.556 0.417 0.573 0.439 0.368 0.36 0.458 0.356 0.499
	move 1 1 1 1 1 1 1 1 1 1 1 1
�move 0.006 0.01 0.342 0.005 0.006 0.503 0.004 0 0.271 0.005 0.008 0.416
kmove 0.015 0.005 0.015 0.013 0.009 0.014 0.009 0.003 0.02 0.009 0.007 0.024
Dmove 44.92 17.79 18.9 37.84 42.31 2.2 44.77 10.22 77.21 37.15 54.92 65.29
�fix 0.694 0.426 0.582 0.556 0.417 0.573 0.439 0.368 0.36 0.458 0.356 0.499
	fix 1 1 1 1 1 1 1 1 1 1 1 1
�fix 0.006 0.01 0.342 0.011 0.017 0.307 0.004 0 0.271 0.005 0.008 0.416
kfix 0.015 0.005 0.015 0.013 0.009 0.014 0.009 0.003 0.02 0.009 0.007 0.024
Dfix 44.92 17.79 18.9 37.84 42.31 2.2 44.77 10.22 77.21 37.15 54.92 65.29
� 45.92 20.11 25.12 38.84 19.69 28.53 36.68 57.56 16.26 42.05 23.04 20.78
Dcontrol — — — — — — 88.29 77.65 64.43 78.22 70.35 24.38
b — — — — — — — — — 3.71 2.87 12.27
Fit statistic 354.82 7256.9 7262 63.14 7227.3 7266.1 40.45 7212.7 7240.1 46.05 7224.2 7250.9

Monkey A
�move 1.261 0.596 0.927 0.826 0.509 0.575 0.362 0.415 0.426 0.365 0.435 0.484
	move 1 1 1 1 1 1 1 1 1 1 1 1
�move 0.01 0.015 1.000 0.004 0.001 0.039 0.005 0.004 0.096 0.009 0.007 0.137
kmove 0.022 0.004 0.015 0.018 0.009 0.012 0.007 0.005 0.014 0.006 0.005 0.015
Dmove 55.28 33.93 0.00 50.49 24.15 0.00 49.25 36.86 62.48 41.53 60.71 36.44
�fix 1.261 0.596 0.927 0.826 0.509 0.575 0.362 0.415 0.426 0.365 0.435 0.484
	fix 1 1 1 1 1 1 1 1 1 1 1 1
�fix 0.01 0.015 1 0.014 0.013 0.101 0.005 0.004 0.096 0.009 0.007 0.137
kfix 0.022 0.004 0.015 0.018 0.009 0.012 0.007 0.005 0.014 0.006 0.005 0.015
Dfix 55.28 33.93 0 50.49 24.15 0 49.25 36.86 62.48 41.53 60.71 36.44
� 45.83 4.21 40.66 46.31 24.15 30.76 46.31 38.48 22.55 26.07 19.58 27.59
Dcontrol — — — — — — 62.33 61.62 0.00 61.03 74.72 62.15
b — — — — — — — — — 17.96 22.88 43.94
Fit statistic 311.36 7597.6 7691.3 167.63 7630.7 7675.9 93.6 7607 7655.7 68.52 7611.1 7664.2

Note. Parameters constrained to be the same for move and fix units are in bold italics.
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Appendix B

Alternative Interactive Race Models

Here, we evaluate alternative versions of the interactive race
model to explore the importance of the ancillary assumptions
Boucher et al. (2007) made in fitting the model. The first assump-
tions we consider are that threshold was fixed at 1,000 and the
assumption that noise should be a free parameter. In most fits of
stochastic accumulator models, threshold is a free parameter (to
account for the speed–accuracy trade-off) and noise is fixed at
some arbitrary value to fix the scale for the other parameters. We
fit the interactive race model to the data from monkeys A and C,
allowing threshold to vary freely and fixing noise (SDgo � 1). The
details of the modeling are presented in Appendix A. The values of
the best-fitting parameters and measures of goodness of fit are
presented in Table B1 along with the parameters and measures of
goodness of fit for the original interactive race model. The fits of
the new model were just as good as the fits of the original
interactive race model. Consequently, we let threshold vary as a
free parameter and fixed noise in all subsequent model fits.

Next, we assessed the importance of stochastic variability in the
afferent stage of the stop process. Boucher et al. (2007) assumed
that processes before the interactive stage of the stop process were

constant in duration. We compared an interactive race models with
deterministic (i.e., constant) and stochastic afferent stages. We
assumed the afferent stage consists of a brief nondecision time of
Dstop ms and a subsequent stochastic accumulation stage in which
activation reflecting the presence of the stop signal increases with
rate �stop to a threshold �stop. When the stop unit reaches threshold,
the interactive stage begins and the stop process starts to inhibit the
go unit.

Finally, we assessed the importance of the temporal dynamics of
the activation in the interactive stage, comparing three different
models, one in which activation grows from zero, as in Boucher et
al. (2007), one in which activation is constant at the value it
reaches when it reaches threshold, and one in which activation
continues to grow after it reaches threshold.

In the grow-from-zero model, the activation in the stop unit
begins at zero and grows at the same rate as stop activation grew
before reaching threshold (i.e., at rate �stop). We evaluated models
in which the rate of activation could be different before and after
stop activation reached threshold and found no substantial im-
provement in goodness of fit. In the grow-from-zero model, stop

Table B1
Best Parameters and Goodness of Fit

Model �go 	go �go �go �stop 	stop �stop �stop Dstop � 
2

Monkey C
Threshold fixed

Independent race 4.64 20.26 — — 17.67 15.58 — — 29 1000 57.24
Interactive race 4.63 20.43 0.010 — 4.62 20.41 0.434 — 67 1000 50.64

Variance fixed
Independent race 0.230 1.000 — — 0.897 2.073 — — 29.08 48.80 43.87
Interactive race 0.225 1.000 0.010 — 4.896 1.172 0.651 — 77.23 47.50 48.61
Grow from zero 0.222 1.000 0.010 — 0.590 1.280 0.700 — 0.00 47.87 43.67
Constant at threshold 0.228 1.000 — — 0.919 1.461 0.525 — 29.17 48.39 41.73
Grow from threshold 0.226 1.000 0.017 — 0.564 1.438 0.465 — 0.00 47.83 46.48
Blocked input stochastic 0.307 1.000 — 0.003 0.995 1.429 — 0.000 22.51 47.74 39.54
Blocked input constant 0.297 1.000 — 0.003 — — — — 73.49 48.43 47.99

Monkey A
Threshold fixed

Independent race 5.09 26.38 — — 50.24 40.17 — — 51 1000 128.80
Interactive race 5.08 26.24 0.005 — 5.07 26.34 0.111 — 51 1000 120.94

Variance fixed
Independent race 0.217 1.000 — — 0.684 2.085 — — 10.43 40.86 126.98
Interactive race 0.214 1.000 0.002 — 0.752 1.674 0.776 — 70.28 40.37 133.44
Grow from zero 0.211 1.000 0.008 — 0.668 2.021 0.763 — 9.98 40.06 117.43
Constant at threshold 0.219 1.000 — — 0.738 1.586 0.715 — 12.46 40.14 130.25
Grow from threshold 0.220 1.000 0.009 — 0.629 1.760 0.556 — 0.00 41.00 131.12
Blocked input stochastic 0.275 1.000 — 0.003 1.069 1.656 — 0.000 10.8 39.54 123.81
Blocked input constant 0.252 1.000 — 0.004 — — — — 49.25 36.47 130.23

Note. Fixed parameters in bold italics.

(Appendices continue)
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activation grows over time according to Equation 2 and inhibits the
go unit by an amount proportional to the amount by which
stop activation exceeds threshold (i.e., astop(t) – �stop). Thus, if
astop(t) � �stop, then Equation 1 becomes:

dago(t) �
dt

�
[�go � �stop · (astop(t) � �stop)] ��dt

�
· �go.

(B1a)

If astop(t) � �stop, then Equation 1 becomes:

dago(t) �
dt

�
�go ��dt

�
· �go. (B1b)

This is essentially the same assumption about inhibition that was
made in the original interactive race model. This model evaluates
the importance of having a stochastic afferent stage in the stop
unit. Note that k � 0 so the leakage term drops out of Equations
B1a and B1b.

In the constant-at-threshold model, the activation in the stop unit
equals the amount of activation required to reach threshold (i.e.,
�stop). In this model, the stop unit inhibits the go unit strongly and
steadily as soon as it begins. Thus, when astop(t) reaches threshold,
Equation 1 becomes:

dago(t) �
dt

�
[�go � �stop · �stop] ��dt

�
· �go, (B2)

When astop(t) is below threshold, Equation B1b applies. This
model evaluates the importance of having inhibition grow over
time.

In the grow-from-threshold model, the activation in the stop unit
continues to grow at rate �stop after stop activation reaches thresh-
old. In this model, the stop process inhibits the go unit strongly as
soon as the interactive phase begins, and the inhibition continues

to grow stronger over time. Equation B1b applies until astop(t)
reaches threshold, and then Equation 1 applies. In this model,
astop(t) � �stop at the beginning of the interactive stage and it
continues to grow throughout the duration of the interactive stage.
This model evaluates the importance of having activation grow
over time if it starts from a large value.

The values of the parameters that produced the best fits and
measures of goodness of fit are presented in Table B1. All three
models fit the data well and the fits were as good as the fits of the
original interactive race model. Thus, the original assumption that
Dstop was a constant does not seem to be necessary to produce
good fits to the data. Models that include the more plausible
assumption that there is stochastic variability in the afferent stage
of the stop process fit just as well. Previous studies assuming
SSRT is constant instead of variable showed that the assumption
had little effect on estimates of SSRT if stop and go processes were
independent (Band et al., 2003; De Jong, et al., 1990; Logan &
Cowan, 1984; Verbruggen et al., 2013). The present models extend
that conclusion to fits of inhibition functions and distributions of
signal-respond and no-signal go RTs.

The three models made very different assumptions about the
temporal dynamics of the inhibition in the interactive phase, but
these assumptions did not result in substantial differences in
goodness of fit. Inhibition must be strong enough to prevent go
activation from reaching threshold, but how its strength unfolds
over time is not constrained very much by the data. In all three
models, inhibition of the stop process on the go process depends
on the �stop parameter, which reflects the strength of the inhib-
itory connection between stop and go units. The inhibitory �stop

parameter trades off with the excitatory astop(t) parameter, so
the amount of inhibition equals the product of these parameters.
Because of this tradeoff, the value of �stop parameter depends
on the assumptions that are made about the temporal dynamics
of inhibition.

(Appendices continue)
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Appendix C

Growth and Decay Rates on Signal-Inhibit Trials

We calculated growth and decay rates for the neurophysiolog-
ical data that were collected on the same trials as the behavioral
data (see Hanes et al., 1995, and Hanes et al., 1998, for details of
data acquisition, and Boucher et al., 2007, for the procedure for
selecting trials for analysis). The neural data were converted to
spike density functions (SDFs; see Thompson, Hanes, Bichot, &
Schall, 1996) by convolving spike trains with a combination of rise
and fall parameters that resembled a postsynaptic potential. Thus,
the rate over time, R(t) � (1  exp[t/�r]) · (exp[t/�f]), where �r

is the rise parameter (set to 1 ms) and �f is the fall parameter (set
to 20 ms). For each monkey, for each cell, SDFs were normalized
to the response threshold for no-signal trials for that cell. Response
threshold was defined as the spike density 10 ms before the time
at which the response occurred (i.e., RT – 10 ms) on no-signal
trials. The threshold values were obtained for individual trials and
averaged across all no-signal trials for the given cell. There were
five cells for monkey C and 12 cells for monkey A. For monkey
C, there were 101 signal-inhibit trials at the 68-ms SSD, 65 at the
117-ms SSD, 24 at the 169-ms SSD, and 6 at the 217-ms SSD. We
excluded the last two SSD trials because of the small number of
trials. For monkey A, there were 124 signal-inhibit trials at the
84-ms SSD, 61 ms at the 101-ms SSD, 130 at the 134-ms SSD, 93
at the 184-ms SSD, 18 at 201-ms SSD, and 21 at 234-ms SSD. We
excluded last two SSDs because of the small number of trials.

The SDFs for signal-inhibit trials were normalized as propor-
tions of the SDF for the same cell at threshold on no-signal trials.
The rate of growth in movement cells is usually calculated by
estimating the onset of growth and time at which threshold is
reached, and dividing the difference in activity by the difference in
time (Hanes & Schall, 1996; Pouget et al., 2011; Purcell et al.,
2010, 2012; Woodman, Kang, Thompson, & Schall, 2008). This
measure was not practical for analyzing rates on signal-inhibit
trials because SDFs did not reach threshold and because it was
difficult to define an offset measure analogous to onset to calculate

decay rate. Instead, we estimated rates in the middle of the growth
and decay periods, focusing on the regions where SDF was be-
tween 25% and 75% of the range from its minimum value to its
maximum value. Minima and maxima could be calculated easily,
and both SDFs and model activation functions look linear in this
range. We estimated slopes by dividing the difference in activation
at 25% and 75% of the range by the difference in the times at
which activation reached these points.

We computed the growth and decay rates of the normalized
SDFs by bootstrapping 1,000 samples at each SSD. Each sampling
step involved the same number of trials as the number of available
trials for the SSD, and SDFs were averaged across resampled
trials. Although SDFs for individual trials were very noisy, aver-
aged SDFs were smooth and had a single peak. To determine the
growth rate, the maximum and the minimum spike density of
averaged SDF were computed with the constraint that the mini-
mum spike density preceded the maximum spike density in time.
Because spike density functions tend to be nonlinear near the
minimum and maximum, the slope was computed between 25%
and 75% of the range between the minimum and the maximum.
Growth rate was defined as the difference between spike density at
75% and 25% of the range between maximum and minimum
divided by the difference in time at which spike density reached
75% and 25% of its maximum. The decay rate was determined in
a similar manner, except that the minimum was computed with the
constraint that it followed the peak spike density in time. This
procedure was repeated 1,000 times for each SSD, and the result-
ing slopes were aggregated over SSDs.

The growth and decay rates for models’ activation function were
computed similarly. Each model was simulated the same number
of trials as the number of available trials in each SSD condition,
and the same computation was applied to derive the growth and
decay slopes. These slopes were aggregated over SSDs.

(Appendices continue)
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Appendix D

Cancel Times

Cancel Times in Neural Data
Cancel time is the difference between SSRT and the time at

which movement-neuron activity on signal-inhibit trials di-
verges significantly from latency-matched movement neuron
activity on no-signal trials. Hanes et al. (1998) defined diver-
gence time as the time at which significant differential activity
of a movement cell began during trials for which a saccade
toward the target location was successfully canceled in response
to a stop signal (i.e., signal-inhibit trials), as compared with the
activity of that cell during latency-matched no-signal trials
(no-signal trials for which the go process is sufficiently slow
so that it could have been inhibited; RT � SSRT � SSD).

Operationally, divergence time is defined as the time point at
which the difference between firing rates for signal-inhibit trials
and latency-matched no-signal trials exceeds 2 SDs of the mean
difference during the 600-ms interval before target presentation,
given that the difference reaches 6 SDs and remains greater than
2 SDs in the next 50 ms (see Hanes et al., 1998, pp. 822– 823).
We used the cancel times that were calculated by Boucher et al.
(2007) for each monkey, for each SSD in each neuron, using the
same trials we used to calculate growth and decay rates. These
were the same trials on which the behavioral data we fitted were
collected. We present means across neurons and SSDs for each
monkey.

Figure D1. Mean predicted cancel times for monkey C for interactive race model 1.0 with �stop varied and for
blocked input model 1.0 with kgo varied.

(Appendices continue)
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Cancel Times in Model Simulations

We calculated mean cancel times for each model by perform-
ing the same analysis on activation functions produced by
simulations of no-signal and signal-inhibit trials. We generated
cancel times by simulating the model for 50 trials for each SSD
condition and 150 trials for the no-signal condition. SSRT was
computed for each SSD condition by using the integration
method (see Logan, 1994; Verbruggen & Logan, 2009), and the
latency-matched no-signal trials were obtained with the crite-
rion RT � SSD � SSRT. If there were no latency-matched

no-signal trials or signal-inhibit trials in any of the SSD con-
ditions, the simulation was discarded and repeated.

Following Boucher et al.’s (2007) procedure, the difference
between the mean simulated activation functions for the latency-
matched no-signal trials and signal-inhibit trials were computed at
each millisecond, and the SD from the target onset to SSD was
computed. The divergence time was defined as the point at which
the difference between the mean activation function exceeded 6
SDs and remained greater than that level in the next 50 ms. Cancel
time was then computed by subtracting SSRT from the divergence
time. This procedure was repeated 100 times.

(Appendices continue)

Figure D2. Mean predicted cancel times for monkey A for interactive race model 1.0 with �stop varied and for
blocked input model 1.0 with kgo varied.
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Uniqueness of Simulated Cancel Times

To examine how unique the predicted cancel times were across
model variation, we chose a target parameter (�stop for interactive
race models and kgo for blocked input models) that determined the
shape of activation function for each model and systematically
varied it to see whether variation could produce a range of cancel
time distributions without affecting the goodness of fit to the
behavioral data. We chose a set of target parameter values arbitrarily
and fitted a model with the target parameter fixed at one value while
letting other parameters in the model freely vary. The fits used 50
randomly chosen starting values in the vicinity of the best param-
eter values reported in Table 1. Cancel times were generated with

the best parameters with the procedure described above. The
model was also simulated 100 times, and 
2 were computed for
each simulation to examine whether the goodness of fit was
significantly affected by the values of the target parameters. The
mean cancel times varied considerably as the target parameters
varied (see Figures D1 and D2) but the goodness of fit did not vary
substantially (see Figure D3).

Received September 5, 2012
Revision received October 24, 2014

Accepted December 27, 2014 �

Figure D3. Mean 
2 � SD for fits of interactive race model 1.0 with �stop varying and fits of blocked input
model 1.0 with kgo varying.
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