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Decision-making requires stimulus categorization and

localization to guide accurate responses that can be produced

through multiple effectors. The success of actions is monitored

so that performance can be adjusted to achieve goals. This

review will survey recent empirical and theoretical

developments very selectively with an emphasis on

neurophysiological data from nonhuman primates that provide

the clearest information about neural mechanisms.
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What is a decision?
Decision-making requires multiple processes [1]. A

choice is required when an organism is confronted with

alternatives for which an action is required to achieve a

goal. Choices are evaluated as good or bad according to

whether goals are achieved and consequences are as

expected. The term decision is used casually and tech-

nically in several non-interchangeable senses. In particu-

lar, we can refer to a decision as a deliberation process that

results in the overt act of choosing. Decision as a process

has two logically and mechanistically distinct mean-

ings — ‘decide to’, which is a selection between alterna-

tive actions, and ‘decide that’, which is a selection

between alternative categories of a stimulus or concept.

The logical distinction is easy to see. Whereas you can

‘decide that’ falsely, it is not intelligible to ‘decide to’

falsely. ‘Decide to’, like choosing, is judged just as good or

bad. However, important distinctions can be recognized

between ‘choose’ and ‘decide to’. Whereas choice refers

most clearly to the final commitment to one among

alternative actions, decision refers most clearly to the

deliberation preceding the action. The polarity between

deciding and choosing is highlighted further by appre-

ciating that although choices can be predicted, decisions
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cannot be predicted. If you can say what you will decide,

then you will have decided.

The semantic and logic differences between ‘decide that’

and ‘decide to’ are paralleled by their embodiment in

different neural circuits. Neurons in sensory structures

that encode the features of stimuli provide the input to

circuits in association structures that accomplish the

categorization and localization that constitutes the evi-

dence for a decision. Neurons in motor structures that

control the innervation of the muscles accomplish the

actions guided, for better or worse, by the sequence of

decision processes. Sensorimotor association structures,

exemplified by the frontal eye field (FEF), consist of a

diversity of types of neurons with different patterns of

modulation derived from different inputs to different

cortical layers. The distinction between ‘decide that’

and ‘decide to’ also corresponds to a very long history

of experimental and theoretical psychology that describes

response times as the outcome of successive stages of

processing [2�]. Of course, decisions have consequences.

Detecting and adapting to consequences is distinct from

the actual decision process. Figure 1 summarizes this

framework.

Decide that — categorization and stimulus
selection
If objects in the environment are not discriminated cor-

rectly, decisions cannot be effective. Neural circuits

responsible for object categorization extend from the

primary sensory structures that encode basic stimulus

features to association areas in parietal and frontal lobes

[3]. One well-known line of research has investigated

perceptual categorization by requiring subjects to discrimi-

nate the direction of motion of a stochastic dot display [4].

This work has revealed much about the encoding of

stimulus motion by area MT and the evolution of activity

of neurons in area LIP to arrive at a categorization of the

motion direction [5]. More recent work has demonstrated

the necessity of mastering the stimulus-response associ-

ation [6] and elaborated the differential contribution of

neurons in the caudate [7] and FEF [8��]. Other work also

highlights the contribution of the frontal lobe to stimulus

categorization [9–11].

The world presents us with many stimuli, most of which

must be ignored in the guidance of action. Visual search,

selection of a target from among non-target objects, has

also been used to study perceptual decision-making. The

investigation of the neural basis of visual search has been

framed by the discovery that neurons in frontal, parietal,

temporal and occipital cortical areas as well as the superior
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Neural networks for the guidance and control of visually guided saccades. Consider visual search for a red ‘T’ among randomly oriented red and green

‘L’s. The color and shape of the objects are specified in feature maps that could also represent motion, depth and other visual features. These feature

maps converge on a map that represents the evidence for salience at each location. This salience map is also informed by a target template in working

memory. The timecourse of the salience evidence representation at the target location (ST, solid line) and a distractor location (SD, dotted line) are

plotted. According to the gated accumulator model, this evidence is integrated by a network of mutually inhibitory units that will produce a saccade to

the target (GOT, solid line) or to a distractor (GOD, dotted line). A gate (orange box) prevents integration of noise by requiring the salience evidence to

be of sufficient magnitude. A saccade is produced when the activation of a GO unit reaches a threshold (gray horizontal line) at which point inhibition is

imposed on omnipause (OPN) neurons (red line) that releases inhibition of burst neurons (BN) that innervate motor neurons (MN) to produce a pulse of

force to rotate the eye rapidly. The eye velocity signal from the BNs are integrated by a network of tonic neurons (TN) that also innervate the MN to

establish a step of force necessary to maintain eccentric fixation of the target. The activation of the GO units is also influenced by gaze-holding STOP

units that release inhibition on the GO units while saccade preparation transpires. If a stop signal of some kind occurs, then the STOP units potently

interrupt the GO unit activation from reaching the threshold; this interruption occurs within the theoretical interval known as stop signal reaction time

(SSRT) (rightmost columns). An executive control network (yellow) comprises neurons sensitive to errors, reward and the conflict arising from co-

activation of mutually incompatible response processes signals the consequences and conditions of an action. This executive control network may

influence the level of the gate that systematically changes the beginning of the accumulation process to emphasize either speed or accuracy in task

performance.
colliculus and thalamus respond to target and distractor

stimuli initially equivalently but then over time the

activity representing the target remains elevated or

increases while the activity representing distractors is

attenuated [12].

Several recent studies have measured this target selection

process across brain regions and measurement levels.

When a target is selected, does it happen more or less

simultaneously across the network or in some sequence?

These studies have focused on the FEF and areas in the

back of the brain. The relevance of FEF for processes

occurring in the back of the brain has been demonstrated

vividly by the finding in monkeys and humans that stimu-

lation of FEF influences the allocation of visual spatial

attention [13,14] perhaps through modulation of neural

activity in extrastriate visual areas [15,16]. Various studies

provide much more information than what is summarized

here, and they differ in a number of crucial details that
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frame their interpretation [17]. Every study has found that

when the target is more difficult to locate, neurons in the

FEF signal its location before neurons in occipital, parietal

and temporal areas [18��,19��,20��,21,22]. However, find-

ings differ when the target is located easily (pop-out

search). One study reports that the parietal cortex locates

the target before the frontal cortex [18��], but two others

find that parietal cortex signals do not precede frontal target

selection [23,24]. This pattern of results was obtained with

intracranial recordings of spikes and LFP and also with an

event-related potential component known as the N2pc

[25] (or posterior contralateral negativity [26]) that is

believed to originate from visual and association areas in

the parietal and temporal lobes [27,28].

The association between FEF and V4 was mediated

primarily by visual and not visuomovement or movement

neurons in FEF [29]. The evidence that visual instead of

movement neurons in FEF influence V4 is consistent
www.sciencedirect.com
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with recent anatomical data showing that whereas only

neurons in layer 5 of FEF project to brainstem saccade

structures such as the superior colliculus, the major source

of input to extrastriate visual cortical areas like V4, MT

and LIP arises from layer 2–3 of FEF [30�]. Moreover, V4

and MT (and probably LIP) are innervated by different

neurons in FEF that themselves have qualitatively differ-

ent afferents [31��]. Thus, the ‘top-down’ signal from

FEF to the back of the brain is not a single mechanism;

each area is under some as-yet-to-be-determined differ-

ent quality of influence. Additional indirect evidence that

the influence of FEF on V4 is mediated by supragranular

more than infragranular neurons is provided by a recent

study showing that blocking D1 but not D2 receptors in

FEF influenced V4 activity based on the lower density of

D2 receptors in supragranular FEF [32].

Decide to — response selection and
preparation
Locating and categorizing objects does not oblige any

particular action. Other neural circuits are responsible for

selecting and producing body movements to achieve

goals. The neural dissociation between ‘decide that’

circuits and ‘decide to’ circuits has been demonstrated

in numerous studies; for example, when no saccade is

produced, the search target selection process transpires

normally while presaccadic movement neurons are sup-

pressed [29,33�,34].

Research over decades has shown that movements are

prepared through the progressive increase of discharge

rate of neurons innervating premotor structures in the

brainstem and spinal cord, and movements are initiated

when the discharge rate reaches a threshold that does not

vary with RT [35–38]. New work has suggested instead

that movements are initiated when a neural population

reaches some point in a high-dimensional dynamical

space [39]. Recent findings from the FEF indicate that

these alternative hypotheses may not be contradictory

[40].

Explaining how sensory representations lead to accurate

movements is a classic problem. One approach to this

problem is based on the premise that noisy evidence

guiding a response is accumulated over time until a

threshold is achieved at which time the response is

initiated. A recent model inspired by this approach pro-

vides an explanation for how signals from neurons that

represent target salience can be transformed into a sac-

cade command [41,42��]. The model begins with the

simple assumption that the input to the neurons produ-

cing saccade responses is simply a feed-forward cascade of

the output of the visual selection neurons representing

the salience at the various locations in the search array.

The stochastic variability in the evidence provided by the

selection process is translated into variability in choice

performance through the accumulation of that evidence
www.sciencedirect.com 
by a network of mutually inhibitory, leaky integrators.

The evidence accumulated by the network of integrators

was equated with the spike trains recorded from the visual

selection neurons in the FEF. Accumulated variability in

the firing rates of these neurons explains the probability

and timing of correct and error responses with search

arrays of different set sizes if the accumulators are

mutually inhibitory. Although not designed in the model,

the dynamics of the stochastic accumulators quantitat-

ively correspond to the activity of presaccadic movement

neurons that initiate eye movements if gating inhibition

prevents accumulation before sufficient evidence about

stimulus salience has emerged. Adjustments in the level

of gating inhibition can control tradeoffs in speed and

accuracy that optimize visual search performance.

Although this is the only model of visual search that

accounts for response time distributions [43], it assumes

that saccade production is guided entirely by the visual

salience representation so errant saccades originate in a

failure to represent evidence correctly. While this has

been observed in some testing conditions [44,45], in other

conditions the salient target is located correctly, but the

responses are incorrect [46,47]. If the evidence is correct,

why was an error made? Obviously, the response pro-

duction stage, while guided by, can operate indepen-

dently of the perceptual stage. Indeed, response

selection errors can be corrected before visual processing

can register that the gaze shift was an error [48].

Monitoring consequences
The correction of errors before sensory processing can be

completed demonstrates the existence of a system that

monitors performance. Research over the last 20 years has

characterized the role of a circuit involving medial frontal

cortex in executive control for limbs [49] and eyes [50]. A

major thread of this research began with the discovery of

the error-related negativity (ERN), an event-related

potential that occurs when participants produce errors

[51]. Macaque monkeys possess the same error monitor-

ing system as proved by neural spikes [52,53] and local

field potentials [54,55] modulated after errors. In fact,

monkeys also exhibit the ERN [56��]. A diversity of other

neurons signal the anticipation and delivery of feedback

and reinforcement and also perhaps conflict between

competing response processes [57]; some of these

resemble signals produced by brainstem dopamine

neurons [58]. The presence of these signals is consistent

with models of executive function based on reward pre-

diction error [59,60].

Adjusting performance
Stochastic accumulator models account for adaptation of

RT to minimize errors and maximize rewards most com-

monly through changes in the amount of accumulation

necessary to trigger a response [61–63]. Recent fMRI

studies have reported evidence consistent with this
Current Opinion in Neurobiology 2013, 23:269–274
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[64��,65–68]. However, this conclusion may be prema-

ture. First, the areas with clearest modulation were in

medial frontal cortex. Current neurophysiological evi-

dence shows that weak electrical stimulation of SEF

can elevate RT [69], but individual neurons in SEF do

not control directly saccade initiation [70], nor do single

neurons in SMA or pre-SMA control directly limb move-

ment times [71��]. Therefore, medial frontal areas could

contribute to strategic RT adjustment necessary for SAT,

but neurophysiological evidence is inconsistent with the

mapping of a response threshold on activation in these

areas. Also, mapping particular parameters of very simple

computational models to highly derived measures of

cerebral oxygen utilization seems uncertain.

Moreover, two recent neurophysiological studies provide

compelling evidence that the accumulator models do not

account for all of the adjustments that mediate speed-

accuracy adaptation. One study showed that the adaptive

slowing of RT in the stop signal task is accomplished not

by a change of threshold, baseline, or accumulation rate,

but instead through a change in the time when presacca-

dic movement activity first begins to accumulate [72�].
Another study trained macaque monkeys to trade speed

for accuracy on cue during visual search [73��]. This

speed-accuracy tradeoff was accomplished through sev-

eral distinct neural adjustments. When accuracy was

cued, baseline discharge rate was reduced before visual

search arrays appeared, visual response magnitude was

attenuated, neural target selection time was delayed, and

movement-related activity accumulated more slowly to a

lower level before saccades. This surprising pattern of

modulation demonstrates that the popular stochastic

accumulator models do not provide an accurate or com-

plete description of how the brain adjusts performance.

Summary
Decision-making is accomplished by a diversity of neural

circuits that influence one another in ways that remain

poorly understood. Computational models of decision-

making are simplifications that embody particular

assumptions based on intuitions about simplicity and

optimality. These models have proven very effective at

describing performance on decision tasks. The evident

parallels between the form of activity of some neurons

and the form of the processes in these models has invited

and encouraged rather direct mapping of model process

onto particular neurons. However, new data indicate that

correct formulation of such linking propositions will

require an unexpected degree of subtlety and nuance.

For example, models that require discrete stage com-

pletion times are inconsistent with the diversity of times

when stimulus categorization and localization is accom-

plished in different structures. Also, models that explain

all of the variation of error and correct responses in a

single evidence-accumulating categorization stage are

inconsistent with the production of errors by the response
Current Opinion in Neurobiology 2013, 23:269–274 
selection circuit. How to translate between different

levels of analysis and description remains a major chal-

lenge. The heterogeneity and anatomical specificity of

neural circuits, timings and processes (that cannot be

resolved by measures like ERP and fMRI) must be

appreciated to evaluate how models of decision-making

actually map onto neural mechanisms.
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