
Cognitive control is revealed in experiments that re-
quire subjects to change their performance in response to 
changes in their environment (e.g., Logan, 1985). The stop 
signal task (Logan, 1994; Verbruggen & Logan, 2008b) 
and the target step task (Camalier et al., 2007; Murthy, 
Ray, Shorter, Schall, & Thompson, 2009) have been used 
to examine executive control of saccadic eye movements 
in humans and macaque monkeys (Camalier et al., 2007; 
Hanes & Schall, 1995). These tasks present a target for an 
eye movement and then present either a stop signal, which 
indicates that the eye movement should be withheld, or 
a stepped target, which indicates that the eye movement 
should be directed to a new location. Performance on these 
tasks can be understood as the outcome of a race between a 
go process that makes the initial saccade and a stop process 
that inhibits the initial saccade to maintain fixation or to 
allow a new saccade to the new location (Camalier et al., 
2007; Logan & Cowan, 1984; see also Boucher, Palmeri, 
Logan, & Schall, 2007). The race model assumes that the 
finish times for the go and stop processes as a function of 
trial number are stationary stochastic processes with inde-
pendence between trials. This article reports data that chal-
lenge those assumptions and explores the consequences of 
those violations for analyses based on the race model. Our 
goal is not to evaluate the causes of nonindependence and 
nonstationarity but, rather, to document them in stopping 
and stepping tasks and evaluate their effects on race model 
and trial history analyses.

Nonstationarity refers to a stochastic process described 
by a mean or variance that changes over time. Response 
times (RTs) gradually becoming longer from the begin-
ning to the end of an experimental session is one example 
of nonstationarity. Nonindependence refers to statistical 
dependence across samples in a time series. A correla-
tion in RT between successive trials is one example of 
nonindependence. A time series that is nonstationary must 
be nonindependent, but the reverse is not necessarily true 
(e.g., autoregressive and moving average models; Wagen-
makers, Farrell, & Ratcliff, 2004).

The fact that RTs are often nonstationary and noninde-
pendent is well established (e.g., Gilden, 2001; Wagen-
makers et al., 2004). For instance, RT on a given trial can 
vary with the stimulus and response that occurred on the 
preceding trial (e.g., Fecteau & Munoz, 2003; Luce, 1986). 
Furthermore, RT can change with arousal, fatigue, learn-
ing, and motivation throughout a session (Broadbent, 1971; 
Freeman, 1933; Welford, 1968, 1980). Several investiga-
tors have documented apparently systematic changes in RT 
during performance of the stop signal task (Cabel, Arm-
strong, Reingold, & Munoz, 2000; Emeric et al., 2007; 
Kornylo, Dill, Saenz, & Krauzlis, 2003; Li, Krystal, & 
Mathalon, 2005; Özyurt, Colonius, & Arndt, 2003; Rieger 
& Gauggel, 1999; Schachar et al., 2004; Verbruggen & 
Logan, 2008b; Verbruggen, Logan, Liefooghe, & Vandier-
endonck, 2008). For example, the RT decreases after no-
stop-signal trials and increases after stop signal trials.
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METHOD

With the exception of the search step data from Monkey T, all the 
data presented here have formed the basis of previous publications 
(Boucher, Palmeri, et al., 2007; Boucher, Stuphorn, Logan, Schall, 
& Palmeri, 2007; Camalier et al., 2007; Hanes, Patterson, & Schall, 
1998; Paré & Hanes, 2003). Here, we reanalyze these data with a 
focus on the magnitude and impact of nonindependence and non-
stationarity of RT.

Stop Signal Task
In the stop signal task, no-signal and stop signal trials were ran-

domly interleaved (Figure 1). On no-signal trials, the subjects fixated 
a central point until it disappeared, whereupon a peripheral target ap-
peared without any distractors. The subjects were then required to 
shift gaze to that location. On stop signal trials, the central fixation 
point reappeared following a variable delay after the appearance of 
the target. We refer to this variable delay as the SSD. On these trials, 
the subjects were instructed to cancel any impending saccade and 
maintain fixation on the initial fixation position. We refer to these 
trials as canceled trials (they are also called signal-inhibit trials in 
the literature). Monkeys were rewarded following both the canceled 
stop signal trials and correct no-signal trials. Because the occurrence 
and timing of the stop signal was unpredictable, on some trials, the 
subjects could not cancel their movement but, instead, made a sac-

Race model analyses of stopping and stepping tasks 
focus on two measures of performance. First is the in-
hibition function, the probability of failing to cancel the 
response to the initial stimulus on a stop or step trial as 
a function of the interval between the onset of the ini-
tial stimulus and the stop or step signal (stop signal delay 
[SSD] or target step delay [TSD]). Second is the RT on 
trials with and without a stop (step) signal. From these 
quantities can be derived a measure of the time needed 
to interrupt the initial response. This measure is referred 
to as the stop signal RT (SSRT) in stopping tasks and the 
target step RT (TSRT) in stepping tasks.

Here, we first explore whether RT is nonindependent 
and nonstationary and how this impacts estimates of SSRT 
and TSRT derived from the race model. We also explore 
how nonindependence and nonstationarity might impact 
measures of trial-to-trial adaptations of RT. To address 
these issues, we measured the extent to which RTs were 
nonindependent and nonstationary across trials during 
performance of saccade stopping and stepping tasks by 
humans and macaque monkeys and assessed the impact of 
this on conventional analyses of these data.

Stop Signal
Delay

Reaction Time

Canceled

Noncanceled

Countermanding Task
No Stop Trials

 

No Signal

Stop Trials

Target Step
Delay

Reaction Time

Compensated

Noncompensated

Search Step Task

No Step Trials No Signal

Step Trials

A B

N
o
-S

ig
n
al

 T
ri
al

s
S
ig

n
al

 T
ri
al

s

Figure 1. The experimental tasks. (A) Stopping. The dotted circle indicates the subject’s gaze within 
each frame. A one-sided arrow indicates a saccade. A majority of the trials are no-signal trials, on which 
the subject fixates centrally and responds to a peripheral target that appears by making a saccade to 
it. A minority of the trials are stop trials, on which, following some delay after the presentation of the 
target, the central fixation point reappears, directing the subject to maintain central fixation. If the 
subject is able to successfully withhold the impending saccade, the trial is labeled as a canceled trial. If 
the subject errantly makes a saccade to the target, the trial is labeled as a noncanceled trial. (B) Search 
step. A one-sided arrow indicates a saccade the subject makes. A majority of the trials are no-signal tri-
als, on which the subject fixates centrally and responds to an array of stimuli that appears by making 
a saccade to the oddball target. A minority of the trials are step trials, on which, following some delay 
after the presentation of the target, the location of the oddball singleton moves to a different location 
on the array through two isoluminant color changes, directing the subject to make a saccade to the new 
location of the target. If the subject is able to successfully make a saccade to the new target location, the 
trial is labeled as a compensated trial. If the subject errantly makes a saccade to the target, the trial is 
labeled as a noncompensated trial.
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mined amount (50 msec for humans in both tasks, 17–50 msec for 
monkeys) following each canceled or compensated trial and was 
decreased by the same amount following each noncanceled or non-
compensated trial. The goal of this procedure was to ensure that the 
subjects would respond successfully to the stop signal or target step 
on around 50% of the trials (Logan, Schachar, & Tannock, 1997; 
Osman, Kornblum, & Meyer, 1990). We refer to these as staircased 
SSDs (TSDs). Most of the data for the stopping task were recorded 
using randomized SSDs, with the exception of data from Monkeys H 
and N, which were primarily recorded using a staircase procedure. 
All of the search step data were recorded using the staircase proce-
dure. For certain analyses pertinent to the manner of SSD or TSD 
selection, subsets of data were grouped and analyzed on the basis of 
whether or not the staircase procedure was used.

Stop task SSDs ranged from 25 to 275 msec for humans and from 
25 to 450 msec for monkeys for both staircased and nonstaircased 
data. Step task TSDs ranged from 50 to 250 msec for humans and 
from 33 to 250 msec for monkeys. Monitor refresh rates varied be-
tween subjects and tasks but were either 60 or 80 Hz, depending on 
the experimental equipment used.

Race Model Accounts of Performance  
in Stopping and Stepping

Performance in the stop signal task can be understood as the 
outcome of a race between two stochastic processes, a go process 
and a stop process (Logan, 1994; Logan & Cowan, 1984; see also 
Boucher, Palmeri, et al., 2007). The process that finishes first deter-
mines which behavior is produced. Recently, this model has been 
extended to the search step and double-step task with the addition of 
a second go process to produce the compensated saccade (Camalier 
et al., 2007; see also Verbruggen, Schneider, & Logan, 2008). The 
race model formulation affords the ability to calculate the correct 
time needed to interrupt preparation of the initial movement (Logan 
& Cowan, 1984). This time is referred to as the SSRT for the stop 
signal task and the TSRT for the search step task.

We used two methods to estimate SSRT and TSRT (Figure 2). With 
the integration method, SSRT or TSRT can be calculated for each 
SSD or TSD by integrating the no-signal RT distribution until the 
proportion of RTs is equal to the proportion of noncanceled or non-
compensated trials on the inhibition or compensation function for a 
particular SSD or TSD. The SSRT or TSRT is then given by that point 
in time minus the SSD or TSD. Using this method, an estimate of 
SSRT or TSRT is determined for each SSD or TSD, with the overall 
measure typically averaged across SSDS or TSDs. With the differ-
ence method, the mean of the inhibition (compensation) function is 
calculated by treating the function as a cumulative distribution func-
tion. The SSRT or TSRT is then equal to the mean of the no-signal RT 
distribution minus this value. The SSRTs and TSRTs we report in this 
article are the average of the values from these two methods.

RT Spectra
Power spectra quantify trial-by-trial nonindependence in RT data 

(Gilden, 2001; Wagenmakers et al., 2004). If the processes produc-
ing RTs in a time series are independent across trials (which also 
requires stationarity), the spectrum of the data series will be flat, 
like the spectrum of white noise sampled with the same frequency. 
To test whether RT data deviate from this prediction, we estimated 
the power spectra of RT series and averaged them across sessions for 
each subject. Power spectra of RTs on no-signal trials were estimated 
using the Lomb–Scargle method for unevenly sampled data (Lomb, 
1976; Scargle, 1982), with stop or step trials treated as missing data. 
For each session, this produced a spectral estimate with frequency 
step sizes equal to the reciprocal of the number of trials in the ses-
sion. The resulting frequencies ranged from one such step up to the 
Nyquist limit. Adjacent frequency components were averaged into 
bins spaced evenly on a logarithmic scale and then were averaged 
across each session to give a spectral estimate for each subject. Con-
fidence intervals were calculated using the assumption that the spec-

cade to the target. We refer to these error trials as noncanceled trials 
(they are also called signal-respond trials in the literature). Monkeys 
were not rewarded following these trials.

In this article, we consider data collected for this task from 5 mon-
keys (Macaca mulatta and Macaca radiata) (Hanes et al., 1998; Paré 
& Hanes, 2003) and 5 human subjects (Boucher, Stuphorn, et al., 
2007). For the monkeys, the target could appear in one of two loca-
tions: either to the left or the right of the fixation point, positioned 
in the receptive field or movement field of a neuron.

For the human subjects, the target could appear in one of four 
locations: in the upper or lower left or in the upper or lower right, 
relative to the fixation point. The proportion of stop trials varied 
from 10% to 70% for monkeys (typically, 25%) and was 30% for 
humans. The mean elapsed time between the start of consecutive tri-
als was ~4 sec for monkeys and humans. Target eccentricities were 
8.5º for humans and varied between 4º and 16º for monkeys, accord-
ing to receptive field location for the neuron recorded as part of the 
neurophysiological experiment. More task details are available in 
the cited publications.

Search Step Task
In the search step task, no-signal and target step trials were ran-

domly interleaved (Figure 1). On no-signal trials, the subjects were 
required to shift gaze to a color singleton, either a red target among 
green distractors or a green target among red distractors. The color 
of the singleton varied across sessions. On target step trials, the tar-
get stepped to a different location in the array after a variable delay 
after its appearance in its initial location. We refer to this variable 
delay as the TSD. On these trials, the subjects were instructed to 
cancel their response to the initial location and shift their gaze di-
rectly to the new location (i.e., to compensate for the target step). We 
refer to these trials as compensated trials. Monkeys were rewarded 
following both compensated target step trials and correct no-signal 
trials. Because the occurrence, timing, and location of the steps were 
unpredictable, on some trials, the subjects could not compensate for 
the step but, instead, made a saccade to the initial target location. We 
refer to these error trials as noncompensated trials. Monkeys were 
not rewarded following these trials.

In this article, we consider data collected for this task from 4 mon-
keys (Murthy et al., 2007; Murthy et al., 2009) and 3 human subjects 
(Camalier et al., 2007). For the majority of the sessions in which the 
monkey data were collected, the target appeared with seven distrac-
tors (set size of eight). The target and distractors were evenly spaced 
in a circle around the central fixation point at the eccentricity of the 
receptive field of the neurons (4º–16º). For the human data, one, 
three, or seven distractors appeared with the target randomly from 
trial to trial for most sessions at a fixed eccentricity of 9.5º. On a sub-
set of sessions with monkeys and a subset of blocks within sessions 
with humans, the target appeared without any distractors. This con-
dition is equivalent to the familiar double-step task (e.g., Becker & 
Jürgens, 1979). For both humans and monkeys, the effects described 
here did not vary between the double-step and search step tasks with 
different set sizes, so we combined the data from the two tasks. The 
proportion of step trials varied from 25% to 50% for monkeys and 
was 40% for humans. The mean elapsed time between the start of 
consecutive trials was ~3 sec for monkeys and ~5 sec for humans.

Manipulation of the SSD or the TSD
In the stopping and stepping tasks, the SSD and TSD are inde-

pendent variables. When the delay is short, subjects are more likely 
to cancel the impending saccade. When the delay is long, subjects 
are more likely to make a saccade to the initial target location. For 
some sessions presented here, the values of SSD (TSD) were pre-
determined and presented randomly throughout the session, inde-
pendently of the subject’s behavior. We refer to these as randomized 
SSDs (TSDs). In other sessions, a one-up/one-down staircase was 
used to adjust SSD (TSD) on each trial on the basis of the subject’s 
behavior. In this procedure, the delay was increased by a predeter-
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tions on all of these scales can be seen in Figure 3, which 
shows a representative session of a monkey performing 
the step task. The raw RTs are presented in the top panel, 
and the 100-trial running averages of RT, TSD, and per-
centage of step trials are shown in the middle and lower 
panels. Immediate variability can be attributed to the irre-
ducible randomness of RT or adaptive control across suc-
cessive trials. Local variation of RT often coincided with 
gradual changes of the running fraction of step trials or 
average TSD (see also Emeric et al., 2007). Global varia-
tion could be expressed as a gradual slowing (or speeding) 
of RT across a session, probably resulting from extraneous 
factors not controlled or manipulated by the experiment, 
such as fatigue or motivation fluctuations. 

A gradual increase of RT mean and variance is evident 
in Figure 3. To assess this for all of the sessions, we divided 
each session into thirds by trial number and compared the 
mean and variance between the initial and final thirds of 
each session. Table 1 summarizes the trends, indicating 
the numbers and percentages of sessions with significant 
increases or decreases of RT mean and variance (ranksum 
for mean, Levene’s nonparametric test for variance, both 
two-tailed; the expected chance level is 2.5% for each cell 
in the table). More sessions than would be expected by 
chance had significant changes in RT mean and variance, 
although across subjects and sessions, both decreases and 
increases of RT mean and variance were observed. Thus, 
RTs were nonstationary.

To quantify the degree of independence of RTs across 
trials, we calculated the frequency spectrum of RTs for 
each subject. Figure 4 shows the power spectra for the 
successive RTs produced by each subject, with confidence 
intervals compared with the power spectra derived from a 
shuffled sequence of the same RTs. For both humans and 
monkeys in both the stepping and stopping tasks, spectral 
power was elevated at low frequencies. Across subjects, 
the power at the lowest frequencies was at least twice the 
power at the highest frequencies. We observed the same 
pattern when calculating the RT spectra after removing 
any linear trends from the data. Thus, RTs show that sig-
nificant slow fluctuations beyond a linear trend occur dur-
ing performance of these tasks. The higher power at low 
trial frequencies indicates that RTs within immediate and 
local time scales are expected to be positively correlated. 
We verified that this was the case for pairs of consecutive 
no-signal trials.

Impact of Nonindependent and Nonstationary 
RTs on Inhibition Functions

Performance in stopping or stepping tasks is charac-
terized by the probability of failing to cancel the initial 
movement as a function of the delay of the stop or step 
signal. The relationship of this inhibition (or compensa-
tion) function to the distribution of RTs is used to calcu-
late SSRT (or TSRT). Having already demonstrated the 
nonindependence and nonstationarity of RT, in this sec-
tion, we consider the impact these have on the form of the 
inhibition (or compensation) function.

We plotted inhibition functions from different chrono-
logical epochs within sessions. Figure 5 displays data from 

tral density estimates follow a chi-square distribution with degrees 
of freedom equal to twice the number of averaged estimates (Jarvis 
& Mitra, 2001). We considered this to be the number of sessions for 
each subject. For comparison, we randomly permuted the trial order 
once for each session and estimated the trial-shuffled spectrum by 
the same procedure as that used for the original data. For more de-
tails on these methods, please see Appendix A.

RESULTS

Data were obtained from humans and macaque mon-
keys performing a stop signal task and a search step task 
with saccadic eye movements. All statistical tests were 
performed at a .05 significance level.

Nonindependent and Nonstationary RTs
We observed fluctuations in RT during the course of 

a session occurring on immediate (1 trial), local (~10–
100 trials), and global (~1,000 trials) time scales. Fluctua-
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Figure 2. Illustration of how the stop signal response time 
(SSRT) and target step response time (TSRT) are calculated ac-
cording to the race model. (A) Probability density of RTs on trials 
with no stop signal. Mean of the distribution is indicated by the 
vertical dashed line. Duration of the stop signal delay (SSD; target 
step delay [TSD]) and of SSRT (TSRT) is indicated by horizontal 
arrows. The shaded portion of the function indicates the propor-
tion of trials on which a response would have occurred before 
the critical time of SSD 1 SSRT (TSD 1 TSRT) for a given SSD 
(TSD). (B) Inhibition function plotting the probability of respond-
ing on trials calling for a stop (step) response as a function of SSD 
(TSD). The lower horizontal arrow highlights the fraction of fail-
ures for the shortest SSD (TSD), which corresponds to the shaded 
area in panel A. The SSRT (TSRT) is determined from the differ-
ence between the mean RT on no-signal trials and the midpoint of 
the inhibition function, indicated by the upper horizontal arrow.
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epoch and the mean RT over the entire session from the 
original SSD:

	 SSD′ 5 SSD 2 (Epoch RT 2 RT ).	

This translates the inhibition functions from an epoch 
when a subject responds more quickly to higher values of 
SSD′ and translates the inhibition function from an epoch 
when a subject responds more slowly to lower values of 
SSD′. The transformed inhibition functions overlap each 
other as well as the inhibition function from the entire ses-
sion. Note that this procedure does not change the slopes. 
We extended this epoch-by-epoch transformation proce-
dure to a trial-by-trail transformation according to

	 SSD ′i 5 SSDi 2 (local RTi 2 RT ).	

The SSDi (TSDi) for the ith stop (step) trial was trans-
formed to SSD ′i (or TSD ′i ) by subtracting the difference 
between the average RT on no-signal trials in the 101-trial 
interval centered on that trial (represented by local RTi 
above) and the session average RT (RT above). The length 
of the averaging window was truncated as necessary near 
the start or end of a session. Resulting SSD′ (TSD′) val-
ues were binned, and the proportion of stop (step) trials 
on which the subject failed to cancel the initial responses 
in each bin was determined. The transformed inhibition 
(compensation) functions, which plot this proportion 

a representative session in which a monkey performed 
the stop signal task with the SSD adjusted through the 
staircase procedure. Figure 5A shows that RT increased 
gradually over the course of the session, coincident with a 
gradual increase in SSD. Figure 5B compares the inhibi-
tion function derived over the entire session with inhibi-
tion functions derived from an early epoch (during which 
RT and SSD were shorter) and a later epoch (during 
which RT and SSD were longer). The inhibition function 
over the entire session had a shallower slope than did the 
inhibition functions from either epoch. Many sessions 
across species and tasks showed similar differences be-
tween session-level and epoch-level inhibition functions 
or compensation functions.

To compare inhibition functions across sessions, it has 
been shown previously that the abscissa of the inhibition 
function can be transformed to represent the relative fin-
ishing time of the stop and go processes by subtracting 
SSD and SSRT from the mean RT for each epoch (Logan 
& Cowan, 1984). The logic of this transformation fol-
lows from the race model claim that the probability of 
inhibiting depends on the relative finishing time of these 
processes, not on the absolute finishing time of either 
process alone. Specifically, as is illustrated in Figure 5C, 
we produced a transformed SSD (referred to as SSD′) by 
subtracting the difference between the mean RT in each 
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analyses on data from a monkey performing the stop sig-
nal task with a set of SSDs randomly presented with equal 
probability. Figure 6A shows a 100-trial running mean of 
the RTs and the probability of not canceling on stop trials, 
with two epochs highlighted. Clearly, the probability of 
not canceling varied inversely with RT. For the same SSD 
values, subjects are more likely to inhibit the initial move-
ment during an epoch of slower responding.

Figure 6B compares the inhibition functions from each 
epoch with that from the entire session. We compared the 
heights and slopes of these inhibition functions. The in-
hibition function from the epoch when the subject was 
responding more quickly lies above that from the epoch 
when the subject was responding more slowly. The inhibi-
tion function slopes between these particular epochs and 
the overall session were not noticeably different. However, 
when the same transformation as that applied to staircased 
sessions was applied to this session, the transformed inhi-
bition function was again found to be significantly steeper 
than the original. This procedure was applied to each ses-
sion with a fixed SSD (TSD). The number and proportion 
of sessions of nonstaircased data for each subject in which 
the transformed inhibition function was significantly 
steeper than the original is shown in the first column of 
Table 3. Across the population, this was significant for 
many nonstaircased sessions. Thus, a shallower slope of 
the inhibition function from an entire session seems to be 
a general consequence of nonindependence and is not due 
to adapting SSD (TSD) to performance via staircasing.

Estimating SSRT or TSRT
The transformation procedure was also used to calculate 

a transformed SSRT (TSRT) (designated SSRT′ [TSRT′]). 
To do so, RTs were transformed as follows:

	 RT′i 5 RTi 2 (local RTi 2 RT ).	

The RTi for the ith trial with no stop (step) signal was 
transformed to RT′i by subtracting the difference between 
the local average RT and the session average RT as de-
scribed above. 

Naturally, the distribution of RT′ is centered on the ses-
sion mean, but with less variance, as shown in the right 
panel of Figure 5D. Although modest, the significance 
of the reduction of variance for this session was verified 
statistically using another 1,000-shuffle permutation test 
comparing the standard deviation of the RT′ distribution. 
For the session illustrated in Figure 6, the reduction of 
no-signal RT variance by the transformation approached 
significance ( p 5 .055). For each subject, the number and 
proportion of sessions in which the transformation sig-
nificantly reduced the RT standard deviation are shown in 
the second columns of Tables 1 and 2 for staircased and 
nonstaircased data, respectively. Adjusting for RT non-
independence and nonstationarity by this transformation 
procedure significantly reduced the variance of no-signal 
RT distributions in many sessions for all the subjects.

Using the SSD′ (TSD′) and RT′ values from which slow 
fluctuations in RT were removed, we obtained a trans-
formed SSRT′ (TSRT′). SSRT′ and SSRT values were not 
significantly different for the session illustrated in Figure 5 

against the SSD′ (TSD′) values, allow us to probe the im-
pact of nonindependence and nonstationarity on inhibi-
tion functions by providing an example of what the data 
would look like if fluctuations of mean RT were removed. 
The forms of these transformed inhibition (compensation) 
functions were characterized by cumulative Weibull func-
tion fits to the values. The slopes of the transformed inhi-
bition (compensation) function were tested statistically as 
follows. We performed a permutation test comparing the 
median slopes of the transformed inhibition function with 
the slopes when trial order was randomly permuted 1,000 
times before applying the transformation procedure.

The left panel of Figure 5D shows the fitted cumula-
tive Weibull distributions for the original and transformed 
inhibition functions for this sample session. The number 
and proportion of sessions in which the transformed inhi-
bition function was significantly steeper than the original 
inhibition function is shown in the first column of Table 2. 
Across the population, the transformed inhibition func-
tion is significantly steeper in most sessions. In the human 
search step data, this effect was less prevalent.

The foregoing analyses focused on data from sessions 
in which SSD (TSD) was adjusted on a staircase accord-
ing to the subjects’ performance. With the staircase proce-
dure, a different range of SSD (TSD) values is presented 
within different epochs of an experimental session due to 
differences in RTs across epochs. To determine whether 
the underestimation of the inhibition function slope is 
specific to the use of staircasing, we performed the same 

Table 1 
Numbers and Proportions of Sessions for Each Subject With 

Significant Increases and Decreases to the Mean and Standard 
Deviation of Response Time When the First and Last of Three  

Evenly Sized Epochs in a Session Were Compared

Standard Standard
Mean Mean Deviation Deviation

Subject  Increase  Decrease  Increase  Decrease

Human Stop

S.N. 1/10 (10%) 1/10 (10%) 0/10 (0%) 1/10 (10%)
J.B. 2/6 (33%) 0/6 (0%) 0/6 (0%) 0/6 (0%)
K.W. 3/9 (33%) 1/9 (11%) 0/9 (0%) 0/9 (0%)
E.F. 2/9 (22%) 1/9 (11%) 0/9 (0%) 0/9 (0%)
E.L. 1/7 (14%) 1/7 (14%) 1/7 (14%) 0/7 (0%)

Human Step

C.C. 9/38 (24%) 24/38 (63%) 2/38 (5%) 5/38 (13%)
L.B. 5/40 (13%) 16/40 (40%) 0/40 (0%) 3/40 (8%)
S.S. 14/40 (35%) 15/40 (38%) 4/40 (10%) 2/40 (5%)

Monkey Stop

A 4/89 (4%) 3/89 (3%) 10/89 (11%) 3/89 (3%)
C 2/17 (12%) 2/17 (12%) 1/17 (6%) 2/17 (12%)
F 1/24 (4%) 3/24 (13%) 2/24 (8%) 1/24 (4%)
H 8/67 (12%) 6/67 (9%) 3/67 (4%) 1/67 (1%)
N 50/269 (19%) 45/269 (17%) 30/269 (11%) 21/269 (8%)

Monkey Step

C 12/34 (35%) 2/34 (6%) 12/34 (35%) 1/34 (3%)
F 13/41 (32%) 8/41 (20%) 4/41 (10%) 5/41 (12%)
L 21/47 (45%) 3/47 (6%) 9/47 (19%) 4/47 (9%)
T 42/42 (100%) 0/42 (0%) 28/42 (67%) 1/42 (2%)

Note—Means were tested using a nonparametric rank sum test, and vari-
ances were tested using Levene’s nonparametric test. Both tests were 
two-tailed. The expected chance level is 2.5% for each cell in the table.
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of 42 sessions showed a significant difference between 
TSRT and TSRT′.

Furthermore, we found no systematic bias in the dis-
tributions of SSRT′ (TSRT′) relative to SSRT (TSRT) 
(paired t tests). Only Subject C.C. performing the step 
task exhibited a significant difference between TSRT′ and 
TSRT [12.5 msec slower; t(37) 5 3.3, p , .05]. In spite 
of these idiosyncrasies, we conclude that the estimation 
of SSRT (TSRT) is robust against nonstationarity or non-
independence of RT. Moreover, in Appendix B we show 
mathematically that with fluctuating go and stop process 
finish time distributions, one method of measuring SSRT 
(TSRT) provides a time-weighted average of the SSRT 
(TSRT) value over the entire session. This suggests that 

(SSRT 5 141 msec, SSRT′ 5 136 msec, permutation test) 
or Figure 6 (SSRT 5 153 msec, SSRT′ 5 152 msec, per-
mutation test). The distributions of differences of SSRT′ 
(TSRT′) and SSRT (TSRT) across subjects and condi-
tions are illustrated in Figure 7. Overall, accounting for 
the nonindependence and nonstationarity of RT had very 
little effect on the estimate of stop process duration SSRT 
(TSRT). The third columns of Tables 1 and 2 display for 
each subject the numbers and proportions of sessions in 
which SSRT′ (TSRT′) was significantly different from 
SSRT (TSRT). Adjusting for RT nonindependence and 
nonstationarity by this transformation rarely changed 
significantly the SSRT (TSRT). The only exception was 
Monkey T performing the search step task, for which 14 

Lo
g
 P

o
w

er
 S

p
ec

tr
u
m

 (
m

se
c2

)

Log Cycles/Trial

Step

Human

Stop Step
Monkey

Stop

100

101

102

S.N.

J.B.

K.W.

E.F.

E.L.

C.C.

L.B.

S.S.

A

C

F

H

N

C

F

L

T

Raw

100

101

102

100

101

102

100

101

102

100

101

102

103 102 101

103 102 101

103 102 101

103 102 101

Trial shuffled

Figure 4. Spectrum of response times (RTs). The panels show RT mean-square power spectra plotted against frequency in 
units of cycles per trial, averaged across sessions for each subject. For each panel, the solid black line shows the power spectrum, 
with 95% confidence intervals shown in the dashed lines. The gray line in each panel shows the spectral estimate of the same 
data when the trial order within each session is randomly permuted. Plots are collected in each column on the basis of the spe-
cies and task for each subject, as indicated. Across species and tasks, RT spectra are significantly not flat for most subjects, 
with increased power at low frequencies and decreased power at high frequencies, as compared with that of the independent 
trial-shuffled spectrum.



1920        Nelson, Boucher, Logan, Palmeri, and Schall

tions of RT alone, conclusions drawn from an examination 
of RTs on trial n11 alone may be misleading.

A change in RT on trial n11 could be due to an execu-
tive control signal influencing behavior on the basis of the 
outcome of trial n. Alternatively, relationships between 
performance on trials n and n11 could simply be con-
sequence of nonindependence and nonstationarity of RT. 
Hence, a change in RT on trial n11 may not be due to 
an executive control signal. One way to account for the 
effects of nonindependence and nonstationarity is to con-
sider what happened on the n21 trial.

Figure 8 shows the RTs on no-signal trials before (n21) 
and after (n11) all three trial types for the stop task (no 
signal, canceled, and noncanceled) and the step task (no 
signal, compensated, and noncompensated). Colors for 

even as a subject’s RT fluctuates, the value of SSRT re-
mains stable.

Trial-by-Trial RT Adjustments During  
Stopping and Stepping

A hallmark of executive control is the ability to change 
behavior on the basis of past stimuli, responses, and out-
comes. Many studies have shown that subjects adjust their 
RT on the basis of the previous trial’s stimulus parameters 
(e.g., Verbruggen & Logan, 2008a) or their behavior on the 
previous trial (e.g., Emeric et al., 2007). These and related 
studies implicitly assume independence and stationarity 
in RT when they examine RTs on trial n11 based on the 
stimuli or responses on trial n. However, if the occurrence 
of the stop (step) response on trial n varies with fluctua-
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Figure 5. Effects of nonindependent and nonstationary response times (RTs) 
on inhibition functions for staircased data. (A) 100-trial running average of the 
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a sample session of a monkey performing the stopping task. SSDs for this ses-
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son of inhibition function for an entire session with inhibition functions within 
two epochs. (C) Transformation of inhibition functions by subtracting from the 
SSD the difference between the mean no-signal RT in an epoch and the mean 
no-signal RT over the entire session. (D) Transformation of the inhibition func-
tion and of the no-signal RT distribution resulting from subtracting from each 
SSD and RT the difference between the mean local RT and the mean overall RT. 
Left panel shows original and transformed inhibition functions. Right panel 
shows original and transformed no-signal RT distributions. The stop signal 
RTs calculated from the original and transformed distributions were 141 and 
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that the n21 trial type was a no-signal trial. As was shown 
previously, RTs appear longer following canceled trials as 
opposed to noncanceled trials (e.g., Emeric et al., 2007). 
The present analysis shows that RT was also longer before 
noncanceled trials. Appendix C demonstrates mathemati-
cally that these differences in RT with trial history are a 
simple consequence of fluctuations in RT. The proof re-
lies on the fact that for a given SSD, more canceled trials 
will tend to occur when the subject is responding slowly, 
whereas more noncanceled trials will tend to occur when 
the subject is responding quickly. Thus, the incidence of 
successful or unsuccessful inhibition varies with RT fluc-
tuations, which is manifest in the RTs of trials before and 
after the alternative responses.

To determine whether the variation of RT after different 
types of trials exceeds what can be explained by noninde-
pendence and nonstationarity of RT, we performed a pair of 
planned interaction contrasts of RT for each combination of 
species and task in a 3 3 2 design with trial type (no signal, 
canceled/compensated, noncanceled/noncompensated) and 
trial sequence (RT before or after the target trial type) as 
within-subjects factors. An interaction in this design will 
reveal trial history effects independent of the effects of RT 
fluctuations. A repeated measures omnibus ANOVA using 
Greenhouse–Geisser adjusted degrees of freedom revealed 
a significant interaction of trial type and sequence in the 
stop task for both humans [F(1.3, 5.2) 5 11.7] and mon-
keys [F(1.5, 6.0) 5 7.1], but not in the step task [humans, 
F(2.0, 4.0) 5 1.7; monkeys, F(2.0, 6.0) 5 2.5].

We investigated the omnibus interaction in the stop 
task further. To determine whether the magnitude of RT 
changes following canceled trials differs from that fol-
lowing noncanceled trials, we performed a paired t test 
of the differences in RTs before and after canceled trials 
with the differences in RTs before and after noncanceled 
trials. No significant difference was found for either 
humans [t(4) 5 20.5] or monkeys [t(4) 5 0.8]. To in-
vestigate whether subjects slow their responses follow-
ing canceled or noncanceled stop signal trials, relative 

each subject are indicated, and the horizontal dotted lines 
denote the grand mean no-signal RT for each subject for 
comparison. We restricted this analysis to three-trial se-
quences for noncanceled and canceled trial types to those 
triplets in which the n21 and n11 trial were both no-
signal trials. For the no-signal trial type, we just required 
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Table 2 
Numbers and Proportions of Staircased Sessions for Each 

Subject in Which a Transformation to Remove Response Time 
(RT) Fluctuations Significantly Affected Indicated  

Values at a p , .05 Level

Inhibition No-Signal
Function RT Standard Target Step

 Subject  Slope  Deviation  RT  

Human Step

C.C. 2/38 (5%) 31/38 (82%) 0/38 (0%)
L.B. 0/40 (0%) 34/40 (85%) 0/40 (0%)
S.S. 1/40 (3%) 28/40 (70%) 0/40 (0%)

Monkey Stop (Staircase)

H 34/67 (51%) 18/67 (27%) 0/67 (0%)
N 25/56 (45%) 20/56 (36%) 0/56 (0%)

Monkey Step

C 28/34 (82%) 16/34 (47%) 2/34 (6%)
F 30/41 (73%) 18/41 (44%) 0/41 (0%)
L 38/47 (81%) 22/47 (47%) 0/47 (0%)

 T  27/42 (64%)  42/42 (100%)  14/42 (33%)  

Table 3 
Numbers and Proportions of Nonstaircased Sessions for  

Each Subject in Which a Transformation to Remove Response 
Time (RT) Fluctuations Significantly Affected  

Indicated Values at a p , .05 Level

Inhibition No-Signal RT Stop 
Function Standard Signal

 Subject  Slope  Deviation  RT  

A 25/89 (28%) 31/89 (35%) 1/89 (1%)
C 2/17 (12%) 6/17 (35%) 0/17 (0%)
F 12/24 (50%) 13/24 (54%) 1/24 (4%)

 N  43/213 (20%)  106/213 (50%)  0/213 (0%)  
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celed trials, and that RT was not specifically longer after 
canceled than after noncanceled trials.

Nonstationarity of the Stop Process
We have shown that no-signal RTs in the saccade stop 

signal and target step tasks are nonindependent and non-
stationary. Within the race model, this would be modeled 
as a go process that slowly varies throughout a session 
and that is subject to trial-to-trial correlations. The stop 
process also could vary throughout a session (see Ap-
pendix B). However, because measurement of the SSRT 
(TSRT) requires 100 or more trials to produce a stable 
estimate, it is difficult to demonstrate the nonstationarity 
of SSRT (TSRT). Thus, we have not explicitly shown the 
nonstationarity of the stop process.

Race Model Implications
An important contribution of this work has been to 

show that the calculations of SSRT (TSRT) are largely 
unaffected by RT fluctuations. Calculations using the 
mean difference method will yield a time-weighted aver-
age of the SSRT (TSRT) over the session. Validating the 
measurement of SSRT (TSRT) is important because of its 
utility as a measure of impulsivity in clinical and develop-
mental studies (e.g., Schachar et al., 2004).

Although fluctuations in RT do not affect SSRT or 
TSRT calculations, we did demonstrate that it results in 
shallower inhibition functions. Because the slope of the 
inhibition function can be used to derive a measure of the 
variability of SSRT (Band, van der Molen, & Logan, 2003; 
Colonius, 1990; Logan & Cowan, 1984), these new results 

to responses following a no-signal trial, we performed 
a paired t test of the differences in RTs of consecutive 
no-signal trials compared with the average difference in 
RTs before and after canceled or noncanceled trials. RTs 
were significantly shorter following a no-signal trial, as 
compared with following a canceled or a noncanceled 
trial [humans, 221.7 msec, t(4) 5 211.0; monkeys, 
26.0 msec, t(4) 5 23.6]. Taken together, these results 
show that both humans and monkeys are slower following 
a stop trial, as opposed to following a no-signal trial, but 
that the amount of slowing is comparable between can-
celed and noncanceled trials. In the step task, generalized 
slowing following step trials was not observed.

DISCUSSION

We have shown that RTs in humans and monkeys per-
forming the saccade stop signal and search step tasks are 
nonindependent and nonstationary across trials. However, 
we have shown empirically and mathematically that meth-
ods used to estimate SSRT (TSRT) are robust to such RT 
fluctuations. Nevertheless, nonindependence and non-
stationarity of RT can result in an underestimation of the 
slope of the inhibition (compensation) function across a 
session. We have also shown how nonindependence and 
nonstationarity of RT influence analyses of trial history. 
We propose that examining the RTs on trials both before 
and after a trial of interest can help account for changes in 
RT due only to nonindependence and nonstationarity. We 
found that RT was relatively longer both before and after 
canceled stop signal trials than before and after noncan-
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noncanceled trials will occur when a subject is responding 
quickly, whereas a greater concentration of canceled trials 
will occur when a subject is responding slowly. This imbal-
ance will be particularly prevalent when the SSDs are ran-
domized. When the staircase procedure is used, however, 
the proportion of canceled stop trials will be stabilized over 
global RT fluctuations, although there will still be some re-
maining bias because of local fluctuations in RT. All of the 
human and most of the monkey stopping data analyzed here 
and in Emeric et al. (2007) used randomized SSDs, which 
likely contributed to the magnitude of the RT shifts between 
the trials before canceled and noncanceled trials.

In addition, when staircasing is used, SSDs fluctuate in 
response to RT fluctuations, which creates a correlation of 

suggest that fluctuations in RT can result in an overestima-
tion of the variability of SSRT.

Choice of Staircased Versus Randomized SSDs
A subject of methodological interest for investigators 

using stopping or stepping tasks is whether to adjust the 
SSD (TSD) by a staircase procedure or randomly select 
from preset values. RT fluctuations occur in both stair-
cased and nonstaircased sessions, but as we have shown, 
fluctuating RTs manifest some of their effects differently, 
depending on how the SSDs are selected. For example, 
whether SSDs are staircased or randomized will affect how 
strongly RT fluctuations impact the trial history analyses. 
As RT varies during a session, a greater concentration of 
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RT with SSD. We have found this correlation to be signifi-
cant in most individual staircased sessions across species 
and tasks. One practical consequence of this is that this 
correlation should be taken into account when noncan-
celed RTs are compared with no-signal RTs. To verify that 
behavior conforms to the race model, investigators often 
compare the distribution of noncanceled RTs at each SSD 
with the distribution of no-signal RTs over the whole ses-
sion. If, at any SSD, the noncanceled distribution exceeds 
the no-signal distribution, this is seen as a violation of the 
independence premise of the race model. However, when 
staircasing is used, this may not be a valid comparison, 
because this correlation dictates that the overall no-signal 
RT distribution will be different from the RT distribution 
at each SSD (TSD), particularly at the highest and lowest 
SSDs (TSDs). Instead, it may be preferable to compare the 
noncanceled RT distribution at each SSD (TSD) with the 
RT distribution on no-signal trials when that same SSD 
(TSD) was expected.

In contrast to when staircased, when randomized SSD 
(TSD) is used, the values remain constant despite the RT 
fluctuations. Instead of a positive correlation between SSD 
(TSD) and RT, there is a negative correlation between the 
probability of responding on a stop (step) trial and RT, as 
one would expect from the race model.

Stopping Trial History
We have shown that inferences about the effect that 

events on trial n have on performance on trial n11 must 
control for the nonindependence and nonstationarity of 
RT. We suggest using the no-signal trials on trial n21 as 
a simple control comparison (since events on trial n can-
not affect events on prior trial n21). Of course, one could 
argue that trial n21 is preceded by other trial types that 
would influence its RT, which, in turn, are influenced by 
other preceding trials, and so on. However, in practice, the 
numbers of equivalent trials preceding n21 or following 
n11 and beyond in these tasks are too few for sufficient 
statistical power.

Cabel et al. (2000) and Emeric et al. (2007) found greater 
lengthening of RTs following canceled than following non-
canceled trials. Emeric et al. (2007) also reported no sys-
tematic lengthening of RTs following noncanceled trials. 
This apparent lack of posterror slowing following a missed 
stop signal was surprising, given the apparent ubiquity of 
posterror slowing in a range of tasks (e.g., Hajcak, Mc-
Donald, & Simons, 2003; Rabbit, 1966). However, when 
we accounted for RT nonindependence and nonstationarity 
by examining trial n21, we found that subjects are indeed 
slower to respond on trials following noncanceled (error) 
trials. Of note, however, subjects lengthened their RTs to 
the same degree following canceled (correct) trials. Thus, 
the present results indicate a general lengthening of RT 
following any stop signal trial. Clearly, accounting for RT 
nonindependence and nonstationarity has important impli-
cations for understanding alternative mechanisms whereby 
trial history affects performance (e.g., Botvinick, Braver, 
Barch, Carter, & Cohen, 2001; Schall & Boucher, 2007; 
Verbruggen, Logan, et al., 2008).
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APPENDIX A 
Spectral Methods

Here, we provide background to the spectral analyses we used to test whether our RT data display power 
spectra that deviate from the flat spectrum associated with an independent time series.

For a given discretely sampled time series x[t] with a constant interval between samples, a direct estimate of 
its power spectrum can be obtained through the conventional periodogram. As is shown below, the periodogram 
reflects a normalized square of a correlation of the time series with sinusoidal signals at a given frequency across 
all time points in the sample:
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where No refers to the number of time points in the sample.

Such computations are often performed on signals that are digital samples over time of some underlying 
temporally continuous value. Examples from electrophysiology research include a local field potential or an 
electroencephalogram channel. Here, we consider RT spectra analyses that are analogous to these signals, but 
with differences in the underlying implications. The unit of “time” in these analyses is an ultimately discrete 
unit of trial numbers, rather than a precise unit of time like seconds or milliseconds. We thus consider frequency 
in units of inverse trial numbers, rather than in Hertz. However, in this analysis, the concept of frequency may 
be more easily conceptualized by considering the corresponding period of a given frequency, which has units 
of trials. For the dependent variable of the time series, instead of volts (or indeed, microvolts), we measure RT 
in units of milliseconds and measure power in units of milliseconds squared. The maximum possible sampling 
rate is fixed at one sample per trial, which results in a Nyquist frequency limit of 0.5 inverse trials that we can 
meaningfully consider.
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APPENDIX B 
Effect of Nonindependence and Nonstationarity on SSRT Calculation  

With the Mean-Difference Method

Here, we will show that one common measurement of SSRT is robust to the nonindependent and nonstation-
ary fluctuations that we have shown to exist in RT data. This holds provided that the proportion of stop trials 
presented to the subject remains constant through the RT changes. In particular, here, we consider SSRT calcula-
tion using the mean-difference method (see Logan & Cowan, 1984).

For simplification, in the following formulation, we consider the stop and go processes in discrete epochs 
of arbitrary numbers of trials, with each process being stationary within an epoch. In the extreme case, these 
epochs of stationarity can be as short as one trial, which makes no assumption of stationarity between any trials. 
The logic of the formulation would remain the same in this case, with two minor differences. The epoch means 
we describe would, instead, be considered to be the expected value of a single trial’s RT, rather than the mean 
RT across an epoch, and the value of wi for all is could be simplified to 1/N, where N is the number of trials in 
the session.

Using conventions from Logan and Cowan (1984), let f (t) denote the probability density function of the distri-
bution of go process finish times as measured by the RTs on no-signal trials over the entire session. Let wi denote 
the proportion of the total number of no-signal trials over the entire session that is contained within epoch i, and 
let fi(t) denote the distribution of go process finish times within that epoch. Thus, we define that

	 f (t) 5 Siwi fi(t).	 (B1)

The mean go process finish time 
–
T is thus

	 T tf t dt t w f t dt w tf ti ii i i= =   =
−∞
∞

−∞
∞

∫ ∑∫( ) ( ) ( )ddt w Ti i ii−∞
∞

∫∑ ∑= ,	 (B2)

The spectral analysis associated with the stopping and stepping tasks we consider in this article comes with 
an additional caveat. We are interested in the spectrum of the go process, which can be directly measured from 
the RTs of no-signal trials only (Logan & Cowan, 1984). This means that we can only include these trials’ RTs 
in our spectral analysis, which results in a missing datum for every stop or step trial. Importantly, it would be 
incorrect to ignore these missing data and analyze the sequence of no-signal trials using only techniques that 
assume regularly spaced data samples. Instead, to accurately measure the RT power spectra, we must take into 
account the specific trial position of every no-signal RT. To do so, we used techniques described in Lomb (1976) 
and Scargle (1982) for the spectral analysis of irregularly spaced data, which we briefly review below.

Scargle (1982) presented the use of a modified periodogram:
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Using the details described in Lomb (1976), Scargle demonstrated that this is the equivalent of a least-squares 
fit of sine waves to irregularly spaced data. Indeed, regularly spaced data can be seen as a special case of this 
more general measure, since Scargle shows that, in this case, these expressions reduce to the conventional ex-
pressions for periodograms. The effect of the parameter t is to maintain the invariance of the estimate to a time 
shift in the input time series, as well as to preserve the accurate relative phases between different frequencies. 
For the special case of regularly spaced data, t will equal zero. As Scargle shows, the other modifications of the 
periodogram serve to produce resulting estimates of spectral power that have the same statistical properties as 
the conventional periodogram with regularly spaced data. On the basis of this, we use statistical techniques that 
were described in Jarvis and Mitra (2001) and developed in Percival and Walden (1993). Specifically, a 95% 
confidence interval for the population spectral power at a given frequency, Ppop( f ), given the estimated spectral 
power, P( f ), is given by
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where q1 and q2, respectively, refer to the 2.5th and 97.5th percentiles of the chi-square distribution with de-
grees of freedom of vo. In our case, the degrees of freedom are equal to twice the number of sessions averaged 
across. Before averaging across sessions, we also averaged spectral estimates in adjacent frequency bins within 
each session, but we did not add these estimates to our total degrees of freedom, since some of these adjacent 
estimates would not be totally independent.
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where 
–
Ti is the mean go process finish time for epoch i.

As was described in Logan and Cowan (1984), the inhibition function, which is the probability of not cancel-
ing an initial saccade on a stop trial with a given SSD, can be treated as the cumulative distribution of some 
random function Td. Let Td be distributed as the function φ(td) such that

	
φ t

dP t

dtd
r d( ) =
( )

,
	

(B3)

where Pr(td) is the probability of responding on a stop trial with an SSD of td. For simplicity, we will assume 
that the duration of the ballistic component of the movement is zero, although that can be added to the model for 
completeness without affecting these results. Let fsi(t) denote the distribution of stop process finish times within 
each epoch. Thus for epoch i, the distribution of Td is given by

	 φi d si i dt f u f u t du( ) = +( )−∞
∞

∫ ( ) . 	 (B4)

For the entire session,

	 φ φt w t w f u f u t dud i i di i si i di( ) = ( ) = +( )∑ ∫∑ −∞
∞

( ) . 	 (B5)

Importantly, if the ratio of stop trials is identical in each epoch, then each wi here will correspond to the wi for the 
no-signal distribution in Equation B1 as the weight of each epoch’s contribution to the entire session’s inhibition 
function, and the no-signal distribution will be the same.

We can then calculate the mean of this distribution as

	
T t t dt w t f u f u t dudtd d d d i d si i d d= ( ) = +( )−∞

∞

−∞
∫φ ( )

∞∞

−∞

∞

∫∑∫
i

.
	

(B6)

With the observation that

	 t f u f u t dudt T Td si i d d i si( ) ,+( ) = −
−∞
∞

−∞
∞

∫∫ 	
where 

–
Tsi is the mean stop process finish time for epoch i, Equation B6 can be rewritten as
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(B7)

The difference-of-means method presented in Logan and Cowan (1984) suggests that one method to estimate 
SSRT for a given data set is to subtract the mean of the inhibition function from the mean of the no-signal RT 
distribution for the entire session. Applying Equations B2 and B7, we see that if the distributions of the go and 
stop process vary across epochs within a session, this measurement would still amount to a weighted average 
of the SSRT in each epoch:

	
T T w Td i si

i
− = ∑ .

	
(B8)

This would be the measurement of interest in most cases even if the SSRT distribution does vary within a ses-
sion, and so this measurement of SSRT is robust to fluctuations in RT and SSRT during a session, given that the 
assumptions in the analysis hold.

One assumption that would not hold strictly true is that the fraction of stop trials is constant in every epoch 
simply due to randomness in the determination of stop trials and the timing of changes in RT. If this happens, it 
would bias the measurement of SSRT to some extent. For example, if, during a given epoch in which the subject 
is responding more quickly than normal, the subject was also presented with more stop trials than normal, that 
epoch would have a disproportionate effect in determining the inhibition function for the overall session than it 
would in determining the no-signal RT distribution for the entire session. This would shift the inhibition function 
earlier in time, so that the no-signal RT distribution and resulting measurements of SSRT for the entire session 
would overestimate SSRT.

It is also worth noting that a change in the proportion of stop trials arising by chance can induce changes 
in RT (Emeric et al., 2007). This would suggest that these spontaneously occurring epochs could serve to bias 
the calculation of SSRT, resulting in some degree of underestimation of SSRT, following the logic described 
above. For this reason, it may be wise for experimenters to follow the common practice of pseudorandomizing 
the presentation of stop trials to prevent long stretches of too few or too many stop trials locally to mitigate this 
effect.

This would also suggest that a session with rapidly fluctuating RTs would result in more noise being added to 
the estimation of SSRT but that measurements made from longer sessions should be more robust to the effects 
of this noise.
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APPENDIX C 
Effect of RT Nonindependence and Nonstationarity During Stopping or Stepping Tasks  

on Measurements of RTs Before and After Canceled and Noncanceled Trials

Here, we will show that fluctuations in RT will cause the mean RT on no-signal trials before and after canceled 
trials to be higher than the mean RT on no-signal trials before and after noncanceled trials even when the pres-
ence of a canceled or a noncanceled trial does not have any effect on the distribution of no-signal RTs on any 
trial. The proof below explicitly shows this for trials following a canceled or a noncanceled trial, but the same 
logic applies to trials preceding a canceled or a noncanceled trial.

For the sake of simplicity, we will consider the case in which an experimental session consists of two epochs 
of equal size and the SSDs are randomized such that each SSD is presented with the same probability in the two 
epochs. In Epoch 1, suppose that the cumulative distribution function of the go process finish times are given 
by some function F(t), with an expected value of T, and that the finish time distribution in Epoch 2 is the same 
but slowed by a constant amount, tslow. Thus, in Epoch 2 the cumulative distribution function of go finish times 
is given by F(t 2 tslow) with an expected value of T

–
 1 tslow.

Let RTNC1i and RTNC2i denote the ith RT on a no-signal trial following a noncanceled trial in the first and 
second epochs, respectively, and likewise let RTC1i and RTC2i denote the ith RT on a no-signal trial following 
a canceled trial in the first and second epochs, respectively. Let the mean RT on no-signal trials following non-
canceled and canceled trials be given by T

–
NC and T

–
C, respectively. Then,
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(C1)

where N1NC and N2NC are the total numbers of no-signal trials following noncanceled trials in the first and second 
epochs, respectively, and N1C and N2C are the total numbers of no-signal trials following canceled trials in the first 
and second epochs, respectively. Focusing on noncanceled trials, because RTNC1i and RTNC2i are determined from 
independent identically distributed samples of the go process’s finish time distribution, this means that
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(C2)

For the sake of simplicity, let SSRT be the same constant value between epochs, T
–
s. Let the variable Ntdj denote 

the number of stop trials in an epoch at a given SSD value tdj. By the logic of the race model,

	
E N F T t E Ns dj tdj

j
1NC( ) = +( ) ∗ ( )∑

	
and

	
E N F T t t E Ns dj tdj

j
2NC slow( ) = + −( ) ∗ ( )∑ .

	
(C3)

Note that when a staircase procedure is not used and the SSD is randomized, as we consider here, the expectation 
of Ntdj is the same for both epochs. Similarly, for canceled trials,
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and

	
E N F T t t E Ns dj tdj

j
2C slow( ) = − + −( )  ∗ ( )∑ 1 .

	
(C4)

The function F is a monotonically increasing cumulative distribution, so, for any tdj,

	 F T t t F T ts dj s dj+ −( ) ≤ +( )slow , 	
(C5)

where the limit of equality is reached only if the value of does not change anywhere in the range from T
–

s 1 tdj 2 
tslow to T

–
s 1 tdj. Thus,

	 E N E N1 2NC NC( ) ≥ ( ) 	 (C6)

and

	 E n E n1 2C C( ) ≤ ( ).	 (C7)

Equation 2 can be rewritten as

	 E T w T w T t T w tNC( ) = −( ) ∗ + ∗ +( ) = + ∗1 2 2 2NC NC slow NC sloow, 	 (C8)
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where

	
w

E N

E N E N2
2

1 2
NC

NC

NC NC

=
( )

( ) + ( ) .
	

Similarly, it can be shown that

	 E T T w tC C slow( ) = + ∗2 , 	 (C9)

where
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Using Equations C6 and C7, we see that w2C $ 0.5 $ w2NC, and thus,

	 E T E TC NC( ) ≥ ( ) 	 (C10)

even though there is no direct effect of any canceled or noncanceled trial slowing the response on the following 
trial.

(Manuscript received October 30, 2009; 
revision accepted for publication May 4, 2010.)
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