
TRIUMF 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3

Computing Document J.L. Chuma January 1998 TRI-CD-93-01 v1.3

Copyright 1993,1994,1995,1996,1997,1998 – All rights are reserved

PHYSICA c©

REFERENCE MANUAL

Mathematical Analysis and Data Visualization Software

TRIUMF makes no warranty of any kind with regard to this material.

TRIUMF shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

http://www.triumf.ca/people/chuma/homepage.html
http://www.triumf.ca
http://www.triumf.ca/compserv.html

Contents

1 INTRODUCTION 1

1.1 What is in this manual . 1
1.2 Conventions used in this manual . 3

2 COMMANDS 4

3DPLOT . 4
ALIAS . 5
ASSIGN . 5
BESTFIT . 6

Parameter types and sizes . 6
Weights . 6
Cycles . 7

BIN . 7
Weights . 7
Number of bins . 8
Lagrange . 8
Averages . 8
Increment only if empty . 9
Edge defined bins . 9

BIN2D . 9
Dimensions . 10
Extremes . 10
Weights . 10
Increment only if empty . 10
Defined by box corners . 10

BUFFER . 11
Parameters . 11
Reading the buffers . 11
Writing the buffers . 12

i

Dynamic buffer . 12
Static buffer . 12
Keypad buffer . 12

CALL . 14
User written subroutine description . 14
Creating a shareable image . 18

CLEAR . 19
Alphanumerics . 19
Toggle graphics . 19
Clear the replot buffers only . 19
Do not clear the replot buffers . 19

COLOUR . 20
Using a scalar for a colour number . 20

CONTOUR . 20
Contour level selection . 21
Contour level colour . 22
Contour labels . 22
Saving contour levels and coordinates . 23
Legend . 23
Polar coordinates . 24
Axes . 24
Scattered points . 24
Matrix data . 24

COPY . 27
Conditional copy . 27
Unconditional copy . 28
Appending with copy . 28

DCL . 28
UNIX equivalent . 28

DEALIAS . 28
DEFAULTS . 29

Initialization file . 29
Reset windows . 29
Default values . 29

DENSITY . 30
Density plot types . 31
Axes . 31
Matrix boundary . 32
Zooming in . 32
Derivatives . 32
Profiles . 32
Polar coordinates . 32
Solid filled regions . 33

ii

Random points . 34
Diffusion . 36
Dithering patterns . 37
Boxes . 40

DESTROY . 44
Unconditional . 44
Conditional . 45

DEVICE . 46
ON and OFF . 47
Device keywords . 47
HPLaserJet . 48
InkJet . 48
Other bitmap devices . 49
PostScript devices . 49
Pen plotters . 50
Other vector plotters . 52
GKS metafiles . 52
Display files . 53

DIGITIZE . 53
Digitizing pad types . 53
Optional output variables . 54
Preparing for digitizing data . 54
Digitizing data . 54

DISABLE . 55
Graphics window borders . 55
Broadcast messages . 55
Confirmation requests . 56
Echoing from scripts . 56
Saving a variable’s history . 56
Journaling input and output . 57
Prompting . 57
Replotting . 57
X Window graphics replay . 57
Input line recall shell . 58
Stacking commands in a file . 58

DISPLAY . 58
Display a message . 58
Font table . 59
Special characters . 59
Hatch fill patterns . 59
Line types . 59
Plotting symbols . 62
Menus . 62

iii

EDGR . 69
Open a drawing file . 69
Edit a drawing file . 69
Close a drawing file . 69
Open a new frame . 70

ELLIPSE . 70
Output vectors . 70
Replotting . 70
Number of points . 71
Explicitly defined . 71
Fit an ellipse . 71

ENABLE . 73
Graphics window borders . 73
Broadcast messages . 73
Confirmation requests . 74
Echoing from scripts . 74
Saving a variable’s history . 74
Journaling input and output . 74
Prompting . 75
Replotting . 75
X Window graphics replay . 75
Input line recall shell . 75
Stacking commands in a file . 76

ERASEWINDOW . 76
EXECUTE . 76

Environment variables in file names . 77
Filename extensions . 77
script library . 77
Comments . 77
Echoing . 78
Temporarily passing control to the keyboard . 78
Returning from a script . 78
Aborting a script . 78
Passing parameters to a script . 78
Prompting . 79
Labels and GOTOs . 79
DO loops . 79
Conditional statements . 80

EXTENSION . 81
FIGURE . 82

Line types . 82
Fillable figures . 82
X Windows . 83

iv

Units . 83
Confirmation . 84
Stack file . 84
Circle . 84
Arc . 84
Wedge . 84
Box . 85
Polygon . 85
Ellipse . 85
Arrow . 85

FILTER . 86
Noise amplification caused by filtering . 87
Median filter . 87
Mean filter . 87
Nonrecursive filters . 88
Recursive filters . 89

FIT . 93
Expression and parameters . 94
Method . 95
Normal distribution . 96
Poisson distribution . 98
Correlation and covariance . 99
Confidence level of the fit . 100
Number of iterations . 100
Informational messages . 100
Update after a fit . 101

FMIN . 101
Informational messages . 101

FZERO . 102
Muller’s method . 102
Informational messages . 104

GENERATE . 104
Increment and number of points given . 105
Maximum and number of points given . 106
Increment and maximum given . 106
Random numbers . 106

GET . 107
The GPLOT keywords . 108
The PHYSICA keywords . 108

GLOBALS . 114
GRAPH . 115

Plotting symbols . 115
Axis scaling . 115

v

Graph legend . 115
Plotting data and axes . 116
Plotting axes only . 116
Plotting data only . 116
Replotting data on a common scale . 117
Histograms . 117
Polar coordinates . 119
Error bars . 119
Filling . 120

GRID . 123
Polar coordinates . 124
Duplicate points . 124
Interpolated grid . 124
Non-interpolated grid . 125
Matrix from sparse data . 126

HARDCOPY . 127
Printing and saving . 128

HELP . 130
Paging the output . 130
User defined library . 130

INPUT . 131
Vectors . 131
Matrix . 132

INQUIRE . 133
JOURNAL . 135

Environment variables in file names . 135
KEYWORD . 135
LABEL . 136

Turning off the labels . 136
LEGEND . 137

The string portion of a legend entry . 137
The line segment portion of a legend entry . 138
The frame box . 139
Transparency . 140
The legend title . 140
Status . 141

LINE . 142
Plotting units . 143
X Windows . 143
Non-interactive drawing . 144

LIST . 146
Paging the output . 146
Listing a matrix . 146

vi

LOAD . 146
Restrictions . 147
Arguments . 147
Subroutines . 147
Subroutine example . 150
Functions . 152
Function example . 152

MAP . 153
HBOOK . 153
FIOWA . 154
YBOS . 154

MATRIX . 154
MONITOR . 155

Disabling/enabling graphics monitor output . 155
The generic terminal driver . 155

NEWS . 156
ORIENTATION . 156

The world coordinate system . 157
PEAK . 157

Choosing the data curve . 157
X Windows . 157
Code keys . 158

PICK . 158
X Windows . 159
Specifying the number of points . 159
Code keys . 159
Choosing the vertices of a polygon . 161
Matrices . 161
Determining regional counts for data sets . 162

PIEGRAPH . 162
Coordinates . 162
Pie wedge filling . 163

PLOTTEXT . 165
Environment variables in file names . 166
Comments . 166
Command delimiters . 166
Continuation Lines . 168
Inserting a blank line . 169
Character height . 169
Line spacing . 170
Left margin . 171
Bolding . 172
Colour . 173

vii

Font . 174
Centre justification . 174
Left justification . 175
Right justification . 176
Horizontal spacing . 177
Sub-script mode . 178
Super-script mode . 179
Slanted mode . 179
Hexadecimal mode . 180
Accents . 181

POLYGON . 182
QUIT . 183
READ . 183

Environment variables in file names . 185
Opening and closing files . 185
Reading data into vectors . 186
Reading data into scalars . 193
Reading data into a matrix . 195
Reading data into a string variable . 203

REBIN . 205
Rebinning vectors . 205
Rebinning matrices . 206

REFRESH . 207
RENAME . 208
REPLOT . 208

What is saved . 208
Strings . 209
Enable/Disable . 209
Windows . 209
Clearing the graphics . 209
Redraw all windows . 210

RESIZE . 210
RESTORE . 211

Environment variables in file names . 211
PHYSICA sessions . 211
FIOWA data sets . 212
XFIOWA data sets . 214
HBOOK data sets . 214
YBOS data sets . 218
µSR MUD data sets . 221
µSR data sets . 223
IµSR data sets . 223
CHAOS data sets . 224

viii

RETURN . 224
SAVE . 224
SCALAR . 225

Fit parameters . 225
Dummy variables . 225

SCALES . 225
Commensurate axis scaling . 226
Labeled tic marks . 226

SET . 228
How the SET command works . 228
GPLOT keywords . 230
The PHYSICA keywords . 230

SHOW . 242
SLICES . 244
SORT . 245

Associated vectors . 245
STACK . 247

Environment variables in file names . 247
Appending to a stack file . 248
Executing commands while stacking . 248

STATISTICS . 248
Informational messages . 248
Weights . 250
Definitions . 250
Moments . 251
Linear correlation coefficient . 252

STATUS . 253
SURFACE . 254

Colour . 255
TERMINAL . 256
TEXT . 256

Confirmation . 257
Stack files . 257
Text characteristics . 257
Justification and location . 258
Text Formats . 258
Replotting text . 261
Drawing the Date and Time . 262
Erasing text . 262

TILE . 263
Bar definitions . 263
String definitions . 264

TLEN . 266

ix

TRANSFORM . 267
UNIQUE . 267

Indices . 268
USE . 269

Environment variables in file names . 270
VECTOR . 270
VOLUME . 270

Volume under a matrix . 271
WAIT . 271
WINDOW . 271

What are windows . 272
Boundaries . 272
Plotting units . 272
Defining a new window . 272
Pre-defined windows . 273
Windows and GPLOT . 273
Multiple window creation . 274

WORLD . 275
WRITE . 275

Environment variables in file names . 276
Appending to a file . 276
Formats . 276
Vectors . 276
Scalars . 277
Matrix . 278
String . 278

ZEROLINES . 278

3 OPERATORS 281

Boolean operators . 281
Transpose . 282
Reflect . 282
Union . 283
Intersection . 283
Append . 284
Outer product . 284
Inner product . 285

4 FUNCTIONS 288

Element by element functions . 288
ATAN2 . 288

x

ATAN2D . 290
RAN . 291
ELTIME . 291
DIM . 291
MOD . 292
SIGN . 292
MIN . 293
MAX . 293

Special mathematical functions . 294
Airy’s functions . 294
Beta functions . 294
Bessel functions . 295
Binomial coefficient . 296
Chebyshev polynomials . 296
Probability functions . 296
Cosine integral . 298
Sine integral . 298
Dawson’s integral . 298
Digamma Psi function . 298
Dilogarithm . 299
Elliptic integrals . 299
Error function . 299
Exponential integrals . 300
Fermi-Dirac function . 301
Fisher’s F -distribution function . 301
Fresnel integrals . 301
Gamma function . 301
Hermite polynomials . 302
Hypergeometric function . 302
Jacobi polynomials . 303
Kelvin functions . 303
Laguerre polynomials . 303
Legendre functions and polynomials . 304
Poisson-Charlier polynomial . 304
Rademacher function . 305
Struve functions . 305
Student’s t-distribution . 305
Normalized tina resolution . 306
Vector coupling coefficients . 306
Voigt profile . 309

Functions that return a string . 309
DATE . 309
TIME . 310

xi

UCASE . 310
LCASE . 310
TCASE . 311
CHAR . 311
EXPAND . 311
VARNAME . 312
VARTYPE . 312
STRING . 313
RCHAR . 313
TRANSLATE . 314

Numeric functions with string arguments . 314
CLEN . 314
ICHAR . 315
EQS . 315
NES . 315
SUB . 315
SUP . 315
INDEX . 315
EVAL . 316

Numeric analysis functions . 316
AREA . 316
DERIV . 317
INTEGRAL . 318
GAUSSJ . 320
INVERSE . 321
DET . 322
IDENTITY . 322
EIGEN . 323
PFACTORS . 324
FFT . 324
IFFT . 327
CONVOL . 328
INTERP . 330
SPLINTERP . 331
SMOOTH . 332
SPLSMOOTH . 333
SAVGOL . 334
JOIN . 335

Functions that return a variable’s characteristics . 336
EXIST . 336
LEN . 336
VLEN . 336
FIRST . 337

xii

LAST . 337
ICLOSE . 337
IEQUAL . 337
WHERE . 337

Shape changing functions . 338
FOLD . 338
UNFOLD . 338
ROLL . 339
STEP . 340
WRAP . 341

Looping functions . 342
SUM . 342
PROD . 343
RSUM . 344
RPROD . 344
LOOP . 345

A GPLOT KEYWORDS 348
A.1 Summary . 348

General . 348
Text . 348
x-axis . 349
y-axis . 350
Axis Box . 351

A.2 General Characteristics . 352
PTYPE . 352
LINTYP . 352
LINTHK . 352
COLOUR . 352
NUMBLD . 352
CLIP . 353
HISTYP . 353
CHARA . 353
CHARSZ . 354

A.3 Text . 354
CURSOR . 354
TXTANG . 354
TXTHIT . 355
XLOC . 355
YLOC . 355

A.4 x-axis . 355
XAXIS . 355
XLABSZ . 357

xiii

XLOG . 357
NXGRID . 357
XCROSS . 359
XZERO . 359
XTICTP . 359
XTICA . 360
NLXINC . 360
XTICL . 360
NSXINC . 360
XTICS . 361
XMAX . 361
XVMAX . 361
XMIN . 362
XVMIN . 362
XMOD . 363
XOFF . 364
XLEADZ . 364
XPAUTO . 364
XPOW . 364
NXDIG . 365
NXDEC . 365
XNUMSZ . 365
XNUMA . 365
XITICA . 366
XITICL . 366

A.5 y-axis . 366
YAXIS . 366
YLABSZ . 368
YLOG . 368
NYGRID . 368
YCROSS . 370
YZERO . 370
YTICTP . 370
YTICA . 370
NLYINC . 371
YTICL . 371
NSYINC . 371
YTICS . 372
YMAX . 372
YVMAX . 372
YMIN . 373
YVMIN . 373
YMOD . 374

xiv

YOFF . 374
YLEADZ . 374
YPAUTO . 374
YPOW . 375
NYDIG . 375
NYDEC . 375
YNUMSZ . 376
YNUMA . 376
YITICA . 376
YITICL . 376

A.6 Axis Box Characteristics . 377
XLWIND . 377
XUWIND . 378
YLWIND . 378
YUWIND . 378
BOX . 378
XLAXIS . 378
XUAXIS . 378
XAXISA . 379
YLAXIS . 379
YUAXIS . 379
YAXISA . 379
BOTNUM . 379
BOTTIC . 380
RITNUM . 380
RITTIC . 381
TOPNUM . 381
TOPTIC . 381
LEFNUM . 382
LEFTIC . 382

B VAX/VMS COMMAND PROCEDURE 384

C AlphaVMS COMMAND PROCEDURE 389

D USER ROUTINE SOURCE CODE 391

E INDEX 401

xv

List of Tables

2.1 The control key menu for the 3DPLOT command 5
2.2 Control keys recognized by the terminal interface 13
2.3 Function keys recognized by the terminal interface 13
2.4 Interpretation of the IATYPE array in user written subroutines 15
2.5 Interpretation of the ICODE array in user written subroutines 16
2.6 Colour names and associated colour numbers 20
2.7 Exceptions to the standard GPLOT defaults . 30
2.8 Line type defaults in centimeters . 30
2.9 Hatch pattern defaults in centimeters . 31
2.10 Density plot types and their required qualifiers 31
2.11 Keywords used to destroy entire classes of variables 46
2.12 Plotting units for HPLASERJET devices . 48
2.13 Plotting units for INKJET devices . 49
2.14 Plotting units for PRINTRONIX, LA100, and THINKJET devices 49
2.15 PostScript paper sizes . 50
2.16 Plotting units for POSTSCRIPT devices . 51
2.17 Pen plotter paper sizes . 51
2.18 Plotting units for pen plotter devices . 52
2.19 Plotting units for LN03+ and IMAGEN devices . 52
2.20 Plotting units for GKS graphics metafiles . 53
2.21 Plotting units for display file graphics output . 53
2.22 Mouse button definitions when digitizing data 55
2.23 Keyboard key definitions when digitizing data 55
2.24 The PHYSICA keyword menu of default values 63
2.25 The full menu of GPLOT keywords, with values in centimeters 64
2.26 The short menu of GPLOT keywords, with values in centimeters 65
2.27 The menu of GPLOT x-axis characteristics, with values in centimeters 66
2.28 The menu of GPLOT y-axis characteristics, with values in centimeters 67
2.29 The menu of general GPLOT keywords, with values in centimeters 68
2.30 Geometric figures that can be drawn with the FIGURE command 83
2.31 Types of units recognized by the FIGURE command 83

xvi

2.32 Various 1st derivative nonrecursive filters . 88
2.33 Various 2nd derivative nonrecursive filters . 89
2.34 Various 3rd derivative nonrecursive filters . 89
2.35 Smoothing nonrecursive filters (quadratic) . 89
2.36 Smoothing nonrecursive filters (quartic) . 90
2.37 Smoothing nonrecursive filters (Spencer’s formulae) 90
2.38 Integrating recursive filters . 91
2.39 The HISTYP keyword . 118
2.40 Symmetric error bars . 119
2.41 Asymmetric error bars . 120
2.42 HARDCOPY command print and save codes for bitmap devices 128
2.43 HARDCOPY command print and save codes for non-bitmap devices 129
2.44 Types of units recognized by the LEGEND command 140
2.45 The LINE command interactive menu . 145
2.46 Monitor device types and corresponding keywords 155
2.47 Key codes for the PEAK command . 158
2.48 Key codes for the PICK command . 160
2.49 The pie wedge defining characteristics . 163
2.50 Types of units recognized by the PIEGRAPH command 163
2.51 PLOTTEXT command text formatting commands 167
2.52 Formatted text accent special characters . 181
2.53 Variables that can be read and their required qualifiers 185
2.54 The ARROTYP code and corresponding arrow styles 231
2.55 Interpretations of the FILL keyword . 233
2.56 The hatch pattern defaults . 235
2.57 Line type definitions . 236
2.58 The line type defaults . 236
2.59 The SHOWHISTORY keyword interpretation . 237
2.60 The font names . 243
2.61 The STATISTICS command extrema keywords . 249
2.62 The STATISTICS command central measure keywords 249
2.63 The STATISTICS command dispersion and skewness keywords 249
2.64 Text justification interaction with CURSOR . 259
2.65 Text menu and justification . 260
2.66 TEXT command text formatting commands . 261
2.67 The initial pre-defined windows . 274
3.68 Boolean operators . 281
3.69 Other operators . 281
4.70 Trigonometric functions . 289
4.71 Basic element by element numeric functions . 290

xvii

List of Figures

2.1 Interpolating a fine mesh on the contours of a matrix 26
2.2 An example of a box type density plot with both x and y profiles 42
2.3 Examples of box type density plot with accentuated and delimited values . . . 43
2.4 Box type density plots with scattered points and with a matrix 44
2.5 An example of a font table produced by the DISPLAY FONT command 60
2.6 The table of special characters . 61
2.7 An example of the hatch fill patterns . 61
2.8 An example of the default line types . 62
2.9 The special plotting symbols . 62
2.10 A FILTER example showing data smoothing . 92
2.11 A FILTER example showing 1st derivative . 93
2.12 Finding a local minimum with the FMIN command 103
2.13 Finding roots with the FZERO command . 105
2.14 Plotting error bars with the GRAPH command . 121
2.15 Filling the area under a curve drawn with the GRAPH command 122
2.16 Histogram examples drawn with the GRAPH command 123
2.17 Automatic axis labels using the LABEL command 137
2.18 An example illustrating the graph LEGEND . 143
2.19 Pie chart wedge definition . 164
2.20 An example of a pie chart . 165
2.21 Example accents on the letter “o” . 182
2.22 An example demonstrating the POLYGON command 183
2.23 An example using the SCALES command . 229
2.24 Arrow styles . 230
2.25 An example using the SLICES command . 246
2.26 Surface coordinate system . 255
2.27 A SURFACE example . 256
2.28 Text extent rectangle with two-character justification codes 258
2.29 An example using the TEXT command . 263
2.30 An example using the TILE command . 266
2.31 The initial pre-defined windows in PORTRAIT orientation 273

xviii

2.32 An example illustrating the ZEROLINES command 280
4.33 An example illustrating the DERIV function . 319
4.34 An example illustrating the INTEGRAL function 320
4.35 An FFT example showing data smoothing . 327
A.36 Some x-axis characteristics . 356
A.37 Logarithmic x-axis examples . 358
A.38 Virtual axes examples . 363
A.39 Some y-axis characteristics . 367
A.40 Logarithmic y-axis examples . 369
A.41 The window and axis locations . 377

xix

xx

Introduction

1 INTRODUCTION
PHYSICA provides a high level, interactive programming environment. The program con-
stitutes a fully procedural programming language, with built-in user friendly graphics and
sophisticated mathematical analysis capabilities. Combining an accessible user interface
along with comprehensive mathematical and graphical features, makes PHYSICA a general
purpose research tool for scientific, engineering and technical applications.

PHYSICA provides you with a wide range of mathematical and graphical operations. Over
200 mathematical functions are available, as well as over 30 operators, providing all of
the standard operations of simple calculus, along with powerful curve fitting, filtering and
smoothing techniques. The program employs a dynamic array management scheme allow-
ing you a large number of arrays of unlimited size. Algebraic expressions are evaluated
using a lexical scanner approach. These expressions can have up to 1500 “tokens,” where a
token is a literal constant, a variable name, a function name, or an operator. Array evalua-
tions and assignments can be implemented in a simple, direct manner.

Line graphs, histograms and pie-charts, as well as contour, density and surface plots are
available. Publication quality graphics can be easily obtained. You have complete control
over the appearance of a drawing.

Initial development was for the VAX/VMS operating systems, but the program has been
ported to AlphaVMS, ULTRIX, Digital Unix, Silicon Graphics IRIX, HP-UX, IBM AIX, SUNOS and
Solaris, and most recently, PC Linux.

The user interacts with the program through the user interface, consisting of monitor de-
pendent routines for display of messages and for reading user input, and device dependent
routines for displaying drawings and obtaining hardcopies of user sessions. The user in-
terface is a high-level command language that incorporates a simple to use and easy to
learn syntax, based on context-free lexical scanners. The command language incorporates
the basic elements of a structured programming language, including conditional branching,
looping and subroutine calling constructs.

1.1 What is in this manual

The bulk of this manual is a reference guide to the program commands. These commands
are discussed in alphabetical order.

The PHYSICA program provides the user with a large variety of analysis tools, including a
fairly comprehensive set of operators and functions. The next chapter describes the opera-
tors that are available for use in expressions, followed by a chapter on the built-in functions

1

What is in this manual

that can also be used in any expression.

The first appendix contains definitions for the GPLOT graph and text plot characteristic
keywords which are controlled by the SET and GET commands. Other appendices contain
the command procedures for creating shareable images of user defined routines, for use
with the VAX/VMS and AlphaVMS operating systems. This is followed by the default source
code for these user defined routines.

Users are referred to the PHYSICA USER’S GUIDE for examples of program usage. Those
who are familiar with the predecessor program, PLOTDATA, are referred to the PLOTDATA
TO PHYSICA CONVERSION MANUAL for tips on converting PLOTDATA command macros to
PHYSICA.

2

Conventions used in this manual

1.2 Conventions used in this manual

Examples of messages and prompts written by the program, as well as examples of user
typed input are displayed in typewriter type style.

Commands and other reserved keywords are in UPPERCASE.

Curly brackets, { }, enclose parameters that are optional and/or have default values; and
indicate that it is not necessary to enter these parameters. Vertical bars, |, separate choices
for command parameters.

Curly brackets and vertical bars should not be entered with commands.

Parentheses, (), enclose formats. The back slash, \, separates a command from a com-
mand qualifier or a parameter from its qualifier. The opening quote, ‘, and the closing
quote, ’, delimit literal strings.

Parentheses, the back slash and quotes must be included where indicated.

VMS usually refers to the OpenVMS operating system for either the VAX or the Alpha archi-
tectures.

UNIX refers to any UNIX like operating system, including Linux.

3

Commands

2 COMMANDS
3DPLOT

Syntax 3DPLOT x y z ipen { colr }
Defaults colr = current colour

The 3DPLOT command graphs the three vectors x, y, and z in 3d space, displayed in 2 di-
mensions using a perspective projection. The vectors x, y, and z should contain the (x, y, z)
coordinates of the points. The ipen vector contains the codes for deciding what to draw at
each coordinate. The colr vector contains the colour codes. The vectors must all be the
same length.

This command is strictly interactive, it cannot be entered from batch mode. Note that if the
graph seems to be a complete mess, try increasing the “eye to object distance” using the E

key.

ipen[j]

= 2 coordinate set j is connected by a line segment to j-1

= 3 coordinate set j is not connected to j-1

= 20 a point is plotted at coordinate set j
< 0 a GPLOT symbol |ipen[j]| is plotted at coordinate set j

When drawing symbols, the size of the symbols can be controlled with the SET CHARSZ com-
mand before entering the 3DPLOT command, and changed inside the command by using the
Z key. Use the DISPLAY PCHAR command to see the possible GPLOT special symbols.

If drawing line segments, colr[j] is the colour code for the last line segment j-1 to j. The
first colour code is ignored. If drawing a point at the jth coordinate, that is, ipen[j] = 20, or
if drawing a symbol at the jth coordinate, that is, ipen[j] < 0, then colr[j] is the colour of
that point or symbol.

On X Window type monitors, the focus must be in the alphanumeric terminal window to use
the menu.

The default axis number height is XNUMSZ, which can be changed with the SET XNUMSZ com-
mand before entering the 3DPLOT command, and changed inside the command by using the
H key.

The current hardcopy device is disabled while the 3DPLOT command is active. The S key
causes the current hardcopy device to be re-enabled, and the plot to be redrawn, thus
allowing you to obtain a hardcopy, with the HARDCOPY comamnd.

4

Commands

< rotate left 1 angle increment L rotate left 360 degrees
> rotate right 1 angle increment R rotate right 360 degrees
^ rotate up 1 angle increment U rotate up 360 degrees
V rotate down 1 angle increment D rotate down 360 degrees
I zoom in O zoom out
A angle increment E eye to object distance
H axis number height Z symbol size
S save for hardcopy M display this menu
Q quit

Table 2.1: The control key menu for the 3DPLOT command

On X Window type monitors, the keyboard focus must be in the alphanumeric terminal
window to use the menu.

ALIAS
Syntax ALIAS { newcommand command string }
Examples ALIAS

ALIAS RED COLOUR RED

ALIAS APPEND WRITE\APPEND
ALIAS CURVE GRAPH\NOAXES
ALIAS AXES GRAPH\AXES
ALIAS ACLEAR CLEAR\ALPHANUMERIC

The ALIAS command creates new commands by equating a user defined keyword, newcommand,
to a string, command_string. The command string must begin with a valid command, for ex-
ample, it cannot be a file name that is to be used with other commands. Everything after
newcommand is taken for the command_string, that is, no quotes should be used.

If the ALIAS command is entered with no parameters, then all of the current aliases will be
displayed. The maximum number of aliases that can exist at one time is 100./indexalias!maximum
number

Use the DEALIAS command to eliminate aliases.

ASSIGN
Syntax ASSIGN name logical

Example ASSIGN LASER 211 HP$LASER

The ASSIGN command is only relevant for VMS. It is equivalent to the DCL command: ASSIGN
name logical

5

Commands

The logical assignment takes effect immediately, and remains in effect after PHYSICA is
unloaded. Both parameters should be strings.

The ASSIGN command is useful for assigning new logical names to the output devices, that
is, the logical name for a bitmap device or a plotter.

BESTFIT
Syntax BESTFIT pmin pmax penalty error parm pout

BESTFIT\CYCLES n pmin pmax penalty error parm pout

BESTFIT\WEIGHTS w pmin pmax penalty error parm pout

BESTFIT\CYCLES\WEIGHTS w n pmin pmax penalty error parm pout

Qualifiers \CYCLES, \WEIGHTS
Defaults \NOCYCLES, \NOWEIGHTS, pmin = 0, pmax = 1, penalty = 1

This command calculates parameters for a least-squares fit to an error vector using ad-
justable parameters.

Suppose you have an error vector, error, of length n. Suppose that there are m variable
parameters and that the measured effect of a unit change for each of the parameters at
each of the n locations is stored in matrix parm with n rows and m columns. Vector penalty,
of length m, represents the penalty functions to changes of the m parameters. The larger
penalty[i] the smaller the adjustment of the ith parameter.

The optimal set of changes of the m parameters within their allowed range of pmin to pmax

will be determined in the least-squares sense. The vector pout will contain the parameter
changes giving this fit, and will be of length m.

Parameter types and sizes

The influence function parm must be a matrix. Suppose it has n rows and m columns. The
parameter ranges, pmin and pmax, as well as the penalty function penalty, must be vectors
with the same length, m, which is the number of parameters for the fit. The error vector
error must be a vector of length n, which is the number of locations.

Weights

Syntax BESTFIT\WEIGHTS w pmin pmax penalty error parm pout

BESTFIT\WEIGHTS\CYCLES w n pmin pmax penalty error parm pout

If a weight vector, w, is entered, you must indicate that it is there by using \WEIGHTS qualifier.
The weight, w[i], corresponds to the importance of reducing the initial error to zero at the

6

Commands

ith location. The weight array should be a vector of length n. The closer to zero the value
of w[i], the looser will be the fit at the ith location. If the \CYCLES qualifier is also used, the
weight array comes before the iteration number in the parameter list.

Cycles

Syntax BESTFIT\CYCLES n pmin pmax penalty error parm pout

BESTFIT\CYCLES\WEIGHTS w n pmin pmax penalty error parm pout

The \CYCLES qualifier allows the user to specify the maximum number of iteration steps for
the fit. When this maximum number is reached, the fit will stop. The fit will also stop if the
fit is successful before this maximum iteration number is reached. If the \WEIGHTS qualifier
is also used, the weight array comes before the iteration number in the parameter list.

BIN
Syntax BIN x xbin xcount

BIN\NBINS x xbin xcount n { xmin xmax }
Qualifiers \WEIGHTS, \EDGES, \NBINS, \DISCARD, \EMPTY, \AVERAGE, \LAGRANGE
Defaults \-WEIGHTS, \-EDGES, \-NBINS, \-DISCARD, \-EMPTY, \-AVERAGE,

\LAGRANGE xmin = min(x), xmax = max(x)

The BIN command sorts an input vector, x, into a grid of bins and accumulates the counts
per bin into an output vector, xcount. Each element of x is considered only once, so elements
are never counted as being in more than one bin. By default, the bins are defined by
their centres, given in vector xbin, which must be strictly monotonically increasing. If n =
len(xbin), define the bin ranges, ri

r1 = xbin1 − (xbin2 − xbin1)/2

ri = xbini − (xbini − xbini−1)/2 for i = 2, 3, . . . , n

rn+1 = xbinn + (xbinn − xbinn−1)/2

For each i = 1, 2, . . . , len(x), if rj ≤ xi < rj+1 for some j = 1, 2, . . . , n then xcountj is incre-
mented by 1, or by the weight, wi. By default, events below r1 will be placed in the first bin,
and events above rn+1 will be placed in the last bin. If the \DISCARD qualifier is used, events
outside this range will be discarded.

Weights

7

Commands

Syntax BIN\WEIGHTS w x xbin xcount

BIN\AVERAGE\WEIGHTS w x xbin xcount

BIN\EMPTY\WEIGHTS w x xbin xcount

BIN\EDGES\WEIGHTS w x xbin xcount

BIN\EDGES\EMPTY\WEIGHTS w x xbin xcount

BIN\EDGES\AVERAGE\WEIGHTS w x xbin xcount

By default, a bin count is incremented by one (1) for every event that goes in a bin. If a
weight vector is entered, you must indicate that it is there by using \WEIGHTS qualifier. The
weight w must be a vector with the same length as x. The ith event causes the bin count to
be incremented by wi.

Number of bins

Syntax BIN\NBINS x xbin xcount n { xmin xmax }
Defaults xmin = min(x), xmax = max(x)

By default, the bins are defined by their centres, given in vector xbin, which must be strictly
monotonically increasing. If the \NBINS qualifier is used, the number of bins, n, is expected.
A new vector, xbin, will be created which will have n elements. If the numbers xmin and xmax

are not entered, they default to the minimum and maximum of vector x.

xbini = xmin + (i− 1
2

)(xmax− xmin)/n for i = 1, 2, . . . , n

Lagrange

Syntax BIN\LAGRANGE x xbin xcount

If the \LAGRANGE qualifier is used, \WEIGHTS, \EDGES, \AVERAGES, and \EMPTY are not allowed.

If n = len(xbin), define the bin ranges, ri

r1 = xbin1 − (xbin2 − xbin1)/2

ri = xbini − (xbini − xbini−1)/2 for i = 2, 3, . . . , n

rn+1 = xbinn + (xbinn − xbinn−1)/2

For each i = 1, 2, . . . , len(x) find j so that rj ≤ xi < rj+1 for some j = 1, 2, . . . , n. If j = n,
then xcountn is incremented by 1, otherwise, let w = (xi − xbinj)/(rj+1 + rj)/2 then xcountj is
incremented by 1− w and xcountj+1 is incremented by w.

8

Commands

Averages

Syntax BIN\AVERAGE x xbin xcount

BIN\AVERAGE\EDGES x xbin xcount

The \AVERAGE qualifier means that the output xcount vector will contain the average value for
each bin. An internal counter is kept for each bin, and the value for xcounti will be divided
by the number of events in bin i before it is output. \AVERAGE can be used with \WEIGHTS and
\EDGES, but not with \EMPTY.

Increment only if empty

Syntax BIN\EMPTY x xbin xcount

BIN\EMPTY\EDGES x xbin xcount

The \EMPTY qualifier means that an event is counted in a bin only if that bin is empty. So
only the first event encountered for each bin will be counted in that bin. \EMPTY can be used
with \WEIGHTS and \EDGES, but not with \AVERAGE.

Edge defined bins

Syntax BIN\EDGES x xbin xcount

By default, bins are defined by their centres. If the \EDGES qualifier is used, bins are defined
by their edges. The bin edges must be given in vector xbin. The length of xcount will be one
less than the length of xbin. A weight vector, w, may be specified if you use the \WEIGHTS

qualifier.

If xbinj ≤ xi < xbinj+1 then xcountj is incremented either by one (1), or by the specified
weight, wi.

BIN2D
Syntax BIN2D x y xbin ybin mc nx ny { xmin xmax ymin ymax }

BIN2D\MATRIX mdata mxin myin mout

Qualifiers \WEIGHTS, \EMPTY, \MATRIX,
\XDISCARD, \YDISCARD, \DISCARD

Defaults \-WEIGHTS, \-MATRIX, \-EMPTY, \-DISCARD
xmin = min(x), xmax = max(x), ymin = min(y), ymax = max(y)

The BIN2D command forms a matrix of bins of data by sorting the vectors x and y into grids
of bins which are returned in vectors xbin and ybin. The accumulated matrix of total counts
per bin is returned in matrix mc. If the numbers xmin and xmax are not entered, they default

9

Commands

to the minimum and maximum of x. Similarly, if the numbers ymin and ymax are not entered,
they default to the minimum and maximum of y.

xbini = xmin + (i− 1
2

)(xmax− xmin)/|nx| for i = 1, 2, . . . , |nx|

ybinj = ymin + (j − 1
2

)(ymax− ymin)/|ny| for j = 1, 2, . . . , |ny|

The (xi, yi) point will be accumulated in mci,j where:
row: i = int((yi − ymin)/(ymax− ymin)|ny|) + 1

column: j = int((xi − xmin)/(xmax− xmin)|nx|) + 1

Dimensions

The lengths of x and y must be equal. If a weight vector, w, is supplied, it must also be the
same length.

The vectors xbin and ybin and the matrix mc will be created. xbin will have |nx| elements,
ybin will have |ny| elements, and matrix mc will have |nx| columns and |ny| rows.

Extremes

By default, events below xmin are placed in the first bin column, events above xmax are
placed in the last bin column, events below ymin are placed in the first bin row, and events
above ymax are placed in the last bin row. If the \DISCARD qualifier is used, events outside
either of these ranges will be discarded. If the \XDISCARD qualifier is used, events below xmin

are discarded, and events above xmax are discarded. If the \YDISCARD qualifier is used, events
below ymin are discarded, and events above ymax are discarded.

Weights

Syntax BIN2D\WEIGHTS w x y xbin ybin mc nx ny { xmin xmax ymin ymax }

If a weight is entered, you must indicate that it is there by using \WEIGHTS qualifier. The
weight w must be a vector. The ith event causes the bin count to be incremented by wi.

Increment only if empty

Syntax BIN2D\EMPTY x y xbin ybin mc nx ny { xmin xmax ymin ymax }

If the \EMPTY qualifier is used, an event is counted in a bin only if that bin is empty. Only
the first event encountered for each bin will be counted in that bin. \EMPTY cannot be used
with \MATRIX.

10

Commands

Defined by box corners

Syntax BIN2D\MATRIX mdata mx my mc

The BIN2D\MATRIX command calculates the sum of the data points given by matrix mdata

within a set of boxes. The x-coordinates of the boxes are given in matrix mx, the y-coordinates
are given in matrix my. Matrices mx and my must be the same size. A data point is taken to
be inside a box if it is interior or on an edge. Each data point is considered only once, so a
data point is never taken to be in more than one of the boxes. The coordinates of the data
points are the row and column indices, for example, mdata[3,4] is row 3 and column 4 so it
is at (x, y) location (4, 3). The x and y-coordinates in mx and my should be in this index space
of coordinates. The qualifiers \EMPTY and \WEIGHTS cannot be used with \MATRIX.

See the PICK\MATRIX command for information on interactively choosing the above men-
tioned boxes.

BUFFER
Syntax BUFFER { n }

BUFFER\READ filename

BUFFER\WRITE filename

Qualifiers READ, WRITE, DYNAMIC, STATIC, KEYPAD

Defaults n = 20, \DYNAMIC

The BUFFER command controls the input line recall buffers:

• the dynamic buffer
• the static buffer
• the keypad buffer

Table 2.2 on page 13 shows the control keys recognized by this terminal interface. Table 2.3
on page 13 shows the function keys recognized by the terminal interface.

See the RESTORE\PHYSICA command, page 211, for information on restoring these buffers
from previously saved sessions. There is an option to not restore these buffers, by using
the \NOTTBUFFERS qualifier.

Parameters

If no parameters are entered and no qualifiers are used, the current length of the dynamic
recall buffer is displayed. If n is entered, this will be the new length of the dynamic buffer
as displayed when the PF1 key is typed. The value of n must be 0 < n ≤ 35.

11

Commands

Reading the buffers

If the \READ qualifier is used, the dynamic buffer will be read from the specified file. You can
also read the static buffer or the keypad buffer by also using the \STATIC qualifier or the
\KEYPAD qualifier. For example:

BUFFER\KEYPAD\READ FILE.DAT

will read the keypad buffer from FILE.DAT

Writing the buffers

If the \WRITE qualifier is used, the dynamic buffer will be written to the specified file. You
can also write the static buffer or the keypad buffer by also using the \STATIC qualifier or
the \KEYPAD qualifier. For example:

BUFFER\KEYPAD\WRITE FILE.DAT

will write the keypad buffer to FILE.DAT

Dynamic buffer

The dynamic buffer is a terminal interface which closely mimics the DCL command recall
facility. The arrow, delete, backspace, and most control keys, work as in DCL. An input line
is stored automatically in the dynamic buffer when a carriage return is typed. The line is
stored at the top of the stack, with previously entered lines being pushed down the stack.
The maximum length of the buffer stack is 35 lines. After 35 lines have been stored, the
lines at the bottom of the stack begin dropping off and are lost.

Static buffer

The static buffer is similar to the dynamic buffer, but the lines in the static buffer are not
updated automatically. To interactively enter a line into the static buffer, type the input line
and then type the PF3 keypad key followed by control-L. You will be asked to enter a storage
number. Enter a digit from 1 to 9 or a letter from A to Z, where A represents 10, B represents
11, and so on. To recall a line previously stored in the static buffer, type the PF3 keypad key,
and then type the storage digit or letter of the desired line.

Keypad buffer

The keypad buffer allows the keypad keys: 0 - 9, period, comma, and minus, to be defined.
Any of these keys can also be set up such that a carriage return is included. Thus, the

12

Commands

command is executed as soon as the key is typed. To interactively enter a keypad key
definition, type the input line and then type the <ENTER> key on the keypad. You will be
asked to type the keypad key to be loaded with the input line. If this is to include a carriage
return, type the <ENTER> keypad key, otherwise type any other key to resume.

key action

control-^ appended to a string recalls the last command containing it
control-A toggles insert/overstrike mode
control-E moves alphanumeric cursor to end of line
control-H (BACKSPACE) moves alphanumeric cursor to the beginning of the input line
control-K disables recall shell, a ”!” in column 1 re-enables it
control-N reads the dynamic recall buffer from a file
control-P writes the dynamic recall buffer to a file
control-R refreshes the current input line
control-X (control-U) erases input line to the left of the alphanumeric cursor

Currently LINEFEED (control-J), ESC and TAB (control-I) are not enabled

Table 2.2: Control keys recognized by the terminal interface

key action

PF1 list and allows selection from dynamic recall buffer
PF2 lists the HELP facility
PF3 lists, loads (via control-L), and selects from static buffer
PF4 invokes a simple desk calculator
ENTER lists or loads the keypad buffer
F14 toggles insert/overstrike mode

Table 2.3: Function keys recognized by the terminal interface

13

Commands

CALL
Syntax CALL { SUBn } arg1 { arg2 . . . arg15 }
Examples CALL SUB1 X Y

CALL X Y

The CALL command uses one of the following:

• a subroutine hardwired into the program
• a subroutine loaded dynamically with the LOAD command (VAX/VMS only), or
• a subroutine loaded at run time via a shareable image (VAX/VMS or AlphaVMS).

Functions can not be referenced with the CALL command, but the user written functions can
be used wherever a function can be used in an expression.

If one of the keyword parameters SUB1, SUB2, . . . , SUB8 is entered with the CALL command,
either the built-in subroutine by default, or one of the eight subroutines which were loaded
at run time via PHYSICA_USER_FUNCTIONS, a shareable image, will be used. The shareable
image option is only available under VAX/VMS and AlphaVMS.

If none of these keyword parameters is used, then the object module that was loaded dy-
namically with the LOAD command will be used. The LOAD command is only available under
VAX/VMS.

For UNIX users, the process to add user defined routines to physica follows:

1. edit the file phys user.f to put in your versions of user1, . . . , user8, sub1, . . . , sub8

2. compile it, e.g., f77 -c phys user.f

3. put it in the archive, e.g., ar -rsv physica.a phys user.o

4. link the program with physica.link

The default set of eight (8) subroutines and eight (8) functions is listed in Appendix D. For
VMS users the sources are provided in the file: PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.FOR

For UNIX users the sources are provided in the file: phys_user.f Off-site UNIX users can
find this file in the physica-link tar file.

User written subroutine description

If a subroutine is loaded at run time via the sharable image, its name must be one of SUB1,
SUB2, . . . , SUB8. If a subroutine is to be loaded dynamically via the LOAD command, its name

14

Commands

is irrelevant and can be anything the user desires. In either case, a user written subroutine
must have the following form:

SUBROUTINE subname(IATYPE,ICODE,IUPDATE,IER,arg1,arg2,...)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

Other than the required arguments, IATYPE, ICODE, IUPDATE, and IER, there may be from
1 to 15 arguments in the subroutine argument list. The user is responsible for insuring
that the correct number and type of arguments are used when actually employed with the
CALL command. The parameters used in the CALL command, argI, which are passed as
arguments to the subroutine, may be constants, scalars, vectors, matrices, literal quote
strings, or scalar string variables. The number of arguments and the type of argument must
agree with the actual subroutine.

All of the numeric aguments, except for the required integer arguments IATYPE, ICODE,
IUPDATE, and IER, must be REAL*8. A string argument is passed as a LOGICAL*1 array.

Note: The integer arguments IATYPE, ICODE, IUPDATE, and IER should not be mentioned as
parameters with the CALL command.

See the file: PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.FOR for some subroutine examples.

IATYPE

IATYPE is an INTEGER*4 array, length 15, that indicates the type of each of the subroutine
arguments argI. See Table 2.4 on page 15.

argument type IATYPE(i)

unfilled −99
string −1
scalar 0
vector 1
matrix 2

Table 2.4: Interpretation of the IATYPE array in user written subroutines

ICODE

ICODE is an INTEGER*4 array, dimensioned 3 by 15, that indicates the dimension of each of
the subroutine arguments argI. Never extend variables beyond their original size as passed
to the subroutine. If a variable is shortened inside the subroutine, the subroutine must
update the new dimensions in the ICODE array, so that PHYSICA can reduce the variable

15

Commands

dimensions appropriately. See Table 2.5 on page 16.

argument type ICODE(1,i) ICODE(2,i) ICODE(3,i)

string length 0 0
scalar 0 0 0
vector length 0 0
matrix nrows ncolms 0

Table 2.5: Interpretation of the ICODE array in user written subroutines

The ICODE array will be filled by PHYSICA with the current dimensions of the arguments, so
the user written subroutine can check and, if necessary, update the dimensions of any of
the subroutine arguments.

Never extend vectors, matrices, or string variables beyond their original sizes as passed to
the user written subroutine. If a variable’s size is shortened inside the subroutine, then the
subroutine must update the ICODE array so that these variable dimensions can be reduced
internally by PHYSICA upon return from the subroutine.

IUPDATE

IUPDATE is an INTEGER*4 array, length 15, that the user routine sets to indicate to PHYSICA
whether one of the argI arguments has been modified inside that subroutine.

The default value for IUPDATE(i) is 0. Set IUPDATE(i) to 1 to indicate that the ith argument,
argI, has been modified. Never extend variables beyond their original size as passed to the
subroutine. If a variable is shortened inside the subroutine, the subroutine must update
the new dimensions in the ICODE array, so that PHYSICA can reduce the variable dimensions
appropriately.

IER

IER is an INTEGER*4 variable that defaults to the value 0. Your routine can set IER to indicate
to PHYSICA that an error has occured in the routine. Arithmetic errors, such as division by
zero, over/underflow, will be asynchronously trapped. If other error tests are to be done
inside the subroutine, the user flags the error by setting IER = -1 before the RETURN. If the
CALL command was executed from within a script, this error flag causes PHYSICA to abort
that script and control is passed back to the keyboard.

Numeric arguments

All the numeric arguments of your subroutine, except for the integer arguments IATYPE,

16

Commands

ICODE, IUPDATE, and IER, must be REAL*8. A string argument is passed as a LOGICAL*1 array.
Dimension numeric array arguments with length 1, for example:

REAL*8 X(1), Y(1), Z(1)

String arguments

All the string arguments of your subroutine must be LOGICAL*1, and should be dimensioned
1, for example:

LOGICAL*1 LFILE(1)

You can convert this to a string, say, CHARACTER*80 CFILE, using the following method:

LENF = ICODE(1,i)

DO I = 1, LENF

CFILE(I:I) = CHAR(LFILE(I))

END DO

where LFILE is the ith argument.

Accessing matrix data

If a matrix is passed as an argument to a user written subroutine, the elements of the matrix
can only be accessed using a calculated index. To access element m[i,j] of the matrix m,
use m[i+(j-1)*nrows] for i=1, ..., nrows and j=1, ..., ncols.

Example

If the command is CALL SUB3 A T X M, where A is a scalar, T is a string variable, X is a vector,
and M is a matrix, the subroutine should begin as follows:

17

Commands

SUBROUTINE SUB3(IATYPE,ICODE,IUPDATE,IER,A,T,X,M)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 A, X(1), M(1)

LOGICAL*1 T(1)

...

LENT =ICODE(1,2) ! the length of the string variable T

LENX =ICODE(1,3) ! the length of vector X

NROWS=ICODE(1,4) ! the number of rows of the matrix M

NCOLS=ICODE(2,4) ! the number of columns of the matrix M

...

RETURN

END

Creating a shareable image

The default set of eight (8) subroutines and eight (8) functions, listed in Appendix D, is
provided in the file:

PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.FOR

Copy this file to your own directory. For example:

$ copy PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.FOR disk:[directory]TEST.FOR

Substitute your source code for the default routines. All eight subroutines and all eight
functions must be present in your source code file.

A DCL command procedure must be executed before you invoke PHYSICA. This command
procedure, the VAX/VMS version is listed in Appendix B while the AlphaVMS version is
listed in Appendix C, can be found in: PHYSICA$DIR:PHYSICA USER FUNCTIONS.COM

This procedure defines the logical name PHYSICA USER FUNCTIONS and creates the sharable
image. There should be a system wide default definition of this logical name, so that if the
shareable image is not in a user defined location, the default will be used from PHYSICA$DIR.

Copy this procedure to your own directory. For example:

$ copy PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.COM disk:[directory]TEST.COM

You will need to modify one line:

18

Commands

$ define PHYSICA_USER_FUNCTIONS disk:[directory]TEST

In this line, replace disk:[directory]TEST with the actual location and name of your source
code file. Execute the command procedure, which will produce, PHYSICA_USER_FUNCTIONS.EXE,
a shareable image.

CLEAR
Syntax CLEAR

Qualifiers \ALPHANUMERIC, \TOGGLE, \REPLOTONLY, \NOREPLOT
Defaults clears graphics and replot option

By default, the CLEAR command clears the graphics. It also clears the replot buffers, that
is, there will be nothing to replot until something is drawn again. Any hardcopies must be
asked for before entering the CLEAR command.

Alphanumerics

Syntax CLEAR\ALPHANUMERIC

The CLEAR\ALPHANUMERIC command clears the alphanumeric, transparent, portion of the
monitor screen only. This has no affect on graphics hardcopies or the REPLOT buffers.

Toggle graphics

Syntax CLEAR\TOGGLE

On a CIT467 terminal, the CLEAR\TOGGLE command will toggle the graphics screen on or off.
The first time this command is entered, the graphics screen is turned off, and any graphics
will disappear. The next time CLEAR\TOGGLE is entered, the graphics screen will be turned
back on, and your graphics will reappear. This has no affect on graphics hardcopies or the
REPLOT buffers.

Clear the replot buffers only

Syntax CLEAR\REPLOTONLY

The CLEAR\REPLOTONLY command only clears the replot buffers and does not affect the graph-
ics. There is nothing to replot after CLEAR\REPLOTONLY until more data or text is drawn.

Do not clear the replot buffers

Syntax CLEAR\NOREPLOT

19

Commands

The CLEAR\NOREPLOT command only clears the graphics, it does not affect the replot buffers.

COLOUR
Syntax COLOUR colourname

COLOUR n

Defaults default colour is white

Examples COLOUR

COLOUR RED

COLOUR R\SCALAR

The COLOUR command sets the graphics monitor colour and the associated graphics hardcopy
colour number, for subsequent graphics. The colour number may, for example, be a plotter
pen number.

If no parameter is entered, a list of the colour names and corresponding numbers is dis-
played. You may then enter a colour name or number. Table 2.6 shows the recognized
colournames and their associated numbers.

Note: The colours black and white have always been a source of confusion. The colour
black means the graphics screen background colour. The colour white means white if the
background colour is black, and black if the background colour is white.

name number name number

black 0

white 1 yellow 5

red 2 cyan 6

green 3 magenta 7

blue 4 white 8

Table 2.6: Colour names and associated colour numbers

Note: For pen plotters, the colour of the pens should be confirmed before submitting a plot
file to a plotter.

Using a scalar for a colour number

If a scalar variable is to be used for the colour number, it must have the qualifier \SCALAR
attached to it. For example:
COLR=5

COLOUR COLR\SCALAR

20

Commands

CONTOUR
Syntax CONTOUR { x y } v nctr { min { inc }}

CONTOUR\SPECIFIC { x y } v lvls

Qualifiers \SPECIFIC, \INTERPSIZE, \POLAR, \LEGEND, \COLOURS, \PARTIAL,
\RESET, \CONTINUE, \BORDER, \AXES, \COORDINATES, \AREAS, \VOLUMES

Defaults x = [1;2;3;. . .] y = [1;2;3;. . .]

\NOSPECIFIC, \NOINTERPSIZE, \NOPOLAR, \NOLEGEND \NOCOLOURS,
\NOPARTIAL, \RESET, \BORDER, \AXES \NOCOORDINATES, \NOAREAS,
\NOVOLUMES, \NOCONTINUE

Examples CONTOUR X Y Z 10

CONTOUR M 10 MINVAL

CONTOUR\SPECIFIC\INTERPSIZE 10 X Y M LEVELS

The CONTOUR command draws contour lines for either data contained in a regular matrix or
a scattered set of points contained in three vectors.

Contour level selection

Syntax CONTOUR { x y } v nctr { min { inc }}
CONTOUR\SPECIFIC { x y } v lvls

By default, the number of contours, nctr, must be provided. If nctr > 0 and the increment
is not specified, the actual number of contours drawn may not be the same as the number
that was asked for, since “nice” contour levels will be selected and the range of values may
not be neatly divisible by the requested number. If the minimum is provided, but not the
increment, a “nice” value close to min will be used instead of the actual data minimum. If
the minimum and the increment are both specified, those exact values will be used for the
contour levels.

Specific contour levels

Specific contour levels can be requested by using the \SPECIFIC qualifier. In this case, the
vector lvls should contain the desired contour levels.

Exact contour levels

Exact contour levels can be requested in three ways.

• Use the \SPECIFIC qualifier and enter a vector containing the desired levels.

• Specify the minimum contour level, min, and the contour level increment, inc. This

21

Commands

produces a set of equally spaced contour levels,
[min; min+inc; min+2*inc; ...; min+nctr*inc].

• Specify a negative number of contours, nctr < 0. This produces a set of equally spaced
contour levels, as above, using the actual data minimum and the actual data maxi-
mum.

Zooming in

When the minimum and maximum contour levels are to be determined, by default, the en-
tire range of the data is used. If the \PARTIAL qualifier is used, the minimum and maximum
contour levels will be determined by the region contained within the axes. Thus, to zoom in
on a particular region for more detail, pre-set the axis scales, using the SCALES command,
before entering the CONTOUR command. Of course, the \PARTIAL qualifier does not apply when
you request specific contour levels.

Contour level colour

Syntax CONTOUR\COLOURS colr { x y } v num { min }
CONTOUR\INTERP\COLOURS colr ntrp { x y } v num { min }
CONTOUR\SPECIFIC\COLOURS colr { x y } v lvls

CONTOUR\SPECIFIC\INTERP\COLOURS colr ntrp { x y } v lvls

Colour contours can be obtained using the \COLOUR qualifier. A colour vector, colr, is ex-
pected as the first parameter. The length of colr should be the same as the number of
contours requested.

Contour labels

By default, contours are labeled with the actual contour level, using three significant digits.
See the discussion on the \LEGEND qualifier for an alternate contour labeling facility.

Contour label size

The size of the contour labels is %LABSIZ. If labels are not desired on the contours, use the
SET command to set %LABSIZ to zero before entering the CONTOUR command.

Contour label separation

The separation between contour labels is controlled with CNTSEP or %CNTSEP, which can be
changed with the SET command. If %CNTSEP is set, the separation is a percentage of the
height of the window, that is, YUWIND-YLWIND. If CNTSEP is set, the separation is expressed in

22

Commands

inches or centimeters, depending on the units. The default is %CNTSEP = 50.

Saving contour levels and coordinates

The contour levels are automatically stored in a vector named CCONT. If the \COORDINATES
qualifier is used, the x and y coordinates of each contour level are stored in matrices named
XCNT and YCNT. The number of points stored for each level is the first element of each column.
For example, XCNT[1,nc] (=n1) is the number of points making up contour number nc, while
XCNT[2:n1+1,nc] and YCNT[2:n1+1,nc] would contain the x and y coordinates of the ncth

contour level. These vectors are then available to the user for plotting and/or manipulation.
Each time the CONTOUR command is entered, these vectors are emptied and replaced, so if
you wish to keep them, they should be renamed or copied into other vectors.

Legend

By default, the contours are labeled with the actual contour level, using three significant
digits. If \NOAXES is used, then no legend is allowed.

If the \LEGEND qualifier is used, then the contours are labeled with an integer index and
the list of indices corresponding to the actual contour levels, the legend, is plotted along the
right side of the axes. If areas and/or volumes are requested, using \AREAS and/or \VOLUMES,
these values will also appear in the legend.

If you zoom in on a contour plot, by setting the axis scales beforehand, and you use the
\PARTIAL qualifier as well as the \AREAS qualifier, then the areas will be percentages of the
area currently showing on the graph. By default, the areas are percentages of the total area.

To add more contours to a contour plot, re-issue the same contour command with the
\CONTINUE qualifier and the legend will be continued from where it left off. You must have
used the \NORESET qualifier on the previous CONTOUR command if you intend to use \CONTINUE
on a succeeding CONTOUR command.

Legend size

The size of the legend characters is LEGSIZ. The value of LEGSIZ, or %LEGSIZ, can be changed
with the SET command. The default value of %LEGSIZ is 1.6

Axis relocation

The legend requires the right end of the x-axis to be set to 75% of the window, that is,
%XUAXIS is set to 75. The value of %XUAXIS can be changed with the SET command.

23

Commands

By default, %XUAXIS is reset to its former value after the CONTOUR command is finished. If the
\NORESET qualifier is used, the axis location will not be reset.

Polar coordinates

By default, the vectors x and y are assumed to represent Cartesian coordinates. If the \POLAR
qualifier is used, x and y are assumed to represent polar coordinates, with x the radial
component and y the angular component, in degrees. The values are converted internally
to rectangular coordinates, and the vectors are returned unchanged.

Axes

By default, axes are drawn for the contour plot. If the contour plot is to be overlayed on an
existing set of axes, use the \NOAXES qualifier and no axes will be drawn. The axis scales will
be left at their current values.

Scattered points

Syntax CONTOUR x y z nctr { min { inc }}
CONTOUR\SPECIFIC x y z lvls

Qualifiers \SPECIFIC, \POLAR, \LEGEND, \COLOURS, \PARTIAL
\RESET, \AXES, \COORDINATES

Defaults \NOSPECIFIC, \NOPOLAR, \NOLEGEND, \NOCOLOURS,
\NOPARTIAL, \RESET, \AXES, \NOCOORDINATES

If z is a vector, the vectors x and y are assumed to represent a scattered set of coordinates,
where z[i] is the altitude corresponding to the coordinate location (x[i],y[i]). The vectors
x and y must be entered if z is a vector.

Contours are computed by successive solution of quintic polynomial equations. The irreg-
ularly distributed data points are organized as triangles and the partial derivatives at each
point are estimated from the function values of the neighboring points.

Areas and volumes cannot be calculated from scattered data.

Matrix data

24

Commands

Syntax CONTOUR { x y } v nctr { min { inc }}
CONTOUR\SPECIFIC { x y } v lvls

Qualifiers \SPECIFIC, \INTERPSIZE, \POLAR, \LEGEND, \COLOURS, \PARTIAL
\RESET, \BORDER, \AXES, \COORDINATES, \AREAS, \VOLUMES

Defaults x = [1;2;3;. . .] y = [1;2;3;. . .]

\NOSPECIFIC, \NOINTERPSIZE, \NOPOLAR, \NOLEGEND
\NOCOLOURS, \NOPARTIAL, \RESET, \BORDER
\AXES, \NOCOORDINATES, \NOAREAS, \NOVOLUMES

Suppose that v is a matrix which has n columns and m rows. The vectors x and y are
optional, and if entered, are used for scaling the axes. Each matrix element, v[i,j], is
associated with the coordinates (x[j],y[i]). The length of x must be greater than or equal
to n and the length of y must be greater than or equal to m.

If x and y are not entered, x defaults to the set [1;2;3;. . .;n], and y defaults to the set
[1;2;3;. . .;m], so that matrix element m[i,j] is associated with the coordinates (j,i).

Minimum and maximum contour coordinates

The minimum and maximum x value for each contour are automatically stored in vectors
named CXMIN and CXMAX; the minimum and maximum y value for each contour are automat-
ically stored in vectors named CYMIN and CYMAX. These vectors are then available to the user
for plotting and/or manipulation. Each time the CONTOUR command is entered, these vectors
are emptied and replaced, so if you wish to keep them, they should be renamed or copied
into other vectors.

Volume

If the \VOLUMES qualifier is used, the volume contained within each contour is calculated
as a percentage of the total volume. The volume percentages are automatically stored in a
vector named CVOLM. Each time the CONTOUR command is entered, this vector is emptied and
replaced, so if you wish to keep it, it should be renamed or copied into another vector.

Area

If the \AREAS qualifier is used, the area contained within each contour is calculated as a per-
centage of the total area. The area percentages are automatically stored in a vector named
CAREA. Each time the CONTOUR command is entered, this vector is emptied and replaced, so if
you wish to keep it, it should be renamed or copied into another vector.

Area and volume calculation

25

Commands

The areas and volumes are calculated in the following way. Two dimensional, four point
linear interpolation is used to calculate a fine mesh overlayed on the matrix, see Figure 2.1.
Suppose the matrix has n columns and m rows and the size of the fine mesh is n1 columns
by m1 rows. The total area is n1 ×m1 and the total volume is the sum of the interpolated
values. Each point of the fine mesh is tested against the contour levels, and if a mesh
point has a value greater than the contour level, a one is binned for the area vector and the
mesh point value is binned for the volume vector. Finally, the area and volume vectors are
normalized by conversion to percentages.

Figure 2.1: Interpolating a fine mesh on the contours of a matrix

Interpolation size

Syntax CONTOUR\INTERPSIZE ntrp { x y } v nctr { min { inc }}
CONTOUR\SPECIFIC\INTERPSIZE ntrp { x y } v lvls

Suppose the matrix has n columns and m rows. The total size of the fine mesh, n1 columns
by m1 rows, is defined by the following:

n1 = (n− 1)× ix + 1
m1 = (m− 1)× iy + 1

where ix − 1 is the number of interpolation points between matrix points in the x-direction,
and iy − 1 is the number of interpolation points between matrix points in the y-direction.
The defaults are as below:

26

Commands

10 if n < 20 10 if m < 20
5 if 20 ≤ n < 50 5 if 20 ≤ m < 50

ix 3 if 50 ≤ n < 100 iy 3 if 50 ≤ m < 100
2 if 100 ≤ n 2 if 100 ≤ m

To over-ride these defaults, use the \INTERPSIZE qualifier, and enter ntrp as the first param-
eter. Both ix and iy will be set to ntrp.

Matrix boundary

By default, the boundary of the matrix is outlined within the axes. If this boundary is not
desired, use the \NOBORDER qualifier.

COPY
Syntax COPY xin { xin1 ... } xout { xout1 ... } { IFF expression }
Qualifiers \APPEND, \INDEX
Defaults \NOAPPEND, \NOINDEX
Examples COPY X Y Z XX YY ZZ

COPY\APPEND X XX

COPY X[1:10] Y[20:11:-1]

COPY\INDEX X Y Z XX YY ZZ IFF (X>2)

The COPY command copies a subset of vector xin, into another vector, xout. By default, if
xout already exists, the COPY command overlays the new data on the old.

Multiple input vectors can be entered, but there must be an output vector for each input
vector. Vector xinI is copied into xoutI.

Conditional copy

Syntax COPY xin1 { xin2 ... } xout1 { xout2 ... } IFF expression

If the keyword IFF is used, an expression is expected as the next, the last, parameter. In this
case, all the input vectors must have the same length. Index ranges on the input vectors
are not allowed. The expression does not have to involve any of the input vectors, but it
must result in a one dimensional array which has the same length as the input vectors.

xinI[j] is copied into xoutI if and only if the jth element of the expression is true. The
expression is said to be true if its value is non-zero, and false if its value is zero.

By default, the elements of xinI are copied in order into xoutI, that is, if the expression

27

Commands

dictates that n elements of xinI are to be copied into xoutI then these will become the first
n elements of xoutI.

If the \INDEX qualifier is used, then xinI[j] is copied to xoutI[j] if and only if the jth element
of the expression is true. If the jth element of the expression is false, xoutI[j] is left as is,
or is set to zero if j is greater than the original length of xoutI.

Unconditional copy

Syntax COPY xin1 { xin2 ... } xout1 { xout2 ... }

If no expression is entered, then index ranges may be used on the input and/or the output
vectors. In some cases, the COPY command is equivalent to an assignment. For example:

COPY XX[10:1:-2] X[1:10:2] is equivalent to X[1:10:2]=XX[10:1:-2].

Appending with copy

If the \APPEND qualifier is used, the copied elements of xinI are appended onto the end of
xoutI. If xoutI does not exist, COPY\APPEND is the same as COPY.

DCL
Syntax DCL

The DCL command is only relevant for VMS. The DCL command enters DCL mode by spawning
a subprocess. To return to the program, type the DCL command RETURN. When in DCL mode,
any VMS command may be entered, for example, edit a file, run a program.

The first time the DCL command is entered, a subprocess is spawned, which can take some
time. If the word RETURN is typed, the subprocess is not destroyed and a subsequent DCL

command will attach to this subprocess. Attaching to a subprocess is very fast. If the word
LOGOFF is typed, the subprocess is destroyed, so that a subsequent DCL command will have
to spawn a new subprocess.

UNIX equivalent

For UNIX users, just type control-z to suspend the program, then type bg to put the program
into the background. To return to PHYSICA, type fg.

DEALIAS
Syntax DEALIAS ALL

DEALIAS aliascommand

28

Commands

The DEALIAS command allows the user to eliminate aliases that were created with the ALIAS

command. If the keyword ALL is entered, all aliases will be eliminated. To display all aliases,
enter the ALIAS command with no parameters.

DEFAULTS
Syntax DEFAULTS

Qualifiers \INITIALIZE, \WINDOWS
Defaults initialization file not executed, windows reset

Examples DEFAULTS

DEFAULTS\INIT

The DEFAULTS command resets the original PHYSICA defaults.

Initialization file

If the \INITIALIZE qualifier is used, the initialization script file is executed after the standard
defaults have been set. That command script is also executed automatically at the time
PHYSICA is run.

It is possible to have individualized sets of PHYSICA defaults by means of initialization script
files. Create a script file and assign its name before running the program.

VMS: The file assigned to the logical name PHYSICA$INIT is executed.
$ DEFINE PHYSICA$INIT your_initfile

You could include this assignment in your DCL login command file.

UNIX: The file assigned to the environment variable PHYSICA_INIT is executed.
% setenv PHYSICA_INIT your_initfile

If PHYSICA_INIT is undefined, the file .physicarc in the current directory
is executed. If this file doesn’t exist, the file $HOME/.physicarc is executed.
No further action is taken if this file doesn’t exist.

Reset windows

By default, the windows are reset to their original definitions, see Table 2.67 on page 274.
If the \-WINDOWS qualifier is used, the windows will be left with their current definitions.

Default values

The PHYSICA keywords and their default values shown in Table 2.24 on page 63. These
defaults are the standard GPLOT defaults with the exceptions as listed in Table 2.7.

29

Commands

NLXINC= 2 NLYINC= 2 no plotting symbol
NSXINC= 1 NSYINC= 1 autoscaling on

%XLAXIS= 15 %YLAXIS= 15
%XUAXIS= 95 %YUAXIS= 90 FONT = TSAN
%XNUMSZ= 3 %YNUMSZ= 3

Table 2.7: Exceptions to the standard GPLOT defaults

The line types are reset to their original specifications, as shown in Table 2.8 in centime-
ters. See the SET LINES command on page 228 for information on changing the line type
definitions. See the DISPLAY command for information on how to view examples of the line
types.

line type p1 p2 p3

1 0.00 0.00 0.00
2 0.07 0.00 0.00
3 0.50 0.30 0.00
4 0.50 0.30 0.10
5 0.30 0.30 0.00
6 0.30 0.30 0.10
7 0.20 0.20 0.00
8 0.20 0.20 0.05
9 0.05 0.20 0.00
10 0.05 0.30 0.00

Table 2.8: Line type defaults in centimeters

The hatch patterns are reset to their original specifications, as shown in Table 2.9 in cen-
timeters. See the SET HATCH command on page 228 for information on changing the hatch
pattern definitions. See the DISPLAY command for information on how to view examples of
the hatch patterns.

DENSITY
Syntax DENSITY { x y } v

Qualifiers \POLAR, \PARTIAL, \DERIV, \PROFILE, \XPROFILE, \YPROFILE, \BORDER,
\AXES, \LOG

Defaults \-POLAR, \-PARTIAL, \-DERIV, \-PROFILE, \BORDER, \AXES, \-LOG
Examples DENSITY M

DENSITY X Y Z

30

Commands

pattern spacings
number 1 2 angle

1 0.01 0
2 0.01 90
3 0.05 0
4 0.05 90
5 0.10 0
6 0.10 90
7 0.20 45
8 0.20 −45
9 0.20 0.10 45
10 0.20 0.10 −45

Table 2.9: Hatch pattern defaults in centimeters

The DENSITY command produces a density plot for either data contained in a matrix or a
scattered set of points contained in three vectors.

If the \LOG qualifier is used, the base 10 logarithm of the data is used for the plot. If the
\LEGEND qualifier is also used, the scales on the legend will be in the form 10n. The data is
divided into levels whose boundaries are always integral powers of 10. The number of levels
will vary depending on the original data.

Density plot types

There are five types of density plot available. The default, requiring no special qualifier,
is solid filled regions in colour. Other types are chosen by using the appropriate qualifier.
Refer to Table 2.10.

density plot types required qualifier

solid filled regions in colour none (default)
random points \RANDOM
dithering with points (grey scales) \POINTS
diffusion with points (grey scales) \DIFFUSION
scaled rectangles \BOXES

Table 2.10: Density plot types and their required qualifiers

Axes

By default, axes are drawn for the density plot. If the density plot is to be overlayed on an

31

Commands

existing set of axes, use the \NOAXES qualifier and no axes will be drawn. The axis scales will
be left at their current values.

Matrix boundary

The \BORDER qualifier is valid only if matrix data is entered. By default, the rectangular
boundary of the matrix is outlined within the axes. If you do not want this boundary to be
drawn, use the \NOBORDER qualifier.

Zooming in

By default, the entire range of possible density levels will be used to determine the minimum
and maximum density levels. If the \PARTIAL qualifier is used, the minimum and maximum
density levels will be determined by the region contained within the axes. To zoom in on a
particular region for more detail, pre-set the axis scales, using the SCALES command, before
entering the DENSITY command.

Derivatives

If the \DERIV qualifier is used, the derivative of the data is used for plotting instead of the
raw data itself.

Profiles

The qualifiers \PROFILE, \XPROFILE and \YPROFILE are valid only if matrix data is entered.

If the \XPROFILE qualifier is used, the columns of the matrix are summed, the sums are
normalized to be between 0 and 1, and a histogram of the normalized sums is drawn hori-
zontally across the top of the graph.

If the \YPROFILE qualifier is used, the rows of the matrix are summed, the sums are nor-
malized to be between 0 and 1, and a histogram of the normalized sums is drawn vertically
along the right side of the graph.

If the \PROFILE qualifier is used, both the horizontal and vertical profiles are drawn.

When a profile is drawn, the axis borders must also be set to allow space for the profiles,
that is, %XUAXIS is set to 65% if a legend is present or 85% if there is no legend, and %YUAXIS

is set to 80.

By default, %XUAXIS and %YUAXIS are reset to their former values. If the \NORESET qualifier is
used, the axis locations are not reset.

32

Commands

Polar coordinates

By default, the vectors x and y are assumed to represent Cartesian coordinates. If the \POLAR
qualifier is used, x and y are assumed to represent polar coordinates, with x the radial
component and y the angular component, in degrees. The values are converted internally
to rectangular coordinates, and the vectors are returned unchanged.

Solid filled regions

Syntax DENSITY { x y } v { p1 p2 }
Qualifiers \POLAR, \LEGEND, \PARTIAL, \DERIV, \PROFILE, \XPROFILE, \YPROFILE,

\BORDER, \HISTOGRAM, \RESET, \AXES
Defaults if v is a matrix: x = [1;2;3;...], y = [1;2;3;...],

p1 = 0, p2 = 1, \NOPOLAR, \BORDER, \AXES, \NOLEGEND, \NOPROFILE,
\RESET

Solid filled regions in colour is the default density type. No qualifiers are needed to produce
this type of drawing. The range of values of the matrix is divided into eight (8) equal levels,
and a different colour is associated with each level. By default, a value is interpolated at
each pixel location within the matrix region so as to give smoothly joined regions.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A ”good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

Input variables

If v is a vector, the parameters x and y are expected and must be vectors. x and y are
assumed to represent a scattered set of points, where v[i] is the altitude corresponding to
the location (x[i],y[i]). A matrix is interpolated on these scattered points by means of a
Thiessen triangulation of the plane. The minimum length of the three vectors x, y, and v

will be used.

If v is a matrix, the parameters x and y default to [1;2;3;...], but if entered they must be
vectors. Each matrix element, m[i,j], is associated with the coordinates (x[j],y[i]). The
length of x must be greater than or equal to the number of columns of v and the length of
y must be greater than or equal to the number of rows. The vectors x and y are used for
scaling the axes.

33

Commands

Not interpolated solid fill

If the \HISTOGRAM qualifier is used, each data location is represented by a rectangle of colour,
centred on the data location. The regions are not smoothly joined.

Changing the range of values

The optional parameters p1 and p2 can be used to broaden or shrink the range of data
values. If vmax is the maximum value of the data and vmin is the minimum value of the data,
the full colour range will be from a minimum of min = p1× (vmax−vmin)+vmin to a maximum
of max = p2× (vmax − vmin) + vmin. If v is a data value and if v < p1× (vmax − vmin) + vmin, that
data value is treated as vmin. If v > p1 × (vmax − vmin) + vmin, that data value is treated as
vmax. The default values are: p1 = 0 and p2 = 1.

Legend

If the \LEGEND qualifier is used, a legend is drawn along the right side of the axes. The legend
requires the right end of the x-axis to be set to 75% of the window, that is, %XUAXIS is set to
75.

When a y-profile is drawn, using the \PROFILE qualifier or the \YPROFILE qualifier, the right
edge of the axis box must allow space for the profile as well as a possible legend. If a y-
legend profile and a legend are present, then %XUAXIS is set to 65. If a y-legend profile is
present but not a legend, then %XUAXIS is set to 85.

The value of %XUAXIS can be changed with the SET command. By default, %XUAXIS is reset
to its former value after the DENSITY command. If the \NORESET qualifier is used, the axis
location is not reset.

The numeric legend entries are written using the LEGFRMT format and with height given
by LEGSIZ, both of which are changed with the SET command. The default values are:
LEGFRMT = 1PE10.3 and %LEGSIZ = 1.6.

Random points

Syntax DENSITY\RANDOM { x y } v { p1 p2 }
Qualifiers: \POLAR, \PARTIAL, \DERIV, \COLOUR, \PROFILE, \XPROFILE, \YPROFILE,

\BORDER, \RESET, \AXES
Defaults if v is a matrix: x = [1;2;3;...], y = [1;2;3;...],

\NOPOLAR, \BORDER, \AXES, \NOPROFILE, \RESET, \NOCOLOUR
p1 = 0, p2 = 1

34

Commands

To obtain the random points type of density plot, use the \RANDOM qualifier.

A value is interpolated at every pixel location within the data region and the value is then
normalized to lie between 0 and 1. This normalized value is compared to a randomly gen-
erated number. That pixel location is lit up if the square of the normalized value is greater
than the random number.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A ”good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

Input variables

If v is a vector, the parameters x and y are expected and must be vectors. x and y are
assumed to represent a scattered set of points, where v[i] is the altitude corresponding to
the location (x[i],y[i]). A matrix is interpolated on these scattered points by means of a
Thiessen triangulation of the plane. The minimum length of the three vectors x, y, and v

will be used.

If v is a matrix, the parameters x and y default to [1;2;3;...], but if entered they must be
vectors. Each matrix element, m[i,j], is associated with the coordinates (x[j],y[i]). The
length of x must be greater than or equal to the number of columns of v and the length of
y must be greater than or equal to the number of rows. The vectors x and y are used for
scaling the axes.

Random points in colour

If the \COLOUR qualifier is used with \RANDOM, the range of data values is divided into eight
equal levels and a different colour is associated with each level. The pixel is lit in the colour
corresponding to the relative size of the interpolated value.

Changing the range of values

The optional parameters p1 and p2 can be used to broaden or shrink the range of data
values. If vmax is the maximum value of the data and vmin is the minimum value of the data,
the full colour range will be from a minimum of min = p1× (vmax−vmin)+vmin to a maximum
of max = p2× (vmax − vmin) + vmin. If v is a data value and if v < p1× (vmax − vmin) + vmin, that
data value is treated as vmin. If v > p1 × (vmax − vmin) + vmin, that data value is treated as
vmax. The default values are: p1 = 0 and p2 = 1.

35

Commands

Example

R=MOD([0:143],4)+1

SORT\UP R

T=MOD([0:143],36)*10

DENSITY\RANDOM R*COSD(T) R*SIND(T) EXP(-R/2)*COSD(180*(R-1))

Diffusion

Syntax DENSITY\DIFFUSION { x y } v { p1 p2 }
Qualifiers \POLAR, \PARTIAL, \DERIV, \PROFILE, \XPROFILE, \YPROFILE, \BORDER,

\RESET, \AXES
Defaults if v is a matrix: x = [1;2;3;...], y = [1;2;3;...],

\NOPOLAR, \BORDER, \AXES, \NOPROFILE, \RESET
p1 = 0, p2 = 1

To obtain the diffusion type of density plot, use the \DIFFUSION qualifier.

Diffusion is a form of digital halftoning. A threshold is fixed at 1
2 . Data values are interpo-

lated at each pixel location, and then normalized to be between 0 (white) and 1 (black). The
resulting binary output value is compared with the original grey level value. The difference
is called the error for that location. The signal consisting of past error values is passed
through an error filter to produce a correction factor to be added to future input values.
Thus, errors are diffused over a weighted neighborhood.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark InkJet printer has a resolution of
360 dpi. A ”good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

Input variables

If v is a vector, the parameters x and y are expected and must be vectors. x and y are
assumed to represent a scattered set of points, where v[i] is the altitude corresponding to
the location (x[i],y[i]). A matrix is interpolated on these scattered points by means of a
Thiessen triangulation of the plane. The minimum length of the three vectors x, y, and v

will be used.

If v is a matrix, the parameters x and y default to [1;2;3;...], but if entered they must be

36

Commands

vectors. Each matrix element, m[i,j], is associated with the coordinates (x[j],y[i]). The
length of x must be greater than or equal to the number of columns of v and the length of
y must be greater than or equal to the number of rows. The vectors x and y are used for
scaling the axes.

Changing the range of values

The optional parameters p1 and p2 can be used to broaden or shrink the range of data
values. If vmax is the maximum value of the data and vmin is the minimum value of the data,
the full colour range will be from a minimum of min = p1× (vmax−vmin)+vmin to a maximum
of max = p2× (vmax − vmin) + vmin. If v is a data value and if v < p1× (vmax − vmin) + vmin, that
data value is treated as vmin. If v > p1 × (vmax − vmin) + vmin, that data value is treated as
vmax. The default values are: p1 = 0 and p2 = 1.

Example

R=MOD([0:143],4)+1

SORT\UP R

T=MOD([0:143],36)*10

DENSITY\DIFFUSION R*COSD(T) R*SIND(T) EXP(-R/2)*COSD(180*(R-1))

Dithering patterns

Syntax DENSITY\POINTS { x y } v { p1 p2 }
DENSITY\POINTS\DITHER d { x y } v { p1 p2 }
DENSITY\POINTS\LEVELS lvl { x y } v { p1 p2 }
DENSITY\POINTS\LEVELS\DITHER d lvl { x y } v { p1 p2 }

Qualifiers \POLAR, \LEGEND, \PARTIAL, \DERIV, \PROFILE, \XPROFILE, \YPROFILE,
\BORDER, \RESET, \AXES, \DITHER, \CONTOURS, \LEVELS, \AREAS,
\VOLUMES, \LINES, \EQUALLY SPACED

Defaults if v is a matrix: x = [1;2;3;...], y = [1;2;3;...],

d = [1;1; 2;1; 2;2; 3;2; 3;3; 4;3; 4;4; 5;5; 6;6; 0;0],

\NOPOLAR, \BORDER, \NOLEGEND, \NOPROFILE, \RESET
p1 = 0, p2 = 1, ten equally spaced contour levels

To obtain the dithering pattern type of density plot, use the \POINTS qualifier.

By default, the range of data values is divided into ten (10) equally spaced levels and a
different dithering pattern is associated with each level. A value is interpolated at every
pixel location within the bounds of the data region to determine the level for that point. The
dithering pattern for that level then determines whether that pixel is to be lit up. Thus, the

37

Commands

boundaries of the data are divided up into different dithering pattern regions.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A “good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

Input variables

If v is a vector, the parameters x and y are expected and must be vectors. x and y are
assumed to represent a scattered set of points, where v[i] is the altitude corresponding to
the location (x[i],y[i]). A matrix is interpolated on these scattered points by means of a
Thiessen triangulation of the plane. The minimum length of the three vectors x, y, and v

will be used.

If v is a matrix, the parameters x and y default to [1;2;3;...], but, if entered, they must be
vectors. Each matrix element, m[i,j], is associated with the coordinates (x[j],y[i]). The
length of x must be greater than or equal to the number of columns of v and the length of
y must be greater than or equal to the number of rows. The vectors x and y are used for
scaling the axes.

Changing the range of values

The optional parameters p1 and p2 can be used to broaden or shrink the range of data
values. If vmax is the maximum value of the data and vmin is the minimum value of the data,
the full colour range will be from a minimum of min = p1× (vmax−vmin)+vmin to a maximum
of max = p2× (vmax − vmin) + vmin. If v is a data value and if v < p1× (vmax − vmin) + vmin, that
data value is treated as vmin. If v > p1 × (vmax − vmin) + vmin, that data value is treated as
vmax. The default values are: p1 = 0 and p2 = 1.

Dithering pattern definition

The default dithering pattern vector is:

[1;1; 2;1; 2;2; 3;2; 3;3; 4;3; 4;4; 5;5; 6;6; 0;0]

A user defined dithering pattern can be entered by using the \DITHER qualifier and entering
the dithering pattern vector, d, as the first parameter.

The dithering pattern is determined by pairs of numbers from d, so the number of dithering

38

Commands

patterns defined by d is 1
2 the length of d.

For pattern number i, every d[2× i−1]th pixel is lit up horizontally, and every d[2× i]th pixel
is lit up vertically. For example, if d[1] = 1 and d[2] = 1, then for level 1 every pixel is lit up,
while if d[3] = 2 and d[4] = 3, then for level 2 every second pixel is lit up horizontally and
every third pixel is lit up vertically.

Legend

If the \LEGEND qualifier is used, a legend is drawn along the right side of the axes. The legend
requires the right end of the x-axis to be set to 75% of the window, that is, %XUAXIS is set to
75.

When a y-profile is drawn, using the \PROFILE qualifier or the \YPROFILE qualifier, the right
edge of the axis box must allow space for the profile as well as a possible legend. If a y-
legend profile and a legend are present, then %XUAXIS is set to 65. If a y-legend profile is
present but not a legend, then %XUAXIS is set to 85.

The value of %XUAXIS can be changed with the SET command. By default, %XUAXIS is reset
to its former value after the DENSITY command. If the \NORESET qualifier is used, the axis
location is not reset.

The numeric legend entries are written using the LEGFRMT format and with height given
by LEGSIZ, both of which are changed with the SET command. The default values are:
LEGFRMT = 1PE10.3 and %LEGSIZ = 1.6.

Contours

By default, a contour line is drawn around the boundary of each dithering pattern region.
If the \NOLINES qualifier is used, then these contour lines will not be drawn.

If the qualifier \CONTOURS is used, an automatically created vector named DENS$CONT will be
made which will contain the boundary values of each region. If there are N regions, the
length of DENS$CONT will be N + 1.

User specified contour levels

A specific set of contour levels can be entered by using \LEVELS and entering a vector of
contour level values, lvl, as the first parameter, unless the \DITHER qualifier is also used, in
which case the contour level vector should be the second parameter. If both are used, and
the length of the dithering vector is N , the length of the level vector must be N

2 − 1. Suppose
that vmin and vmax are the minimum and maximum of the data v. The level vector must be

39

Commands

strictly monotonically increasing, with lvl[1] > vmin and lvl[#] < vmax.

The \EQUALLY_SPACED qualifier only applies to the case of a dithering type density plot with
legend, where the user supplies the contour levels, for example:

DENSITY\POINTS\LEVELS\LEGEND\EQUALLY_SPACED lvl x y m

If the \EQUALLY_SPACED qualifier is used, the legend boxes will all be the same size, irregard-
less of the values specified in the levels vector, lvl.

Areas and volumes

If the \AREAS qualifier is used, an automatically created vector named DENS$AREA will be
made which will contain the percentage areas contained within each region. If the \VOLUMES
qualifier is used, an automatically created vector named DENS$VOLM will be made which will
contain the percentage volumes contained within each region. If there are N regions, the
length of DENS$AREA and DENS$VOLM will both be N . Also, the sum of the elements of each of
these vectors will always be 100, that is, sum(DENS$AREA[j],j,1:N) = 100.

Example

R=MOD([0:143],4)+1

SORT\UP R

T=MOD([0:143],36)*10

D=[1;1; 2;2; 4;4; 7;7; 11;11; 0;0]

DENSITY\LEGEND\POINTS\DITHER D R*COSD(T) R*SIND(T) EXP(-R/2)*COSD(180*(R-1))

Boxes

Syntax DENSITY\BOXES { x y } v { p1 p2 { q1 q2 { r }}}
Qualifiers \POLAR, \PARTIAL, \DERIV, \PROFILE, \XPROFILE, \YPROFILE, \BORDER,

\RESET, \AXES
Defaults if v is a matrix: x = [1;2;3;...], y = [1;2;3;...],

p1 = 0, p2 = 1, q1 = 0, q2 = 1, r = 1,

\NOPOLAR, \BORDER, \AXES, \NOPROFILE, \RESET

To obtain the scaled rectangles type of density plot, use the \BOXES qualifier.

Input variables

If v is a vector, the parameters x and y are expected and must be vectors. x and y are as-

40

Commands

sumed to represent a scattered set of points. A box is drawn, centred at location (x[i],y[i])

with relative size determined by v[i]. No internal matrix is interpolated with the scaled rect-
angle type of density plot. The minimum length of the three vectors x, y, and v will be used.

If v is a matrix, the parameters x and y default to [1;2;3;...], but if entered they must be
vectors. A box is drawn, centred at location (x[j],y[i]) with relative size determined by
v[i,j]. The length of x must be greater than or equal to the number of columns of v and
the length of y must be greater than or equal to the number of rows.

Delimiting the range of values

The optional parameters p1 and p2 can be used to select a window of values from within the
box size range, min to max, as defined above. Suppose that v is the data value at (x,y). A
box is drawn at (x,y) if and only if p1 < v−min

max−min < p2. The default values are: p1 = 0 and p2

= 1.

Accentuating a range of values

The optional parameters q1 and q2 can be used to accentuate a range of values. If vmax
is the maximum value of the data and vmin is the minimum value of the data, the full
box size range will be from a minimum of min = q1× (vmax − vmin) + vmin to a maximum of
max = q2× (vmax − vmin) + vmin. The default values are: q1 = 0 and q2 = 1.

Box size scale factor

The optional parameter r is a scale factor which controls the size of the boxes. For each
box, the width and height is multiplied by r. The default value is: r = 1.

Filled boxes

The boxes can be filled. Use the SET FILL command to change the fill type and pattern. See
Table 2.55 on page 233 for a description of the interpretations of the FILL keyword.

Examples

The following script produces Figure 2.2.

X=[1; 0; 1; 0; .2; .3; .5; .8]

Y=[5; 5; 0; 0; 1;1.5; 2.5; 4]

Z=[10; 10; 10; 10; -100; 10; -100; 500]

GRID\XYOUT X Y Z M XOUT YOUT

DENSITY\BOXES\PROFILES XOUT YOUT M

41

Commands

Figure 2.2: An example of a box type density plot with both x and y profiles

The following script produces Figure 2.3.

X=[1; 0; 1; 0; .2; .3; .5; .8]

Y=[5; 5; 0; 0; 1;1.5; 2.5; 4]

Z=[10; 10; 10; 10; -100; 10; -100; 500]

GRID\XYOUT X Y Z M XOUT YOUT

WINDOW 5

LABEL\XAXIS ‘DENSITY\BOXES XOUT YOUT M 0 1 0 1’

DENSITY\BOXES XOUT YOUT M 0 1 0 1

WINDOW 7

LABEL\XAXIS ‘DENSITY\BOXES XOUT YOUT M .5 1 0 1’

DENSITY\BOXES XOUT YOUT M .5 1 0 1

WINDOW 6

LABEL\XAXIS ‘DENSITY\BOXES XOUT YOUT M 0 1 .5 1’

DENSITY\BOXES XOUT YOUT M 0 1 .5 1

WINDOW 8

LABEL\XAXIS ‘DENSITY\BOXES XOUT YOUT M .5 1 .5 1’

DENSITY\BOXES XOUT YOUT M .5 1 .5 1

The following script produces Figure 2.4.

42

Commands

Figure 2.3: Examples of box type density plot with accentuated and delimited values

43

Commands

X=[1; 0; 1; 0; .2; .3; .5; .8]

Y=[5; 5; 0; 0; 1;1.5; 2.5; 4]

Z=[10; 20; 30; 40; 50; 40; 70; 30]

WINDOW 5

LABEL\XAXIS ‘density\boxes x y z’

DENSITY\BOXES X Y Z

WINDOW 7

GRID\XYOUT X Y Z M XOUT YOUT

LABEL\XAXIS ‘density\boxes xout yout m’

DENSITY\BOXES XOUT YOUT M

Figure 2.4: Box type density plots with scattered points and with a matrix

DESTROY
Syntax DESTROY v1 { v2 . . . } { IFF expression }
Qualifier \EXPAND
Default \-EXPAND
Examples DESTROY X Y Z A B C M1 M2 M3 T1 T2 T3

DESTROY *V M1 M2 *T

DESTROY X Y Z IFF (X>=2)&(X<=4)

DESTROY X[1:10] Y[2:20:2] T[3][A:B] Z

The DESTROY command eliminates subsets of vectors or string variables, or it destroys scalars
or matrices. Up to twenty-nine (29) variable names may be entered.

Unconditional

Syntax DESTROY v1 { v2 . . . }
Qualifier \EXPAND
Default \-EXPAND

44

Commands

When scalars or matrices are entered, they are completely destroyed. Index ranges are not
allowed on scalars or matrices. These variables are simply eliminated. By default, variable
names are not constructed or expanded.

If vectors are entered with no index ranges, they are entirely eliminated. Subsets of vectors
or of string variables may be eliminated by including an index range.

Expand names

By using the \EXPAND qualifier, you can enter names that must be constructed, or string
variables that can be expanded.

For example, suppose that scalar I has the value 2, and the string variable TXT has the value
‘X2’.

DESTROY\EXPAND ‘X’//RCHAR(I) will destroy X2

DESTROY TXT will destroy TXT

DESTROY\EXPAND TXT will destroy X2

Index ranges

Index ranges are not allowed on scalars or matrices. Index ranges are not allowed if an
expression is entered.

Subsets of vectors or string variables may be eliminated by including an index range. For
example:

DESTROY X[5:25:5] Y Z T[1:10]

will eliminate elements 5, 10, 15, 20, and 25 from vector X and eliminate characters 1 through
10 of string variable T. The variables X and T will be compressed. Variables Y and Z will be
entirely destroyed.

Classes of variables

There are various keywords to simplify the elimination of groups of variables. Refer to
Table 2.11. These keywords cannot be used with an expression, but they can be used along
with specific variable names.

Conditional

Syntax DESTROY v1 { v2 . . . } IFF expression

45

Commands

keyword result

∗ all variables will be destroyed
∗V all vectors will be destroyed
∗S all scalars will be destroyed
∗M all matrices will be destroyed
∗T all string variables will be destroyed

Table 2.11: Keywords used to destroy entire classes of variables

If the keyword IFF is used, an expression is expected as the next, the last, parameter. Ele-
ments of vectors only can be eliminated conditional on the value of an expression. Matrices,
scalars and string variables are not allowed, and index ranges on the input vectors are also
not allowed with a conditional expression. The expression does not have to involve any of
the input vectors, but it must result in a one dimensional array which has the same length
as the input vectors.

vI[j] is eliminated if and only if the jth element of the expression is true. The expression is
said to be true if its value is non-zero, and false if its value is zero.

Examples

DESTROY X[5:25:5] Y Z *M T[1:10] TXT[3][2:5]

will destroy elements 5, 10, 15, 20, and 25 from vector X; eliminate characters 1 through 10
of string variable T; and eliminate characters 2 through 5 of the third string of array string
variable TXT. The variables X, T, and TXT[3] will be compressed. Variables Y and Z will be
entirely destroyed. All matrices will be eliminated.

It is possible to delete from a vector all elements that have a value between M and N, assuming
that M and N are scalars.

DESTROY X IFF (X>M)&(X<N)

The expression is evaluated for each element of X and if the expression is true, the cor-
responding element is deleted from the vector X. Other vectors can also be entered. For
example:

DESTROY X Y Z IFF (X>M)&(X<N)

If the jth element of the expression is true, then elements X[j], Y[j] and Z[j] will be deleted.
In this way, sets of data can be kept together.

46

Commands

DEVICE
Syntax DEVICE keyword

Defaults initial graphics hardcopy device: HP LaserJet 150 dpi

Examples DEVICE HPLASER 300

DEVICE HPPLOTTER

DEVICE\COLOUR POSTSCRIPT

DEVICE\GREY POSTSCRIPT A

The DEVICE command is used to select a graphics hardcopy output device. If a device type
is chosen, as opposed to entering OFF or ON, then the graphics will be cleared. The initial
default graphics hardcopy device is an HP LaserJet bitmap at 150 dpi resolution.

The graphics hardcopy device determines the world coordinate plotting units. The device
should be chosen before opening an EDGR file.

ON and OFF

If the user is not interested in graphics hardcopy, it is recommended that hardcopy gener-
ation be turned OFF, since graphics on the monitor is noticeably faster when a hardcopy is
not made.

If DEVICE OFF is entered, output to the hardcopy bitmap or file will be disabled. The graphics
will not be cleared, but, while the output is disabled, no hardcopy output will be available.
To re-enable output to a previously chosen device type, use the DEVICE ON command. The
device type that was previously chosen will again be available. The graphics will not be
cleared.

Device keywords

If the DEVICE command is entered with no parameters, the current graphics hardcopy device
is displayed. A table of devices and their corresponding code numbers is also displayed, and
you can then enter your choice, either by name or by code number.

47

Commands

bitmap vector display

devices plotters files

---------------------------- ------------------------------- ----------

HPLaserJet {100|150|300} 1-3 HPPlotter {A|B|C|D|E} 12-16 VT640 36

Inkjet {1|2|3|4|5} 4-8 Houston {A|B|C|D|E} 17-21 VT241 37

HPThinkJet 9 LN03+ 22 Cit467 38

La100 10 Imagen 23 TK4010 39

Printronix 11 GKS 24 TK4107 40

PostScript {A|B|C|D|E|A4} 25-30 PT100G 41

Roland {A|B|C|D|E} 31-35 Seiko 42

HPLaserJet

Syntax DEVICE HPLASERJET { dpi }
Default dpi = 150

The optional parameter, dpi, is only applicable with HPLaserJet. It controls the resolution of
the hardcopy, specifying the dots per inch. The valid resolutions are: dpi = 100, 150, 300.
If dpi is not entered, 150 is assumed.

Refer to Table 2.12 to see the plotting units for the HPLaserJet bitmap graphics hardcopy
devices.

orientation units horizontal vertical

LANDSCAPE centimeters 27.94 21.59
inches 11.00 8.50

PORTRAIT centimeters 21.59 27.94
inches 8.50 11.00

Table 2.12: Plotting units for HPLASERJET devices

InkJet

Syntax DEVICE INKJET { np }
Default np = 1

The HP PaintJet and the LJ250 are colour bitmap devices that allow for a single plot to cover
from one (1) to a maximum of five (5) continuous pages. To choose the number of pages, use
the optional parameter np. If graphics is being monitored on a colour monitor, the colours
used on the INKJET will be the same as on the monitor, except that black and white are
interchanged.

48

Commands

Refer to Table 2.13 to see the plotting units for the InkJet bitmap graphics hardcopy devices.

pages = 1 pages > 1
orientation units horizontal vertical horizontal vertical

LANDSCAPE centimeters 26.67 19.05 27.94 20.32*np
inches 10.50 7.50 11.00 8.00*np

PORTRAIT centimeters 19.05 26.67 20.32*np 27.94
inches 7.50 10.50 8.00*np 11.00

Table 2.13: Plotting units for INKJET devices

Other bitmap devices

Syntax DEVICE PRINTRONIX

DEVICE LA100

DEVICE THINKJET

The PRINTRONIX, LA100, and THINKJET are bitmap devices.

Refer to Table 2.14 to see the plotting units for the PRINTRONIX, LA100, and THINKJET bitmap
graphics hardcopy devices.

orientation units horizontal vertical

LANDSCAPE centimeters 25.00 19.00
inches 9.84 7.48

PORTRAIT centimeters 19.00 25.00
inches 7.48 9.84

Table 2.14: Plotting units for PRINTRONIX, LA100, and THINKJET devices

PostScript devices

Syntax DEVICE POSTSCRIPT { A | B | C | D | E | A4 }
Qualifiers \FLIP, \COLOUR, \GREY
Defaults \-FLIP, \-COLOUR, \-GREY, paper size A

The optional parameter refers to paper sizes. Refer to Table 2.15. To see the plotting units
for the PostScript devices, refer to Table 2.16.

Resolution

49

Commands

paper
size centimeters inches

A 21.59× 27.64 8.50× 11.00
B 27.94× 43.18 11.00× 17.00
C 43.18× 55.88 17.00× 22.00
D 55.88× 86.36 22.00× 34.00
E 86.36× 111.76 34.00× 44.00
A4 21.00× 29.70 8.27× 11.69

Table 2.15: PostScript paper sizes

The resolution of your PostScript hardcopy output can be changed with the SET POSTRES

command. The default value for POSTRES is 180 dpi (dots per inch). This applies to dot filled
text characters and to dot types of DENSITY plots.

Upside down drawings

If the \FLIP qualifier is used, the drawing will come out upside down on the paper. This is
not mirror image. This feature is included to facilitate the insertion of PostScript plots into
TEX or LATEX documents.

Colour

The \COLOUR qualifier only applies to PostScript output. The \COLOUR qualifier means colour
changes will be inserted into the PostScript output. The default is \-COLOUR.

Grey scale

The \GREY qualifier only applies to PostScript output. The \GREY qualifier means colour
changes will be inserted into the PostScript output as grey scales. The default is \-GREY.

Pen plotters

Syntax DEVICE HPPLOTTER { A | B | C | D | E }
DEVICE HOUSTON { A | B | C | D | E }
DEVICE ROLAND { A | B | C | D | E }

Defaults paper size A

The optional parameter refers to paper sizes. Refer to Table 2.17.

Refer to Table 2.18 to see the plotting units for the pen plotter type graphics hardcopy

50

Commands

paper LANDSCAPE PORTRAIT

size units horizontal vertical horizontal vertical

A centimeters 25.00 19.00 19.00 25.00
inches 9.84 7.48 7.48 9.84

B centimeters 40.64 25.40 25.40 40.64
inches 16.00 10.00 10.00 16.00

C centimeters 53.34 40.64 40.64 53.34
inches 21.00 16.00 16.00 21.00

D centimeters 83.82 53.34 53.34 83.82
inches 33.00 21.00 21.00 33.00

E centimeters 109.22 83.82 83.82 109.22
inches 43.00 33.00 33.00 43.00

A4 centimeters 27.16 18.46 18.46 27.16
inches 10.69 7.27 7.27 10.69

Table 2.16: Plotting units for POSTSCRIPT devices

paper
size centimeters inches

A 21.59× 27.64 8.5× 11.0
B 27.94× 43.18 11.0× 17.0
C 43.18× 55.88 17.0× 22.0
D 55.88× 86.36 22.0× 34.0
E 86.36× 111.76 34.0× 44.0

Table 2.17: Pen plotter paper sizes

51

Commands

devices.

paper LANDSCAPE PORTRAIT

size units horizontal vertical horizontal vertical

A centimeters 25.00 19.00 19.00 25.00
inches 9.84 7.48 7.48 9.84

B centimeters 40.64 25.40 25.40 40.64
inches 16.00 10.00 10.00 16.00

C centimeters 53.34 40.64 40.64 53.34
inches 21.00 16.00 16.00 21.00

D centimeters 83.82 53.34 53.34 83.82
inches 33.00 21.00 21.00 33.00

E centimeters 109.22 83.82 83.82 109.22
inches 43.00 33.00 33.00 43.00

Table 2.18: Plotting units for pen plotter devices

Other vector plotters

Syntax DEVICE LN03+

DEVICE IMAGEN

The LN03+ and IMAGEN are vector plotters.

Refer to Table 2.19 to see the plotting units for the LN03+ and IMAGEN vector plotter graphics
hardcopy devices.

orientation units horizontal vertical

LANDSCAPE centimeters 25.40 19.05
inches 10.00 7.50

PORTRAIT centimeters 19.05 25.40
inches 7.50 10.00

Table 2.19: Plotting units for LN03+ and IMAGEN devices

GKS metafiles

Syntax DEVICE GKS

GKS refers to GKS metafiles, which are available only at sites where PHYSICA is linked with a
local GKS library. In this case, there will likely be an interpreter program which allows the
metafile to be replayed onto various printers and terminals.

52

Commands

Refer to Table 2.20 to see the plotting units for the GKS graphics metafiles.

orientation units horizontal vertical

LANDSCAPE centimeters 25.40 19.05
inches 10.00 7.50

PORTRAIT centimeters 19.05 25.40
inches 7.50 10.00

Table 2.20: Plotting units for GKS graphics metafiles

Display files

Syntax DEVICE VT640

DEVICE VT241

DEVICE CIT467

DEVICE TK4010

DEVICE TK4107

DEVICE PT100G

DEVICE GR1105

If a monitor type is chosen as a hardcopy device, a ”display file” will be created. The graphics
will be redisplayed when this file is typed, in DCL mode, on the appropriate terminal type.
Any graphics that was drawn after choosing the display file will be replayed on the monitor
screen, including any clearing of the graphics. The name of the file that is created will be
displayed. The file is named after the plotter type.

Refer to Table 2.21 to see the plotting units for the display file type of graphics output.

orientation units horizontal vertical

LANDSCAPE centimeters 27.94 21.59
inches 11.00 8.50

PORTRAIT centimeters 21.59 27.94
inches 8.50 11.00

Table 2.21: Plotting units for display file graphics output

DIGITIZE
Syntax DIGITIZE { xout yout { codes }}

The DIGITIZE command digitizes points off of a graph that is attached to a digitizing pad. To
make use of the digitizer, simply secure the graph to the pad, enter the DIGITIZE command,
and follow the directions.

53

Commands

Digitizing pad types

The only digitizing pad type that is currently supported is the Digi-Pad, Type 5A, made by
GTCO Corporation, attached to a terminal.

Optional output variables

If the two optional variable names, xout and yout, are entered, then two vectors will be
created. Any recorded points will be saved in these two vectors, with the horizontal axis
values stored in xout and the vertical axis values stored in yout. If the optional variable
name, codes, is entered, then a vector will be created with a code number saved in this vector
for each recorded point. See the following table for the meanings of these code numbers.

code

recorded point 1
marked point 2
connected point 3

Preparing for digitizing data

When the DIGITIZE command is entered, the graphics screen will be cleared and instructions
will be displayed on the monitor screen. You will first be asked to give names for the four
digitizer’s crosshair buttons. Enter four labels, one for each of the mouse buttons, with
a maximum of 15 characters per label, separated by blanks or commas. You will then be
asked to type each button to enable the program to coordinate the labels with the buttons.

Now you will be asked to place the digitizer’s crosshair on some point of the graph where
you know the graph coordinates and to press a button. Usually, this point is the lower left
corner of the graph. Then you will be asked to enter the x and y graph coordinates of this
point. Repeat this process for two more points, ensuring that the third point is not collinear
with the first two points. Usually, the points one enters are the lower right corner and the
upper right corner of the graph. These three points define the transformation for the graph
and the angle of the axes.

Digitizing data

Now you are ready to digitize data off of the graph. It is a good idea to position the crosshair
on the lower left and upper right corners and check the values there.

The action that is taken at any time is determined by the mouse button or the keyboard key
that is typed. See Table 2.22 for the mouse buttons and their corresponding definitions,

54

Commands

and see Table 2.23 for the keyboard keys and their corresponding definitions.

button definition

1 digitize a point and display the x and y values,
do not save these values

2 digitize and display values as above;
record these values in the two (optional) vectors xout and yout

3 digitize, display, and record values as above;
place a small marker at the chosen point

4 digitize, display, record, and mark values as above;
also connect this point to the last recorded point by drawing a line
segment

Table 2.22: Mouse button definitions when digitizing data

key definition

F write the values that have been recorded so far to a file, enter the
file name when asked

? display the menu of key control codes

/ clear the alphanumeric monitor screen

Q quit; the screen will be cleared

Table 2.23: Keyboard key definitions when digitizing data

DISABLE
Syntax DISABLE keyword

The DISABLE command allows you to disable certain features denoted by keyword. Use the
ENABLE command to re-enable those features.

Graphics window borders

Syntax DISABLE BORDER

Default enabled

Disabling BORDER means that the rectangular borders that delimit the hardcopy page bound-
ary and the window edges will not be drawn. These rectangles do not appear on any hard-
copies, but may be considered to interfere with the graphics monitor display.

Broadcast messages

55

Commands

Syntax DISABLE BROADCAST

Default the terminal state when PHYSICA is invoked

The DISABLE BROADCAST command is only relevant for VMS. The DISABLE BROADCAST command
is equivalent to the DCL command:

$ SET TERMINAL/NOBROADCAST

This prevents broadcast messages from being accepted by the terminal monitor. If the
user is not interested in receiving broadcast messages, for example, “New mail”, then it is
recommended that broadcast mode be turned off.

Confirmation requests

Syntax DISABLE CONFIRM

Default enabled

If CONFIRM is disabled, no confirmation will be requested from the TEXT, FIGURE, LEGEND FRAME,
and WINDOW commands. The CONFIRM setting can be over-ridden on a specific command by
using the \CONFIRM (or the \NOCONFIRM) qualifier.

Echoing from scripts

Syntax DISABLE ECHO

Default disabled

Disabling ECHO means that commands that are entered via a command script file will not be
displayed on the monitor screen as they are executed.

Local effect

If the ENABLE ECHO command is encountered within a script, echoing is done only while
within that script. For example, suppose you have echoing disabled at the keyboard entry
level and you execute a script which has ENABLE ECHO within it. Subsequent lines that are
read from that script will be echoed, but when that script is finished executing, echoing will
be disabled again.

Saving a variable’s history

Syntax DISABLE HISTORY

Default enabled

56

Commands

Disabling HISTORY means that when a variable is altered, it’s history will not be updated. A
variable’s history is displayed with the SHOW command. This feature was included because
variables altered within large DO loops can have their histories updated so many times that
virtual memory limits will be exceeded. Even if HISTORY is disabled, new variables will still
have initial history lines.

Journaling input and output

Syntax DISABLE JOURNAL

DISABLE JOURNAL\MACRO
Default enabled, journal file: PHYSICA.JOURNAL, script journaling disabled

DISABLE JOURNAL means that the journal file is to be closed. Subsequent journaling of pro-
gram output and user input will be disabled. DISABLE JOURNAL\MACRO means that journaling
of script commands and output is disabled, but interactively entered input and resultant
output will still be enabled. Enter ENABLE JOURNAL, to reopen the last journal file that was
open and append subsequent journal entries to this file. Enter the JOURNAL command to
open a new journal file.

Prompting

Syntax DISABLE PROMPTING

Default enabled

Disabling PROMPTING means that commands will not prompt you for input when you leave
something out or enter some incorrect parameter.

Replotting

Syntax DISABLE REPLOT

Default enabled

Disabling REPLOT means that commands that subsequent graphs and text will not be stored
for replotting. See the REPLOT for more information. The REPLOT setting can be over-ridden
on a specific command by using the \REPLOT (or the \NOREPLOT) qualifier.

X Window graphics replay

Syntax DISABLE REPLAY

Default enabled

Disabling REPLAY means that the X Window System graphics replay storage is disabled, hence

57

Commands

subsequent graphics will not be available for replay. For example, if the graphics window
size is changed, the graphics displayed in that window will not be re-displayed. The virtual
memory space for storing graphics vectors is allocated dynamically. Enter DISABLE REPLAY

to save virtual memory space for other uses, such as large data arrays. The REPLAY keyword
only applies if an X Window type monitor is being used. See the MONITOR command for more
information.

Input line recall shell

Syntax DISABLE SHELL

Default enabled

Disabling SHELL means that the input line recall shell is turned off. You will not be able to
recall keyboard input lines when the shell has been disabled. When the SHELL is re-enabled,
the buffer of input lines will be available again. It is useful to disable the shell when reading
data across a network, since the terminal I/O may become corrupted if the shell is enabled.
See the BUFFER command, page 11, for more information on the input line recall shell.

Stacking commands in a file

Syntax DISABLE STACK

Default disabled

Disabling STACK means that subsequently entered commands will not be written to the spec-
ified stack file. See the STACK command for more information.

DISPLAY
Syntax DISPLAY ‘message’

DISPLAY FONT { fontname }
DISPLAY SPECIAL

DISPLAY HATCH

DISPLAY LINES

DISPLAY PCHAR

DISPLAY MENU keyword

The DISPLAY command either displays a message on the monitor screen, or interprets the
command parameter as a keyword and draws a corresponding table or displays a corre-
sponding list.

Display a message

Syntax DISPLAY ‘message’

58

Commands

If the command parameter is not a recognized keyword, it is assumed to be a message to be
displayed on the monitor screen. The message can be a literal string, enclosed in quotes, or
a string variable. The message will be displayed even if ECHO is disabled.

Note: What is written to the journal file when the DISPLAY string command is encountered
in a macro:

If JOURNAL is enabled, the DISPLAY string command will write the string to the journal file
the same way it is written to the monitor screen.

If JOURNAL\MACRO is enabled, the DISPLAY command itself will also be written to the journal
file.

Font table

Syntax DISPLAY FONT { fontname }

If the keyword FONT is entered, and if a fontname is entered, the font table for the specified
fontname is drawn. If no fontname is entered, the table for the current font is drawn. To view
a list of the font names, enter the GET FONT command. See Figure 2.5 for an example font
table.

Special characters

Syntax DISPLAY SPECIAL

If the keyword SPECIAL is entered, the table of special character names that can be included
as format commands in strings is drawn. This table is shown in Figure 2.6.

Hatch fill patterns

Syntax DISPLAY HATCH

If the keyword HATCH is entered, the currently defined hatch fill patterns with their corre-
sponding numbers are drawn. For example, see Figure 2.7.

The hatch fill patterns can be used for filling text characters, histogram bars, pie charts,
etc. See the SET HATCH command for information on redefining the hatch patterns.

Line types

Syntax DISPLAY LINES

59

Commands

Figure 2.5: An example of a font table produced by the DISPLAY FONT command

60

Commands

Figure 2.6: The table of special characters

Figure 2.7: An example of the hatch fill patterns

61

Commands

If the keyword LINES is entered, the currently defined line types with their corresponding
numbers are drawn. For an example of the default line types, see Figure 2.8.

Figure 2.8: An example of the default line types

The line types can be used for drawing data curves on a graph. See the SET LINES command
for information on redefining the line types.

Plotting symbols

Syntax DISPLAY PCHAR

If the keyword PCHAR is entered, the plotting symbols with their corresponding numbers will
be drawn. These are the special plotting symbols that can be chosen with the SET PCHAR

command. See Figure 2.9 for an example.

Figure 2.9: The special plotting symbols

Menus

62

Commands

Syntax DISPLAY MENU PHYSICA

DISPLAY MENU FULL

DISPLAY MENU SHORT

DISPLAY MENU GENERAL

DISPLAY MENU XAXIS

DISPLAY MENU YAXIS

If the keyword MENU is entered, a table of values for special PHYSICA keywords or tables
of values for GPLOT keywords is displayed. These menus are displayed in alphanumeric
mode on the monitor screen. Refer to Appendix A for descriptions of how each of the
GPLOT keywords can affect a graph. The plot characteristics: MASK, ALIAS, PMODE, PTYPE,

and ERRBAR should not be changed in PHYSICA, as these are altered internally by various
commands.

PHYSICA

The PHYSICA specific keywords are described in the SET command section, page 228, and
the GET command section, page 107.

Table 2.24 shows the default values for the PHYSICA specific keywords.

VERSION = 2.10

VERSIONDATE = January 16, 1998

CNTSEP = 10.795 50.000% | LABSIZ = 0.324 1.500%

LEGSIZ = 0.345 1.600% | LEGFRMT = 1PE10.3

ERRFILL = 0.000 | ARROWID = 0.150

ARROLEN = 0.200 | ARROTYP = 0.000

TENSION = 1.000 | FILL = 0

SPEED = 20 | SEED = 12345

POSTRES = 180 | WIDTH = 80

XPREV = 0.000 | YPREV = 0.000

NCURVES = 0 | WRAP = 0

SHOWHISTORY = 5 | MAXHISTORY = 5

Current font = TSAN

Current plotting symbol= 0

Table 2.24: The PHYSICA keyword menu of default values

FULL

63

Commands

The full GPLOT keyword menu is displayed when the DISPLAY MENU FULL command is en-
tered. This menu requires the monitor to be set to a width of 132, which is done automati-
cally when the command is entered. If you want the monitor to be set back to a width of 80
after issuing the MENU FULL command, use the SET WIDTH command, page 228. Table 2.25
on page 64 displays the PHYSICA default values for the GPLOT keywords.

MASK = -4.000 BOX = 1.000 CHARSZ = 0.190 1.000% CHARA = 0.000 0.000%
PMODE = 1.000 ALIAS = 1.000 HISTYP = 0.000 LINTYP = 1.000
PTYPE = 0.000 COLOUR = 1.000 CURSOR = 1.000 ERRBAR = 0.000
XLWIND = 0.000 0.000% XUWIND = 25.400 100.000% XLAXIS = 3.810 15.000% XUAXIS = 24.130 95.000%
NXDIG = 5.000 NXDEC = -1.000 XPOW = 0.000 XPAUTO = 1.000
XNUMSZ = 0.572 3.000% XLABSZ = 0.572 3.000% XTICL = 0.381 2.000% XTICS = 0.190 1.000%
XTICA = 270.000 -90.000% XCROSS = 0.000 XMIN = 0.000 XMAX = 10.000
NLXINC = 2.000 NSXINC = 1.000 XAUTO = 2.000 XITICL = 0.572 3.000%
XITICA = 270.000 -90.000% XNUMA = 0.000 0.000% XTICTP = 1.000 BOTTIC = 1.000
BOTNUM = 0.000 TOPTIC = -1.000 TOPNUM = 0.000 NXGRID = 0.000
XAXIS = 1.000 XAXISA = 0.000 XLOG = 0.000 XZERO = 0.000
YLWIND = 0.000 0.000% YUWIND = 19.050 100.000% YLAXIS = 2.857 15.000% YUAXIS = 17.145 90.000%
NYDIG = 5.000 NYDEC = -1.000 YPOW = 0.000 YPAUTO = 1.000
YNUMSZ = 0.572 3.000% YLABSZ = 0.572 3.000% YTICL = 0.381 2.000% YTICS = 0.190 1.000%
YTICA = 90.000 90.000% YCROSS = 0.000 YMIN = 0.000 YMAX = 10.000
NLYINC = 2.000 NSYINC = 1.000 YAUTO = 2.000 YITICL = 0.572 3.000%
YITICA = 90.000 90.000% YNUMA = -90.000 -90.000% YTICTP = 1.000 LEFTIC = 1.000
LEFNUM = 0.000 RITTIC = -1.000 RITNUM = 0.000 NYGRID = 0.000
YAXIS = 1.000 YAXISA = 90.000 YLOG = 0.000 YZERO = 0.000
TXTHIT = 0.572 3.000% TXTANG = 0.000 XLOC = 12.700 50.000% YLOC = 9.525 50.000%

Table 2.25: The full menu of GPLOT keywords, with values in centimeters

SHORT

If the DISPLAY MENU SHORT command is entered, a short summary table is displayed. See
Table 2.26 on page 65. This does not require the terminal to be set to a width of 132.

XAXIS

If the DISPLAY MENU XAXIS command is entered, a table of the x-axis characteristics is dis-
played. See Table 2.27 on page 66. This does not require the terminal to be set to a width
of 132.

YAXIS

If the DISPLAY MENU YAXIS command is entered, a table of the y-axis characteristics is dis-
played. See Table 2.28 on page 67. This does not require the terminal to be set to a width
of 132.

GENERAL

If the DISPLAY MENU GENERAL command is entered, a table of the general GPLOT keywords is
displayed. See Table 2.29 on page 68. This does not require the terminal to be set to a
width of 132.

64

Commands

+----------------------------------+----------------------------------+

| MASK = -4.000 | CHARSZ = 0.190 1.000% |

| PMODE = 1.000 | HISTYP = 0.000 |

| LINTYP = 1.000 | LINTHK = 1.000 | COLOUR = 1.000 |

| XLWIND = 0.000 0.000% | XUWIND = 25.000 100.000% |

| XLAXIS = 3.750 15.000% | XUAXIS = 23.750 95.000% |

| NXDIG = 5.000 | NXDEC = -1.000 |

| XPOW = 0.000 | XPAUTO = 1.000 |

| XMIN = 0.000 0.000 | XMAX = 10.000 10.000 |

| NLXINC = 2.000 | NSXINC = 1.000 |

| XAUTO = 2.000 | XLOG = 0.000 |

| YLWIND = 0.000 0.000% | YUWIND = 19.000 100.000% |

| YLAXIS = 2.850 15.000% | YUAXIS = 17.100 90.000% |

| NYDIG = 5.000 | NYDEC = -1.000 |

| YPOW = 0.000 | YPAUTO = 1.000 |

| YMIN = 0.000 0.000 | YMAX = 10.000 10.000 |

| NLYINC = 2.000 | NSYINC = 1.000 |

| YAUTO = 2.000 | YLOG = 0.000 |

| XLOC = 12.500 50.000% | YLOC = 9.500 50.000% |

+----------------------------------+----------------------------------+

XLABEL =

YLABEL =

+----------------------------------+----------------------------------+

Table 2.26: The short menu of GPLOT keywords, with values in centimeters

65

Commands

XLWIND = 0.000 0.000% | XUWIND = 25.000 100.000%

XLAXIS = 3.750 15.000% | XUAXIS = 23.750 95.000%

XAXIS = 1.000 | XAXISA = 0.000

---------------------------------+---------------------------------

NXDIG = 5.000 | NXDEC = -1.000

XPOW = 0.000 | XPAUTO = 1.000

NLXINC = 2.000 | NSXINC = 1.000

---------------------------------+---------------------------------

XNUMSZ = 0.570 3.000% | XNUMA = 0.000 0.000%

XTICL = 0.380 2.000% | XTICS = 0.190 1.000%

XTICA = 270.000 -90.000% | XITICA = 270.000 -90.000%

XITICL = 0.570 3.000% | XTICTP = 1.000

BOTTIC = 1.000 | BOTNUM = 0.000

TOPTIC = -1.000 | TOPNUM = 0.000

XMIN = 0.000 | XMAX = 10.000

XVMIN = 0.000 | XVMAX = 10.000

---------------------------------+---------------------------------

NXGRID = 0.000 | XCROSS = 0.000

XLOG = 0.000 | XZERO = 0.000

XMOD = 0.000 | XLEADZ = 0.000

XOFF = 0.000 | XLABSZ = 0.570 3.000%

Table 2.27: The menu of GPLOT x-axis characteristics, with values in centimeters

66

Commands

YLWIND = 0.000 0.000% | YUWIND = 19.000 100.000%

YLAXIS = 2.850 15.000% | YUAXIS = 17.100 90.000%

YAXIS = 1.000 | YAXISA = 90.000

---------------------------------+---------------------------------

NYDIG = 5.000 | NYDEC = -1.000

YPOW = 0.000 | YPAUTO = 1.000

NLYINC = 2.000 | NSYINC = 1.000

---------------------------------+---------------------------------

YNUMSZ = 0.570 3.000% | YNUMA = -90.000 -90.000%

YTICL = 0.380 2.000% | YTICS = 0.190 1.000%

YTICA = 90.000 90.000% | YITICA = 90.000 90.000%

YITICL = 0.570 3.000% | YTICTP = 1.000

LEFTIC = 1.000 | LEFNUM = 0.000

RITTIC = -1.000 | RITNUM = 0.000

YMIN = 0.000 | YMAX = 10.000

YVMIN = 0.000 | YVMAX = 10.000

---------------------------------+---------------------------------

NYGRID = 0.000 | YCROSS = 0.000

YLOG = 0.000 | YZERO = 0.000

YMOD = 0.000 | YLEADZ = 0.000

YOFF = 0.000 | YLABSZ = 0.570 3.000%

Table 2.28: The menu of GPLOT y-axis characteristics, with values in centimeters

67

Commands

CHARSZ = 0.190 1.000% | CHARA = 0.000 0.000%

BOX = 1.000 | HISTYP = 0.000

LINTYP = 1.000 | LINTHK = 1.000

COLOUR = 1.000 | CLIP = 1.000

NUMBLD = 0.000 |

---------------------------------+---------------------------------

CURSOR = 1.000 |

TXTHIT = 0.570 3.000% | TXTANG = 0.570 3.000%

XLOC = 12.500 50.000% | YLOC = 9.500 50.000%

---------------------------------+---------------------------------

XLABEL =

YLABEL =

---------------------------------+---------------------------------

XLABSZ = 0.570 3.000% | YLABSZ = 0.570 3.000%

Table 2.29: The menu of general GPLOT keywords, with values in centimeters

68

Commands

EDGR
Syntax EDGR OPEN { filename }

EDGR EDIT

EDGR FRAME

EDGR CLOSE

Examples EDGR OPEN

EDGR OPEN TESTFILE

The EDGR command interfaces to the graphical editor. The keyword determines what action
is taken by EDGR.

Please refer to the EDGR USER’S GUIDE for details on using the graphical editor.

Open a drawing file

Syntax EDGR OPEN { filename }

If the keyword OPEN is entered, an EDGR drawing file will be opened. If the file name is not
entered, it will be interactively requested. Do not give a file extension. For example, just
enter FILE, do not enter FILE.extension. All graphics subsequently done will be entered into
the drawing file, that is, filename.DWG and filename.DWT, until EDGR CLOSE, or EDGR OPEN

again, is entered.

Commands that alter the plotting units should be entered before opening an EDGR file:

ORIENTATION, SET UNITS, and DEVICE.

Note: EDGR has its own hardcopy facility, so it is suggested that the user disable the graph-
ics hardcopy output before opening an EDGR drawing. Use the command: DEVICE OFF.

Edit a drawing file

Syntax EDGR EDIT

If the keyword EDIT is entered, the graphical editor is invoked which allows you to edit your
drawing.

Close a drawing file

Syntax EDGR CLOSE

If the keyword CLOSE is entered, and if a drawing file has been previously opened with

69

Commands

the EDGR OPEN command, then this command will close that file, no more graphics will be
inserted into that file. If no file is currently open, then this command does nothing.

Open a new frame

Syntax EDGR FRAME

If the keyword FRAME is entered, and if a drawing file has been previously opened with the
EDGR OPEN command, this command will open another frame within that file. If no file is
currently open, then this command does nothing.

ELLIPSE
Syntax ELLIPSE a b cx cy angle

ELLIPSE\FIT xin yin

Qualifiers \FIT, \NPTS, \XYOUT, \REPLOT
Defaults \-FIT, \-NPTS, \-XYOUT, \REPLOT

The ELLIPSE command can uniformly populate the perimeter of an ellipse in two ways:

1. Given the major axis radius, the minor axis radius, centre coordinates and angle of the
major axis

2. First fit an ellipse so a certain fraction of the data points are within the ellipse, then
determine the major axis radius, the minor axis radius, centre coordinates and angle
of the major axis

Output vectors

Syntax ELLIPSE\XYOUT a b cx cy angle xout yout

ELLIPSE\FIT\XYOUT xin yin xout yout

By default, the ellipse perimeter will be plotted automatically. It is assumed that a graph
has been drawn already. The ellipse will be overlayed on this graph, with no plotting symbol.

If the \XYOUT qualifier is used, then two output vector names, xout and yout, are expected.
No automatic plotting is done, and the horizontal and vertical coordinates of the ellipse
perimeter will be placed in these two vectors.

Replotting

The REPLOT command will replot any curves that have been drawn as well as the automati-

70

Commands

cally drawn ellipse, all on a common scale large enough to accommodate all curves.

If the \NOREPLOT qualifier is used, the automatically drawn ellipse will not be stored in the
replot buffers, and thus will not be available for replotting.

Number of points

Syntax ELLIPSE\NPTS a b cx cy angle n

ELLIPSE\FIT\NPTS xin yin n

By default, the ellipse perimeter is populated by 260 points. If the \NPTS qualifier is used,
the number of points with which to populate the perimeter is expected. This number should
be divisible by four (4).

Explicitly defined

Syntax ELLIPSE a b cx cy angle

Qualifiers \NPTS, \XYOUT, \REPLOT
Defaults \-NPTS, \-XYOUT, \REPLOT
Examples ELLIPSE\NOREPLOT MAJOR MINOR XCENT YCENT ANG

ELLIPSE\XYOUT\NPTS MAJOR MINOR XC YC ANG N XOUT YOUT

By default, the input parameters are assumed to be scalars representing the major axis
radius, a, the minor axis radius, b, the coordinates of the centre, cx and cy, and the angle
of the ellipse, angle in degrees, measured counter-clockwise from the horizontal.

Parameter order

The order in which the qualifiers appear is irrelevant. The order in which the command
parameters appear is fixed: a b xc yc angle { npts } { xout yout }

Fit an ellipse

71

Commands

Syntax ELLIPSE\FIT xin yin

ELLIPSE\FIT\FRACTION xin yin frac

ELLIPSE\FIT\PARAMETERS xin yin a b cx cy angle

Qualifiers \NPTS, \XYOUT, \REPLOT, \FRACTION, \PARAMETERS, \MESSAGES
Defaults \-NPTS, \-XYOUT, \REPLOT, \-FRACTION, \-PARAMETERS, \MESSAGES
Examples ELLIPSE\FIT\FRAC\NPTS XIN YIN FRAC N

ELLIPSE\FIT\XYOUT\NPTS XIN YIN N XO YO

ELLIPSE\FIT\XYOUT\FRAC XIN YIN FRAC XO YO

ELLIPSE\FIT\XYOUT\FRAC\NPTS XIN YIN FRAC N XO YO

ELLIPSE\FIT\PARAM\FRAC\NPTS XIN YIN FRAC A B CX CY ANG N

ELLIPSE\FIT\PARAM\XYOUT\FRAC\NPTS XIN YIN F A B CX CY ANG N XO YO

If the \FIT qualifier is used, then the first two parameters, xin and yin, are assumed to be
vectors which contain data points to which an ellipse is to be fitted.

Parameter order

The order that the qualifiers appear is irrelevant. The order that the command parameters
appear is fixed: xin yin { fraction } { a b cx cy angle } { npts } { xout yout }

Method

The major axis radius and the centre are found by least squares fitting a line through
the data points. The ratio of the major axis radius to the minor axis radius is found by
computing the standard deviations about the major and minor axes. The minimum value
of the major axis is found for each point so that the point will be inside the ellipse, then a
value for the major axis is picked so as to be greater than or equal to the specified fraction
of the values.

Fraction of points within ellipse

Syntax ELLIPSE\FIT\FRACTION xin yin frac

Defaults frac = 0.9

By default, the ellipse is fit to the data points so that it encloses 90% of the data points.

If the \FRACTION qualifier is used, then a scalar, frac, representing the fraction of data points
to be within the ellipse will be expected, 0 < frac < 1.

Messages

72

Commands

By default, the major axis radius, the minor axis radius, the coordinates of the centre, and
the angle of the fitted ellipse will be displayed on the monitor screen. To suppress this, use
the \-MESSAGES qualifier.

Output parameters

Syntax ELLIPSE\FIT\PARAMETERS xin yin a b cx cy angle

If the \PARAMETERS qualifier is used, output scalar names will be expected to receive the
resulting ellipse parameters:

a major axis radius
b minor axis radius

cx and cy x and y coordinates of the centre
angle angle of the major axis,

in degrees, measured counter-clockwise from the horizontal

ENABLE
Syntax ENABLE keyword

The ENABLE command allows you to re-enable features that have been disabled with the
DISABLE command.

Graphics window borders

Syntax ENABLE BORDER

Default enabled

Enabling BORDER means that the rectangular borders that delimit the hardcopy page bound-
ary and the window edges will again be drawn. These rectangles do not appear on any
hardcopies, but may be considered to interfere with the graphics monitor display.

Broadcast messages

Syntax ENABLE BROADCAST

Default the terminal state when PHYSICA is invoked

The ENABLE BROADCAST command is only relevant for VMS. The ENABLE BROADCAST command
is equivalent to the DCL command:

$ SET TERMINAL/BROADCAST

73

Commands

This allows a broadcast message to be accepted by the terminal. If the user is not interested
in receiving broadcast messages, for example, “New mail”, then it is recommended that
broadcast mode be turned off.

Confirmation requests

Syntax ENABLE CONFIRM

Default enabled

If CONFIRM is enabled, confirmation will be requested from the TEXT, FIGURE, LEGEND FRAME,
and WINDOW commands. The CONFIRM setting can be over-ridden on a specific command by
using the \NOCONFIRM (or the \CONFIRM) qualifier.

Echoing from scripts

Syntax ENABLE ECHO

Default disabled

Enabling ECHO means that commands that are entered via a command script file will be
displayed on the monitor screen as they are executed.

Local effect

If the ENABLE ECHO command is encountered within a script, echoing is done only while
within that script. For example, suppose you have echoing disabled at the keyboard entry
level and you execute a script which has ENABLE ECHO within it. Subsequent lines that are
read from that script will be echoed, but when that script is finished executing, echoing will
be disabled again.

Saving a variable’s history

Syntax ENABLE HISTORY

Default enabled

When HISTORY is disabled, if a variable is altered, it’s history will not be updated. A variable’s
history is displayed with the SHOW command. This feature was included because variables
altered within large DO loops can have their histories updated so many times that virtual
memory limits will be exceeded. Even if HISTORY is disabled, new variables will still have
initial history lines.

Journaling input and output

74

Commands

Syntax ENABLE JOURNAL

ENABLE JOURNAL\MACRO
Default enabled, journal file: PHYSICA.JOURNAL, script journaling disabled

ENABLE JOURNAL means that subsequent journal entries, that is, program output and user
input, will be appended to the last journal file that was opened. By default, program input
from script files and resultant output will not be journaled. Use the ENABLE JOURNAL\MACRO
to also journal script input and output. See the JOURNAL command and the DISABLE JOURNAL

command for more information.

Prompting

Syntax ENABLE PROMPTING

Default enabled

Enabling PROMPTING means that commands will prompt you for input when you leave some-
thing out or enter some incorrect parameter.

Replotting

Syntax ENABLE REPLOT

Default enabled

Enabling REPLOT means that subsequent graphs and text will be stored for replotting. See the
REPLOT for more information. The REPLOT setting can be over-ridden on a specific command
by using the \NOREPLOT (or the \REPLOT) qualifier.

X Window graphics replay

Syntax ENABLE REPLAY

Default enabled

Enabling REPLAY means that the X Window System graphics replay storage is enabled, hence
subsequent graphics will be available for replay. For example, if the graphics window size
is changed, the graphics displayed in that window will be re-displayed. The virtual memory
space for storing graphics vectors is allocated dynamically. Enter DISABLE REPLAY to save
virtual memory space for other uses, such as large data arrays. The REPLAY keyword only
applies if an X Window type monitor is being used. See the MONITOR command for more
information.

Input line recall shell

75

Commands

Syntax ENABLE SHELL

Default enabled

Disabling SHELL means that the input line recall shell is turned off. You will not be able to
recall keyboard input lines when the shell has been disabled. When the SHELL is re-enabled,
the buffer of input lines will be available again. It is useful to disable the shell when reading
data across a network, since the terminal I/O may become corrupted if the shell is enabled.
See the BUFFER command, page 11, for more information on the input line recall shell.

Stacking commands in a file

Syntax ENABLE STACK

Default disabled

Enabling STACK means that subsequently entered commands will again be written to the
specified stack file. See the STACK command for more information.

ERASEWINDOW
Syntax ERASEWINDOW { n }
Defaults n = current window number

The ERASEWINDOW command erases the graphics within a pre-defined window. It will erase
the graphics within a window on the monitor screen, and on graphics hardcopy PostScript
output, and on graphics hardcopy bitmap output.

This does not apply to any other graphics hardcopy output or to EDGR drawings, that is,
any erased graphics will still appear on that hardcopy and will still be in an EDGR drawing.

The parameter n refers to a pre-defined window number. If n is not entered, it defaults to
the current window number.

EXECUTE
Syntax EXECUTE filename { p1 p2 . . . }

@filename { p1 p2 . . . }
Defaults the default filename extension = .PCM

Examples EXECUTE FILE.PCOM

@FILE 1.2 ‘string’ X Y

The EXECUTE command reads program input from a file. When the end of file is reached, input
will again be expected to be entered from the keyboard, or from the a calling executable file.
You may have up to twenty (20) nested executable files. The ‘at’ sign, @, is equivalent to

76

Commands

‘EXECUTE ’.

Within script files, it is possible to have labels, GOTO statements, IF blocks, and DO loops.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE dum.pcm

physica

@$FILE

The environment variable can be just the first part of the filename, for example,
setenv FILE dum

physica

@$FILE.pcm

Filename extensions

If the file name is entered without a filename extension, the default extension, .PCM, is
automatically appended to the filename. The EXTENSION command, page 81, is used to
redefine the default file extension. The default file extension applies to the EXECUTE command
only.

script library

VMS: The logical name PHYSICA$LIB can be used to point to the disk and direc-
tory for script files. For example, suppose you define:
$DEFINE PHYSICA$LIB dsk1:[dir1],dsk2:[dir2]

before running the PHYSICA program.
When you execute a script, the current disk and directory is searched
for the file. If it cannot be found there, the logical search list is used to
find the file. If the logical name is not defined, only the current disk and
directory will be searched.

UNIX: The environment variable PHYSICA_LIB can be used to point to the disk
and directory for script files. For example, suppose you define:
%setenv PHYSICA_LIB disk/directory

before running the PHYSICA program.
When you execute a script, the current disk and directory is searched for
the file. If it cannot be found there, the environment variable is used to
find the file. If the environment variable is not defined, only the current
disk and directory will be searched.

77

Commands

Comments

A comment line is any line that begins with an exclamation mark, !. These lines are simply
ignored, but can be useful for documentation of files. Comments can also be appended to
the end of any line. Just start the comment with an exclamation mark. For example,

READ FILE.DAT X Y Z ! This is a comment

Echoing

If the ENABLE ECHO command, page 73, is entered, the commands that are read from the
file will be displayed on the monitor screen. This is useful for following the progress of
a command file. If ECHO is disabled globally, but is enabled within a script file, it will be
enabled only while that file is executing.

Temporarily passing control to the keyboard

If the TERMINAL command, page 256, is encountered in a command file, control passes back
to the terminal keyboard. The user interactively enters commands at this point, until a
null line is entered. The command file then recommences execution with the command
immediately after the TERMINAL command.

By default, the message ‘type ¡RETURN¿ to continue’ will be displayed when the TERMINAL

command is encountered. You can specify the message by entering a string with the
TERMINAL command.

Returning from a script

If the RETURN command, page 224, is encountered in a command file, control passes back to
the calling script, if there is one, or to the keyboard, if that script was the top level script.

Aborting a script

If control-c is typed while a script is executing, the entire script stack will be aborted. That
is, no matter how deeply the scripts are nested, program flow control is passed back to the
keyboard.

If you type the RETURN command from the keyboard after a TERMINAL command has been
encountered in a command file, execution of that command file is aborted.

Passing parameters to a script

78

Commands

Parameters that are entered after the file name are used in two ways.

sequential parameters the nth parameter will replace the nth ? that is found in the file
numbered parameters the nth parameter in the list will replace all ?n’s found in the file

Sequential parameters must be in a one-to-one correspondence with the ?’s, and in the
correct order. It is possible to mix sequential and numbered parameters in the same file,
but it is not recommended as this can be very confusing.

Prompting

By default, if an incorrect parameter of a valid command is read from the file or is substi-
tuted from the parameter list, the user will be prompted to enter the correct information
from the terminal keyboard, and the command will then be executed. Use the DISABLE

PROMPTING command if a script is to abort when invalid command parameters are encoun-
tered.

Labels and GOTOs

A label is a string terminated with a colon, :, and with no embedded blanks. A label must
be on a line by itself.

Use a GOTO to branch to a label. Do not include the colon with the label after a GOTO.

Example 1

...

GOTO A_LABEL ! branch to the label (note there is no :)

...

A_LABEL: ! this is a label (note the :)

...

Example 2

...

START:

IF (J>8) THEN GOTO END

...

J=J+1

GOTO START

END:

...

79

Commands

DO loops

DO loops in PHYSICA are similar to FORTRAN do loops, but must be closed off with an ENDDO

statement. The basic form of the DO statement is:

DO j = x

where the looping variable, j, will be made into a scalar variable, and the range of the loop,
x, can be any expression resulting in a vector.

Nested loops are allowed. The maximum number of DO loops in a file is fifty (50).

Example 1

...

DO J = x ! x must be a vector, to loop will execute len(x) times

... ! with J taking on the value of each element of x

ENDDO ! end of loop

...

Example 2

...

DO I = [2:20:4] ! the loop will execute 5 times, with I taking on the

... ! values [2;6;10;14;18]

ENDDO ! end of loop

...

Conditional statements

The general form of a conditional statement is:

IF (boolean) THEN

The boolean can take any form, but must be either a simple function or it must be enclosed
in parentheses, and it must have a scalar result. A result of 1 is true, while anything else is
false.

An IF statement can precede a single command or it can precede a block of commands. If an
IF statement precedes a block of commands, it must be closed off with an ENDIF statement.
Nested IF blocks are allowed. The maximum number of IF blocks in a file is fifty (50).

80

Commands

An IF statement can also precede a single command, in which case do not use the ENDIF.

Example 1

...

IF (A>B) THEN DISPLAY ‘A > B’

IF (A=B) THEN DISPLAY ‘A = B’

IF (A<B) THEN DISPLAY ‘A < B’

...

Example 2

...

IF (A>B) THEN

...

ENDIF

...

Example 3

...

START2:

IF (J<=8) THEN

...

J=J+1

GOTO START2

ENDIF

...

EXTENSION
Syntax EXTENSION { ‘ext’ }
Examples EXTENSION

EXTENSION ‘PHYSICA’

The EXTENSION command is used to redefine the default file extension for executable script
files. The original PHYSICA default file extension is PCM. The default file extension applies
to the EXECUTE command only. If you give a file name without a file extension, the default
extension is automatically appended to the file name.

If the EXTENSION command is entered without a parameter, the current default extension is
displayed.

81

Commands

Example

If you have a script file named MACRO_FILE.PCM you can execute this file with the command:
@MACRO_FILE

If you have a script file named MACRO_FILE.PHYSICA you can execute this file with the com-
mand: @MACRO_FILE.PHYSICA, or with

EXTENSION ‘PHYSICA’

@MACRO_FILE

FIGURE
Syntax FIGURE BOX { lowx lowy hix hiy }

FIGURE POLYGON nvert { cx cy sx sy }
FIGURE CIRCLE radius { cx cy }
FIGURE ARC { cx cy sx sy ex ey }
FIGURE WEDGE { cx cy sx sy ex ey }
FIGURE ELLIPSE a b { cx cy } angle

FIGURE ARROW { sx sy ex ey }
Qualifiers \CONFIRM, \GRAPH, \PERCENT, \WORLD
Defaults \NOCONFIRM, \PERCENT
Examples FIGURE BOX 10 10 90 90

FIGURE\NOCONFIRM\GRAPH POLY 6 -1 2 .01 .03

FIGURE\WORLD CIRC 2

FIGURE\WORLD WEDGE

FIGURE\NOCONFIRM\GRAPH ARC -10.2 4.7

FIGURE\GRAPH ELLIPSE 5.3 1.4 -2.3 3.5 45

The FIGURE command is used to draw geometric figures. The figure type is chosen with a
keyword. See Table 2.30.

Line types

The line type used for drawing figures will be the current value of LINTYP, which can be
changed with the SET LINTYP command The default value for LINTYP is 1. The line type
definitions can be changed with the SET LINES command. Line type 1 defaults to a normal
line. See the DISPLAY LINES command for information on viewing the line types.

Fillable figures

Most of the figures are fillable: BOX, POLYGON, WEDGE, CIRCLE, ELLIPSE, and ARROWs with

82

Commands

keyword figure type

ARC an arc of a circle
WEDGE a sector of a circle (fillable)
CIRCLE a circle (fillable)
BOX a rectangle (fillable)
POLYGON a regular polygon (fillable)
ELLIPSE an ellipse (fillable)
ARROW an arrow (closed heads are fillable)

Table 2.30: Geometric figures that can be drawn with the FIGURE command

closed heads. Use the SET FILL command to change the fill type and pattern. See Table 2.55
on page 233 for a description of the interpretations of the FILL keyword.

X Windows

When running under X Windows, mouse button two toggles the continuous display of the
graphics cursor location. The PHYSICA keyword CUNITS is the units type for these numbers.
If CUNITS = WORLD, the numbers depend on the current units type, either CM or IN, as chosen
with SET UNITS. If CUNITS = GRAPH, the numbers displayed depend on the current graph axis
scales. If CUNITS = PERCENT, the numbers depend on the current window.

Units

The numeric parameters may be expressed in three types of units, which are chosen by
command qualifier. The default is \PERCENT. See Table 2.31 for a listing of the qualifiers and
their interpretations.

qualifier interpretation of the coordinates

\PERCENT percentages of the current window, as chosen with the WINDOW command.
Lengths are in terms of the horizontal dimension.

\GRAPH graph units, that is, the units defined by the minimum and maximum
values for the last graph drawn. If no graph has been drawn yet, the
defaults are −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1

\WORLD centimeters or inches, as chosen with the SET UNITS command

Table 2.31: Types of units recognized by the FIGURE command

For example, if the \PERCENT qualifier is used, then a location of (50, 50) represents the centre
of the current window. If the \WORLD qualifier is used, the coordinates are in units of the

83

Commands

world coordinate system, the plotting units. The default world coordinate system units are
centimeters. See the DEVICE command for tables showing the dependence of plotting units
on the graphics hardcopy output device.

Confirmation

If the FIGURE command is entered interactively, the default is that confirmation that the
figure is acceptable as drawn will be requested. The figure will not be be entered into a
hardcopy plot file, or into an open EDGR file, unless it is accepted. However, if CONFIRM

has been disabled, with the DISABLE CONFIRM command, the default will be that no such
confirmation will be requested. If the \CONFIRM qualifier is used, confirmation will be forced.
If the \NOCONFIRM qualifier is used, confirmation will be suppressed.

Stack file

If a stack file is open, via the STACK command, then the (x, y) coordinates will be written to
the stack file, even if they are chosen by the graphics cursor. Thus, when this stack file is
executed, using the EXECUTE command, the graphics cursor will not be used. If confirmation
is requested and the figure is not OK, then the command is not written to the stack file.

Circle

Syntax FIGURE CIRCLE r { cx cy }

The FIGURE CIRCLE command draws a circle, centred at the point (cx,cy), with radius r.
The parameter r is not optional, and is in terms of the horizontal dimension. The graphics
cursor is used if either cx, or cy is not entered.

Arc

Syntax FIGURE ARC { cx cy sx sy ex ey }

The FIGURE ARC command draws an arc of a circle, centred at the point (cx,cy), starting at
the point (sx,sy) and finishing on the line through the points (ex,ey) and (cx,cy). The
graphics cursor is used if any of cx, cy, sx, sy, ex, or ey are not entered.

The first two points determine the radius and the starting azimuth, while the final point
determines the final azimuth only. If the final point is the same as the first point, the
centre, then a complete circle will be drawn.

Wedge

84

Commands

Syntax FIGURE WEDGE { cx cy sx sy ex ey }

The FIGURE WEDGE command draws a sector of a circle, centred at the point (cx,cy), starting
at the point (sx,sy) and finishing on the line through the points (ex,ey) and (cx,cy). The
endpoints of the arc are joined to the centre of arc. The graphics cursor is used if any of cx,
cy, sx, sy, ex, or ey are not entered.

The first two points determine the radius and the starting azimuth, while the final point
determines the final azimuth only. If the final point is the same as the first point, the
centre, then a complete circle will be drawn.

Box

Syntax FIGURE BOX { lowx lowy hix hiy }

The FIGURE WEDGE command draws a box, or rectangle, with lower left hand corner at
(lowx,lowy), and upper right hand corner at (hix,hiy). The graphics cursor is used if
any of lowx, lowy, hix, or hiy are not entered.

Polygon

Syntax FIGURE POLYGON n { cx cy sx xy }

The FIGURE POLYGON command draws a regular polygon, with nvert vertices, centred at
(cx,cy), and with the first vertex at (sx,sy). The graphics cursor is used if any of cx,
cy, sx, or sy are not entered.

Ellipse

Syntax FIGURE ELLIPSE a b { cx cy } ang

The FIGURE ELLIPSE command draws an ellipse, with a being the major axis radius, b the
minor axis radius, centred at point (cx,cy), and with the major axis at an angle of ang

degrees, measured counter-clockwise from the horizontal. The graphics cursor is used if
either cx or cy are not entered.

Arrow

Syntax FIGURE ARROW { sx sy ex ey }

The FIGURE ARROW command draws an arrow with base at (sx,sy) and end point at (ex,ey).
The graphics cursor is used if any of sx, sy, ex, or ey are not entered.

85

Commands

Styles

The arrow style is chosen with the SET ARROTYP command. The default is value of ARROTYP is
0. See Table 2.54 on page 231 and Figure 2.24 on page 230.

Head width

The width of the arrowhead is chosen with the SET ARROWID command. ARROWID is the arrow
head width as a fraction of the total arrow length. The default value of ARROWID is 0.15.

Length

The length of the arrowhead is chosen with the SET ARROLEN command. ARROLEN is the arrow
head length as a fraction of the total arrow length. The default value of ARROLEN is 0.20.

FILTER
Syntax FILTER\MEDIAN x f npt

FILTER\MEAN x f npt

FILTER\NONRECURSIVE x f c

FILTER\RECURSIVE x f c d

Qualifiers \MEDIAN, \MEAN, \NONRECURSIVE, \RECURSIVE
Default \MEDIAN
Examples FILTER\MEDIAN X XF 5

FILTER\NONRECURSIVE X XF [1;-2;1]

FILTER\MEAN X XF -5

FILTER\RECURSIVE X XF [.3584;1.2832;.3584;0;0] [0;1]

A digital filter is a linear combination of the input data, x, and possibly the output data,
f . The input data is assumed to be equally spaced samples of some continuously varying
quantity; and any error or noise is in the measurements. In the PHYSICA implementation
of filters, the input data is assumed to have unit spacing, so a scale factor may have to be
applied to produce the correctly scaled output data.

The simplest kinds of filters are the nonrecursive filters defined by the convolution formula:

fn =
N∑

k=−N
ckxn−k

The coefficients ck are the constants of the filter, the xn−k are the input data, and the fn
are the outputs. When values of the output as well as the data values are used to compute
the output values, the filter is called a recursive filter. It is usual to limit the range of

86

Commands

nonzero coefficients to current and past values of the data xn and to only past values of the
output fn. This type of filter is called causal recursive and can be defined by the convolution
formula:

fn =
N∑
k=0

ckxn−k +
M∑
k=1

dkfn−k

Nonrecursive or recursive filters using constant coefficients ck and dk are called time-invariant
filters. Users are urged to refer to textbooks dealing with digital filters, such as Digital Filters
by R.W. Hamming, Prentice-Hall 1977, or Digital Signal Analysis by Samual D. Stearns,
Hayden Book Co. Inc.

Noise amplification caused by filtering

It can be shown (Hamming, p.17) that the sum of the squares of the filter coefficients
measures the noise amplification of the filtering process. Thus, the variance, σ2, will be
amplified by

∑
σc2

i .

Median filter

Syntax FILTER x f npt

FILTER\MEDIAN x f npt

The default is \MEDIAN, that is, to use a running median filter. The data array, x, is filtered
through a window npt points in width. npt must be ≥ 2.

The median filter is particularly good at removing ‘spikes’ from data. The median filter
moves a window over the data and outputs the median value of the data points within each
window placement. The window butts up against the ends. When npt is even, the filter is
applied twice, first skewed left then skewed right, and the results are averaged.

Mean filter

Syntax FILTER\MEAN xin xout npt

If the \MEAN qualifier is used, the filter will be the running mean, or average, filter. This filter
method is sensitive to large spikes in the data. Any large spikes, for example, > ∼ 1000 times
normal value, should first be removed, by, for example, the median filter.

There are two versions of the running mean filter, which are chosen by whether npt is
positive or negative. The window width is always |npt|.

If npt > 0, the average value of each window placement is calculated by summing the rele-

87

Commands

vant points and dividing by npt. The averaging window butts up against the end.

If npt < 0, a much faster method is used which adds a new point to the right and drops
an old one from the left. The window runs off half way from each end, but pseudo points
outside the range are set to the appropriate end point values.

Nonrecursive filters

Syntax FILTER\NONRECURSIVE x f c

If the \NONRECURSIVE qualifier is used, the third parameter, c, must be a vector. The data
array, x, is processed through a nonrecursive filter using the values of c as the data coeffi-
cients:

f[n] =
∑N

k=1 c[k] x[n + k − (N2 + 1)]

where N is the length of vector c. Note that when c has an even number of elements, the
filter will be applied to the nth point by application to points from n − N/2 to n − 1 + N/2.
For example, when N is two, the weightings will be applied to the previous point and to the
current point.

Differentiating nonrecursive filters

Remember, that the x’s must be equally spaced, and are actually assumed by the FILTER

command to have unit spacing. Thus, to obtain the correct output scaling, multiply f by
k!/(N − 1)!hk, where k is the order of the derivative, N is the length of vector c, and h is the
spacing of x, that is, h = x[i+1]-x[i]. For example:

FILTER\NONRECURSIVE X XOUT [2;-16;0;16;-2] ! 1st deriv. nonrecursive filter

XOUT=XOUT/(24*(X[2]-X[1])) ! use scale factor 1/(h*4!)

See Table 2.32 for various first derivative nonrecursive filter data coefficients. See Table 2.33
for various second derivative nonrecursive filter data coefficients. See Table 2.34 for various
third derivative nonrecursive filter data coefficients.

type data coefficients scale factor

3 point [1; 0; -1] 1/2h

4 point [1; -6; 3; 2] 1/6h

5 point [2; -16; 0; 16; -2] 1/24h

6 point [-4; 30; -120; 40; 60; -6] 1/120h

Table 2.32: Various 1st derivative nonrecursive filters

88

Commands

type data coefficients scale factor

3 point [1; -2; 1] 1/h2

4 point [0; 3; -6; 3] 1/3h2

5 point [-1; 16; -30; 16; -1] 1/12h2

6 point [0; 5; 80; -150; 80; -5] 1/60h2

Table 2.33: Various 2nd derivative nonrecursive filters

type data coefficients scale factor

4 point [-1; 3; -3; 1] 1/h3

5 point [-2; 4; 0; -4; 2] 1/4h3

6 point [5; -35; 70; -50; 5; 5] 1/20h3

Table 2.34: Various 3rd derivative nonrecursive filters

Smoothing nonrecursive filters

See Table 2.35 for various quadratic smoothing nonrecursive filter data coefficients. See
Table 2.36 for various quartic smoothing nonrecursive filter data coefficients. See Table 2.37
for Spencer’s formulae smoothing nonrecursive filter data coefficients.

type data coefficients scale factor

5 point [-3; 12; 17; 12; -3] 1/35
7 point [-2; 3; 6; 7; 6; 3; -2] 1/21
9 point [-21; 14; 39; 54; 59; 54; 39; 14; -21] 1/231

11 point [-36; 9; 44; 69; 84; 89; 84; 69; 44; 9; -36] 1/429

Table 2.35: Smoothing nonrecursive filters (quadratic)

Interpolating nonrecursive filters

Suppose we have points in a vector which are ”bad” and need to be replaced. Assuming one
can fit the data with an odd degree polynomial. The next higher order difference equation,
when set to zero, can be used to give the desired filter coefficients. For example, if the data
can be fit with a 5th order polynomial, the fourth difference set to zero gives:

yn−2 − 4yn−1 + 6yn − 4yn+1 + yn+2 = 0

and solving for yn gives:

yn =
1
6

(−yn−2 + 4yn−1 + 4yn+1 − yn+1)

so the data filter coefficients are [−1
6; 2

3 ; 0; 2
3 ; −1

6].

89

Commands

type data coefficients scale factor

7 point [5; -30; 75; 131; 75; -30; 5] 1/231
9 point [15; -55; 30; 135; 179; 135; 30; -55; 15] 1/429

11 point [18; -45; -10; 60; 120; 143; 120; 60; -10; -45; 18] 1/429
13 point [110; -198; -135; 110; 390; 600; 677; 600; 390; 110; -135; -198; 110] 1/2431

Table 2.36: Smoothing nonrecursive filters (quartic)

type data coefficients scale factor

15 point [-3; -6; -5; 3; 21; 46; 67; 74; 67; 46; 21; 3; -5; -6; -3] 1/320
21 point [-1; -3; -5; -5; -2; 6; 18; 33; 47; 57; 60; 57; 47; 33; 18; 6; -2; -5; -5; -3; -1] 1/350

Table 2.37: Smoothing nonrecursive filters (Spencer’s formulae)

Recursive filters

Syntax FILTER\RECURSIVE x f c d

If the \RECURSIVE qualifier is used, the third parameter, c, must be a vector, and the fourth
parameter, d, must also be a vector. The data array, x, is processed through a recursive
filter. This allows for the specification of a completely general recursive filter of arbitrary
length. The values of c are the filter coefficients which operate on the data. The values of d
are the filter coefficients which operate on the previously made output.

f[n] =
N∑
k=1

c[k] x[n + k − (
N

2
+ 1)] +

M∑
k=1

d[k] f[n− k]

where N is the length of vector c and M is the length of vector d.

Integrating recursive filters

The trapezoidal rule integration filter:

Gn+1 = 0.5(xn+1 + xn) + Gn

The Leo Tick formula for integration:

Gn+1 = h(0.3584xn+1 + 1.2832xn + 0.3584xn−1) + Gn−1

See Table 2.38 for the trapezoidal rule and the Leo Tick formula integrating recursive filter
coefficients.

90

Commands

data coefficients output coefficients
Trapezoidal rule [0.5; 0.5] [1]
Leo Tick formula [0.3584; 1.2832; 0.3584] [0; 1]

Table 2.38: Integrating recursive filters

Examples

The following script demonstrates how you can use the FILTER command to smooth data.
See Figure 2.10.

X=[0:4:.05]

Y=X^2-3*X+3+SIN(X*3)*RAN(X)

WINDOW 15

SET PCHAR -1

LABEL\XAXIS ‘original data’

GRAPH X Y

WINDOW 16

LABEL\XAXIS ‘11 point quadratic formula’

FILTER\NONRECURSIVE Y YF [-36;9;44;69;84;89;84;69;44;9;-36]

SET PCHAR 0

GRAPH X YF/429

WINDOW 17

LABEL\XAXIS ‘11 point quartic formula’

FILTER\NONRECURSIVE Y YF [18;-45;-10;60;120;143;120;60;-10;-45;18]

GRAPH X YF/429

WINDOW 18

LABEL\XAXIS ‘15 point Spencer’//CHAR(39)//‘s formula’

FILTER\NONRECURSIVE Y YF [-3;-6;-5;3;21;46;67;74;67;46;21;3;-5;-6;-3]

GRAPH X YF/320

The following script demonstrates how you can use the FILTER command to differentiate
data. See Figure 2.11.

91

Commands

Figure 2.10: A FILTER example showing data smoothing

92

Commands

X=[0:4:.2]

H=X[2]-X[1]

Y=X^2-3*X+3

WINDOW 5

SET PCHAR -1

LABEL\XAXIS ‘original data’

SET %XLABSZ 5

GRAPH X Y

WINDOW 6

SET PCHAR 0

LABEL\XAXIS ‘1<^>st<_> derivatives’

FILTER\NONRECURSIVE Y YF [-4;30;-120;40;60;-6]

SCALE 0 4 0 -3 5 0

SET PCHAR -2

GRAPH X YF/(120*H)

SET PCHAR 0

GRAPH\NOAXES X 2*X-3

Figure 2.11: A FILTER example showing 1st derivative

93

Commands

FIT
Syntax FIT y = expression

FIT\UPDATE yout

Qualifiers \NORMAL, \POISSON, \UPDATE, \ITMAX, \WEIGHTS, \ZEROS, \TOLERANCE,
\CHISQ, \CL, \CORRMAT, \COVMAT, \E1, \E2, \VARNAMES, \FREE, \RESET,
\MESSAGES

Defaults \NORMAL, \-UPDATE, \-ITMAX, \-WEIGHTS, \ZEROS, \-TOLERANCE,
\-CHISQ, \-CL, \-CORRMAT, \-COVMAT, \-E1, \-E2, \-VARNAMES, \-FREE,
\-RESET, \MESSAGES

Examples FIT Y=A*X+B

FIT\WEIGHTS\CHISQ\CL\ITMAX W 3 Y=A*EXP(-B*X)+C

FIT\CORR\NOMESS Y=A*X+B

FIT\POISSON Y=A*EXP(-B*X)+C

FIT\UPDATE YF

By default, or if the \NORMAL qualifier is used, it is assumed that each data point has an
error that is distributed as a normal distribution,

N(x; µ, σ) ≡ 1
σ
√

2π
e−

1
2

(x−µ
σ

)2
for −∞ < x <∞

=
√

w/(2π)e−
w
2

(x−µ)2

where µ is the mean and σ is the standard deviation of the distribution. The weight w is
defined as: w = 1

σ2 .

If the \POISSON qualifier is used, the data errors are assumed to be distributed as a Poisson
distribution,

P (x; λ) ≡ λxe−λ

x!
for x = 0, 1, 2, . . .

where λ is the mean and the variance of the distribution.

Expression and parameters

The expression must result in a vector with the same length as the data vector, y. A max-
imum of twenty-five (25) fitting parameters are allowed in the expression. The fitting pa-
rameter values are altered during the fit. Fit parameters are created with the SCALAR\VARY

command, and can be converted to fixed value scalars with the SCALAR command. If you
use the \RESET qualifier, the fitting parameters will be reset to their original values after an
unsuccessful fit, or a control-c abort.

If the \VARNAMES qualifier is used with the FIT command, a string array variable named

94

Commands

FIT$VAR will be made which will contain the names of the fitting parameter variables. The
array length of FIT$VAR will be equal to the number of fit parameters.

Method

Suppose that you have N data points, yk, for k = 1, . . . ,N , and the function to be fitted is
f(x,p), where p represents the M parameters < p1, p2, . . . , pM >. Define the likelihood of the
parameters, given the data, as the probability of the data, given the parameters. We fit for
the parameters, p, by finding those values, pmin that maximize this likelihood. This form
of parameter estimation is known as maximum likelihood estimation.

Some good references are:

• Practical Methods of Optimization, by R. Fletcher, 1980;

• Methods for Unconstrained Optimization Problems by J. Kowalik and M.R. Osborne,
1968;

• Statistical Methods in Experimental Physics, by W.T. Eadie, et.al., 1971;

• Mathematical Statistics, by John E. Freund, 1971;

• Formulae and Methods in Experimental Data Evaluation, Volume 3,
Elements of Probability and Statistics, by Siegmund Brandt, 1984;

• Numerical Recipes – The Art of Scientific Computing, by W.H. Press, et.al. 1986.

Consider the likelihood function L(p) ≡
∏N
k=1 P (xk,p) where P is the probability density,

which depends on the random variable x and the parameters p. L is a measure for the
probability to observe just the particular sample we have, and is called an a-posteriori prob-
ability since it is computed after the sampling is done. The best estimates for p are the
values which maximize L. But maximizing the logarithm of L also maximizes L, and max-
imizing ln (L) is equivalent to minimizing − ln (L). So, the goal becomes minimizing the log
likelihood function:

−L(p) ≡ − lnL(p) = −
N∑
k=1

ln P (xk,p)

Let p0 be the initial values given for p. The goal is to find a ∇p so that p1 = p0 + ∇p is
a better approximation to the data. We use the iterative Gauss-Newton method, and the
series p1,p2,p3, . . . will hopefully converge to the minimum, pmin.

Generally, the Gauss-Newton method is locally convergent when χ2 is zero at the minimum.
Serious difficulties arise when f is sufficiently nonlinear and χ2 is large at the minimum.

95

Commands

The Gauss-Newton method has the advantage that linear least squares problems are solved
in one iteration.

Consider the Taylor expansion of L(p):

L(p) = L(p0) +
M∑
j=1

∂L

∂pj

∣∣∣∣
p0

pj +
1
2

M∑
i=1

M∑
j=1

∂2L

∂pi∂pj

∣∣∣∣
p0

pipj + · · ·

Define the arrays b, B and c:

[b]i ≡ −
∂L

∂pi

∣∣∣∣
p0

for i = 1, 2, . . . ,M

[B]ij ≡
∂2L

∂pi∂pj

∣∣∣∣
p0

for i, j = 1, 2, . . . ,M

c ≡ L(p0)

If we linearize, that is, assume that ∂2 lnP
∂pi∂pj

→ 0, then L(p) ≈ c − b · p + 1
2p · B · p, and so

∇L = B · p− b. The problem has reduced to solving the matrix equation B · ∇p = b.

Note: The partial derivatives are approximated numerically using a central difference ap-
proximation:

∂f(xk,p)
∂pi

=
f(xk,p+∇pi)− f(xk, ~p−∇pi)

2∇pi

Tolerance

Syntax FIT\TOLERANCE eps y=expression

FIT\WEIGHTS\TOLERANCE w eps y=expression

FIT\ITMAX\TOLERANCE n eps y=expression

FIT\WEIGHTS\ITMAX\TOLERANCE w n eps y=expression

The \TOLERANCE qualifier allows the user to specify the fitting tolerance, which has a default
value of 0.00001. This value is used in calculating the central difference formula for the
partial derivatives, that is, ∂f(x,p)

∂p is approximated by

f(x, p(1 + eps))− f(x, p(1− eps))
(2p× eps)

This value is also used to determine when the fit is successful.

Normal distribution

96

Commands

Assume that each data point, yk, has an error that is independently random and distributed
as a normal distribution, that is,

P (xk,p) =
1

σk
√

2π
e
− 1

2

h
yk−f(xk,p)

σk

i2

where σ2 is the variance, and f(xk,p) is the expression that we want to fit.

L(p) =
N∑
k=1

ln P (xk,p) = −1
2

N∑
k=1

[
yk − f(xk,p)

σk

]2

+ constant

The goal is to minimize the χ2 function:

χ2(p) ≡
N∑
k=1

[
yk − f(xk,p)

σk

]2

=
N∑
k=1

wk [yk − f(xk,p)]2

where the weights, wk, are defined as: wk ≡ 1/σ2
k. Consider the Taylor expansion of χ2:

χ2(p) = χ2(p0) +
M∑
j=1

∂χ2

∂pj

∣∣∣∣
p0

pj +
1
2

M∑
i=1

M∑
j=1

∂2χ2

∂pi∂pj

∣∣∣∣
p0

pipj + · · ·

Define the arrays b, B and c:

[b]i ≡ −
∂χ2

∂pi

∣∣∣∣
p0

= 2
N∑
k=1

wk [yk − f(xk,p)]
∂f(xk,p)

∂pi

∣∣∣∣
p0

for i = 1, 2, . . . ,M

[B]ij ≡
∂2χ2

∂pi∂pj

∣∣∣∣
p0

= 2
N∑
k=1

wk
∂f(xk,p)

∂pi

∣∣∣∣
p0

∂f(xk,p)
∂pj

∣∣∣∣
p0

for i, j = 1, 2, . . . ,M

c ≡ χ2(p0)

Linearize and the problem reduces to solving the matrix equation B · ∇p = b.

χ2 and weights

Syntax FIT\WEIGHTS w y=expression

FIT\WEIGHTS\ITMAX w n y =expression

FIT\WEIGHTS\ITMAX\TOLERANCE w n eps y=expression

The weight at each point defaults to one (1), if a weight vector is not entered. Weights
only make sense with a normal distribution, and are ignored when used with the \POISSON

qualifier.

To make use of a weight array, the \WEIGHTS qualifier must be entered. If the \WEIGHTS

qualifier is used, the weight vector, w, will then be expected. The weights are assigned to

97

Commands

the dependent variable in a one-to-one fashion, that is, the weight vector must be the same
length as the data vector, y. If the \ITMAX qualifier is used, the weight comes before the
iteration maximum in the command parameter list. If the \TOLERANCE qualifier is used, the
iteration maximum comes before the tolerance in the command parameter list.

By default, the zero elements of the weight vector are used when calculating the number
of degrees of freedom. If the \-ZEROS qualifier is used with the \WEIGHTS qualifier, then the
zero elements of the weight vector will not be used when calculating the number of degrees
of freedom. This could have an affect on the calculation of the confidence level, the χ2 per
degrees of freedom, and E2, the root mean square total errors of estimate.

If the \CHISQ qualifier is used, a new scalar, named FIT$CHISQ, will be made with value
equal to the total χ2 =

∑
wk
[
yk − f(xk,pmin)

]2 where wk represents the optional weight at
each data point yk, f is the expression to be fitted, and pmin are the best values of the p
parameters.

Hint for physicists

Very often, the data to be fitted is a histogram of physical events. In that case, since each bin
would follow a multinomial distribution, the error is equal to

√
f , where f is the expression

you are trying to fit. Of course, since you don’t know the parameter values yet, you don’t
actually know f , so you approximate by using the y data values. In the limit, these results
are the same. In the case of a large number of bins, the variance can be approximated by

√
y.

Hence, the correct weighting factor that will give properly normalized errors is w = 1/y, and
the corresponding one standard deviation error, σ = E2/

√
χ2/n, where E2 is the standard

error and n is the number of degrees of freedom, usually equal to the number of data points
minus the number of parameters, (N −M).

Degrees of freedom

If the \FREE qualifier is used, then the number of degrees of freedom for the fit is output into
an automatically created scalar named FIT$FREE. The number of degrees of freedom is either
the number of data values minus the number of parameters, or, if the \-ZEROS qualifier is
also used, the number of non-zero weights minus the number of parameters.

Poisson distribution

Assume that each data point has an error that is independently random and distributed as
a Poisson distribution. The log likelihood function, L(p), as a function of the fit parameters,
p, is minimized using a Gauss-Newton method. Since logarithms are involved, a good first
approximation is required before starting the Poisson fit, so try a normal fit first, and use
the resultant parameter values to start off the Poisson fit.

98

Commands

Weights do not have meaning, and so are not used, in a Poisson fit.

Assume that each data point, yk, has an error that is independently random and distributed
as a Poisson distribution, that is, P (xk,p) = f(xk,p)yke−f(xk ,p)/yk!. We want to minimize:

−L =
N∑
k=1

ln

[
f(xk,p)yke−f(xk ,p)

yk!

]
=

N∑
k=1

[yk ln (f(xk,p))− f(xk,p)− ln (yk!)]

but
∑

ln (yk!) is a constant. So, the goal is to minimize

P(p) ≡
N∑
k=1

[yk ln (f(xk,p))− f(xk,p)]

Consider the Taylor expansion of P:

P(p) = P(p0) +
M∑
j=1

∂P
∂pj

∣∣∣∣
p0

pj +
1
2

M∑
i=1

M∑
j=1

∂2P
∂pi∂pj

∣∣∣∣
p0

pipj + · · ·

Define:

[b]i ≡ −
∂P
∂pi

∣∣∣∣
p0

= −
N∑
k=1

[
yk

f(xk,p)
∂f(xk,p)

∂pi
− ∂f(xk,p)

∂pi

]
for i = 1, 2, . . . ,M

[B]ij ≡
∂2P

∂pi∂pj

∣∣∣∣
p0

= −
N∑
k=1

yk
f2(xk,p)

∂f(xk,p)
∂pi

∂f(xk,p)
∂pj

for i, j = 1, 2, . . . ,M

c ≡ P(p0)

Then: P(p) ≈ c − b · p+ 1
2p ·B · p. Linearize, and the problem reduces to solving the matrix

equation B · ∇p = b.

χ2 of the fit

If the \CHISQ qualifier is used, a new scalar, named FIT$CHISQ, will be made with value

equal to the total χ2 = 2
∑[

f(xk,pmin)− yk + yk ln yk
f(xk,pmin)

]
where f is the expression to

be fitted, and pmin are the best values of the parameters p. This assumes that yk is the
outcome of a Poisson process.

Correlation and covariance

An indication of the accuracy of the fit is displayed in the output under the names E1 and
E2.

[E1]i ≡
√[
B−1

]
ii

for i = 1, . . . ,M

[E2]i ≡ [E1]i

√√√√ 1
n

N∑
k=1

wk[yk − f(xk,p)]2 for i = 1, . . . ,M

99

Commands

where n is the number of degrees of freedom, and where
[
B−1

]
ii

are the diagonal elements
of the inverse of the matrix B. B−1 is called the covariance matrix. The [E1]i are called
the root mean square statistical errors of estimate, while the [E2]i are called the root mean
square total errors of estimate, or standard errors.

The accuracy of the parameters in a linear fit is pi± [E2]i for i = 1, . . . ,M . In the linear case,
for the standard error E2 to be correct, the weights wk must be proportional to 1/σ2

k, where
σk is the standard deviation of the probability distribution of yk. In the nonlinear case, E2
does not have the same statistical significance.

If the \COVMAT qualifier is used, a matrix called FIT$COVM will be created which will contain
B−1. If the \CORRMAT qualifier is used, a matrix with the name FIT$CORR will be created which
will contain the correlation matrix for the fit. The size of these matrices will be M by M . If
the \E1 qualifier is used, then the root mean square statistical error for each fit parameter
are output into an automatically created vector named FIT$E1. If the \E2 qualifier is used,
then the root mean square total error of estimate for each parameter are output into an
automatically created vector named FIT$E2. The values are stored in these vectors in the
order corresponding to the order in which the parameters appeared in the expression. The
length of these vectors will be equal to the number of parameters in the fit expression.

Confidence level of the fit

If the \CL qualifier is used, a new scalar, named FIT$CL, will be made with value equal to the
confidence level:

CL(χ2) =
1

2n/2Γ(n/2)

∫ ∞
χ2

tn/2−1e−t/2dt

where n is the degrees of freedom, usually equal to the number of data points minus the
number of parameters, (N−M). The confidence level is the probability that a random repeat
of the given experiment would observe a worse χ2, assuming the correctness of the model.

Number of iterations

Syntax FIT\WEIGHTS\ITMAX w n y =expression

FIT\ITMAX n y =expression

FIT\ITMAX\POISSON n y =expression

The \ITMAX qualifier allows the user to specify the maximum number of iteration steps for the
fit. When this maximum number is reached, the fit will stop, and the variable parameters
will be updated to their last values. The fit will also stop if the fit is successful before this
maximum iteration number is reached. If the \WEIGHT qualifier is also used, the weight array
comes before the iteration number in the command parameter list.

100

Commands

Informational messages

By default, information on the progress of the fit, as well as the results, are displayed on
the monitor screen. If the \NOMESSAGES qualifier is used, these informational messages will
be suppressed.

Update after a fit

Syntax FIT\UPDATE yout

The FIT\UPDATE command evaluates the previously fitted expression, that is, the expression
in the last FIT command, for the current parameter values, and stores this result in the
vector yout.

This is exactly equivalent to entering: yout=previously fitted expression
and is provided only to obviate the necessity of re-entering a complicated expression.

Note: The vector name yout usually differs from the name of the vector being fitted to avoid
destroying the original data.

FMIN
Syntax FMIN x y xlo xhi expression

Qualifier \MESSAGES
Defaults \NOMESSAGES
Example FMIN\-MESSAGES X Y -10 10 2*X∧2-10*X+5

The FMIN command returns the location and value of the local minimum in the range xlo

to xhi of the specified expression. This expression must be a function of the independent
variable x, which must be a scalar.

The value of x is interpreted as the user’s initial guess for the location of the local minimum.
If the value of x is outside the range xlo to xhi, then the midpoint, (xlo+xhi)/2 is chosen as
this initial guess.

On output, the scalar x will contain the location of the local minimum, and scalar y will
contain the value of this minimum.

The expression must contain the variable x, and may contain other scalars, but must not
contain any other non-scalar variables.

Informational messages

101

Commands

By default, the value of the local minimum, its location, and the upper limit on the error
are displayed on the monitor screen. If the \NOMESSAGES qualifier is used, this informational
message will be suppressed.

Example

The following script demonstrates how you can use the FMIN command to find a local mini-
mum. See Figure 2.12.

XMIN=-10

XMAX=10

XD=[XMIN:XMAX:.1]

GRAPH XD 2*XD^2-10*XD+5

GET

YMIN YMIN

YMAX YMAX

X=0

FMIN X Y -10 10 2*X^2-10*X+5

GRAPH\NOAXES [XMIN;XMAX] [Y;Y]

GRAPH\NOAXES [X;X] [YMIN;YMAX]

TEXT ‘y=2x<^>2<_>-10x+5’

TEXT ‘minimum value= ’//rchar(y)//‘ at x=’//rchar(x)

FZERO
Syntax FZERO x expression

Qualifier \MESSAGES
Defaults \NOMESSAGES
Example FZERO\-MESSAGES X SIN(X)/X

The FZERO command returns the zeros, or roots, of expression. This expression must be a
function of the independent variable x, which must be a vector.

If the length of vector x is N , then a maximum of N roots of the expression will be found.
On output, the vector x will contain these N roots.

The expression must contain the variable x, and may contain scalars, but must not contain
any other non-scalar variables.

Muller’s method

102

Commands

Figure 2.12: Finding a local minimum with the FMIN command

If zi−2, zi−1 and zi are three approximations to a root, the next approximation to the root,
zi+1, is taken as a zero of the quadratic that passes through f(zi−2), f(zi−1) and f(zi). The
iteration continues by dropping zi−2 and repeating the quadratic fit for zi−1, zi and zi+1 and
associated function values.

If (r−1) roots have been found, the rth root is found by deflating f(z) and solving the equation
fr(z) where

fr(z) = f(z)/
r−1∏
i=1

(z − zi)

where the zi are the previously found roots. The roots are found one at a time in approxi-
mately increasing order.

The iteration stops when either

|(zi+1 − zi)/zi+1| < e1 or fr(zi+1) and f(zi+1) < e2

where e1 and e2 are error tolerances. For more information refer to
A Method for Solving Algebraic Equations Using an Automatic Computer
by D.E. Muller, M.T.A.C. 10, 1956, pages 208-215.

In the PHYSICA implementation of Muller’s method, e1 = 10−7 and e2 = 10−20. The values

103

Commands

in vector x are interpreted as the user’s initial guesses for the location of the roots. If x[i]
= 0, the starting approximations for the ith root are taken as: −1, 1, and 0. If x[i] 6= 0, the
starting approximations for the ith root are taken as: 0.9x[i], 1.1x[i], and x[i]. On each
iteration, if |rt− rp| < e3, where rt is the approximation to a root, and rp is a previously found
root, then rt is replaced by rt+ e4. In PHYSICA, e3 = 10−20 and e4 = 10−4. If a root is not found
in 60 iterations, the search is terminated.

Informational messages

By default, the values of the roots are displayed on the monitor screen. If the \NOMESSAGES
qualifier is used, informational messages will be suppressed.

Example

The following script demonstrates how you can use the FZERO command to find roots. See
Figure 2.13.

XMIN=-30

XMAX= 10

XD=[XMIN:XMAX:.1]

SET %XLABSZ 5

LABEL\XAXIS ‘y=e<^>0.4x<_>-0.4x-9’

GRAPH XD EXP(0.4*XD)-0.4*XD-9

GET

YMIN YMIN

YMAX YMAX

NROOTS=2

X[1:NROOTS]=0

FZERO X EXP(0.4*X)-0.4*X-9

DO J = [1:NROOTS]

GRAPH\NOAXES [X[J];X[J]] [YMIN;YMAX]

DISPLAY ‘please position the string: root at ’//rchar(x[j])

TEXT ‘root at ’//rchar(x[j])

ENDDO

ZEROLINE\HORIZONTAL

104

Commands

Figure 2.13: Finding roots with the FZERO command

GENERATE
Syntax GENERATE x min inc ,, npts

GENERATE x min ,, max npts

GENERATE x min inc max

GENERATE\RANDOM x min max npts

Qualifier \RANDOM
Default \-RANDOM

The GENERATE command creates a new vector, x.

By default, the new vector, x, will be generated according to the formula: x[i] = min +(i− 1)
inc for 1 ≤ i ≤ npts.

The minimum value, min, must be given. Two other values are also required: the increment
and the number of points, or the maximum and the number of points, or the increment and
the maximum value.

Increment and number of points given

Syntax GENERATE x min inc ,, npts

If the increment and the number of points are given, the above formula is applied directly.

105

Commands

Example

After the command: GENERATE X -1 .5 ,, 4

the vector X = [-1; -0.5; 0; 0.5]

Maximum and number of points given

Syntax GENERATE x min ,, max npts

If maximum value and the number of points are given, the increment is calculated:
inc = (max - min)/(npts −1) and then used in the usual formula.

Example

After the command: GENERATE X -1 ,, 2 4

the vector X = [-1; 0; 1; 2]

Increment and maximum given

Syntax GENERATE x min inc max

If the increment and the maximum value are given, the number of points will be ignored if
entered. The usual formula will be applied until the next value would be greater than max,
the maximum. If the calculated maximum is different than the given maximum, a warning
message will be displayed on the monitor screen. The calculated maximum will be the last
value stored in the vector.

Example

After the command GENERATE X -1 .41 1

the warning message:

GENERATE warning: calculated maximum = 0.63999999E+00

given maximum = 0.10000000E+01

will be displayed on the monitor screen and the vector X = [-1; -0.59; -0.18; 0.23; 0.64]

Random numbers

Syntax GENERATE\RANDOM x min max npts

If the \RANDOM qualifier is used, the vector x will be filled with npts random numbers that fall

106

Commands

between min and max. No increment should be given.

The initial value for the random number seed is 12345. Every time a random number is
requested, either from the GENERATE\RANDOM command or from the RAN function, the seed is
updated. You can change the seed value with the SET SEED command.

Example

After the command GENERATE\RANDOM X 1 2 5

the vector X = [1.198525; 1.897874; 1.238289; 1.367985; 1.381705]

GET
Syntax GET { keyword { value }}
Examples GET %XLAXIS XLX

GET

GET NSXINC

The GET command gets the values of the GPLOT plot characteristic keywords as well as the
PHYSICA specific keywords. Use the SET command to change the values of these keywords.

If the GET command is entered with no parameters, more than one keyword value can be ob-
tained without re-entering the GET command. Other keywords and values will be requested,
until a blank line is entered, at which time the user is put back into command line entry
mode. If the GET command is used in this way in a script file, the blank line is necessary to
indicate that the GET command is finished.

If a keyword is entered with the GET command, then only that one keyword’s value can be
obtained with that command.

If an output variable is not entered after the keyword, the current value of that keyword
will be displayed on the terminal screen. If an output variable is entered, a variable will be
created and the current value of that keyword assigned to that variable.

Note: The keywords FONT, CUNITS, UNITS, VERSION, VERSIONDATE, and AUTOSCALE return a string
instead of a numeric value.

Examples

To display the current value of XMIN, enter: GET XMIN

To obtain the current value of XMIN and then change it to XMIN −10, and to set the value of
XMAX to XMIN+100, enter:

107

Commands
...

GET XMIN A ! makes scalar A

SET

XMIN A-10

XMAX A+100 ! don’t forget the blank line

...

To display the current graphics font name, enter GET FONT

The command: GET FONT TXT[3]

places the current font name into the 3rd element of the array text variable TXT.

The GPLOT keywords

See Appendix A for descriptions of all the GPLOT plotting characteristic keywords. The
tables produced by the DISPLAY MENU contain most of the keywords that can be accessed
with the SET and GET commands, along with their current values.

The GPLOT keywords: MASK, ALIAS, PMODE, PTYPE, and ERRBAR, should not be changed in
PHYSICA, as these are internally adjusted and used by various commands.

The PHYSICA keywords

ARROLEN

ARROLEN is the arrow head length as a fraction of the total arrow shaft length. It is used for
arrows drawn with the FIGURE command.

ARROTYP

ARROTYP controls the type of arrow drawn with the FIGURE command. See Table 2.54 on
page 231 and Figure 2.24 on page 230.

ARROWID

ARROWID is the arrow head width as a fraction of the total arrow shaft length. It is used for
arrows drawn with the FIGURE command.

PCHAR

Optional parameters: symbol { size { colour { angle }}}

108

Commands

PCHAR controls the plotting symbols, or the appearance of the histogram bars, when the
GRAPH command is entered. GET PCHAR obtains the plotting symbol values or arrays, as set
with the SET PCHAR command. It is not necessary to set the size, colour or angle with the
SET PCHAR command, but if these are not set, you cannot request their values. The type of
output variable that will be made for each parameter depends on the type of variable used
in the SET PCHAR command.

AUTOSCALE

Note: The value of the AUTOSCALE keyword is a string instead of a numeric value. So, if you
enter: GET AUTOSCALE X, the variable X will be a string variable.

The AUTOSCALE keyword controls autoscaling for graph axes. Autoscaling remains in effect
until either the command SET AUTOSCALE OFF is entered, or the SCALES command is entered.
Autoscaling affects commands that draw axes, for example, the commands GRAPH, CONTOUR,

DENSITY, REPLOT, and SLICES.

Autoscaling means to automatically choose the minimum and maximum values for the axes,
as well as the number of large, numbered, tic marks for the axes. The type of autoscaling
that is done depends on the keyword that is used with the command.

keyword result

ON Autoscale the horizontal and the vertical axes
OFF turn off all autoscaling,

the axes will appear as they are currently set

COMMENSURATE Autoscale the horizontal and vertical axes and
change the lengths of the axes so that they will be commensurate

XAXIS Autoscale the horizontal axis only,
the vertical axis will remain as currently set

YAXIS Autoscale the vertical axis only,
the horizontal axis will remain as currently set

When the \VIRTUAL qualifier is used, the virtual minima and maxima for the axes will be
determined, so that the axes may not begin or end at a large tic mark. If the keyword ON

is used, both x- and y-axes will have virtual minima and maxima. If the keyword XAXIS is
used, only the x-axis will have virtual minimum and maximum. If the keyword YAXIS is
used, only the y-axis will have virtual minimum and maximum.

CNTSEP

109

Commands

CNTSEP, or %CNTSEP, is the separation between contour labels in the CONTOUR command.
%CNTSEP is the separation as a percentage of the height of the window, that is, YUWIND-YLWIND,
while CNTSEP is the separation expressed in centimeters or inches, depending on the units
type as set with the SET UNITS command.

LABSIZ

LABSIZ, or %LABSIZ, is the size of the contour labels in the CONTOUR command. %LABSIZ is the
size as a percentage of the height of the window, that is, YUWIND-YLWIND, while LABSIZ is the
size expressed in centimeters or inches, depending on the units type as set with the SET

UNITS command.

LEGSIZ

LEGSIZ, or %LEGSIZ, is the size of the contour plot and density plot legend entries. %LEGSIZ is
the size as a percentage of the height of the window, that is, YUWIND-YLWIND, while LEGSIZ is
the size expressed in centimeters or inches, depending on the units type as set with the SET

UNITS command.

LEGFRMT

Note: The value of the LEGFRMT keyword is a string instead of a numeric value. So, if you
enter: GET LEGFRMT X, the variable X will be a string variable.

The numeric legend entries drawn by the DENSITY and CONTOUR commands are written using
the LEGFRMT format.

ERRFILL

If the \ERRFILL qualifier is used with the READ\VECTOR command, an invalid field in the data
file causes either the entire record to be filled with the value of ERRFILL if a format is used,
or only that invalid field will be filled with ERRFILL if no format is used.

FILL

FILL is used in the FIGURE command, with the fillable figures: BOX, POLYGON, WEDGE, CIRCLE,

ELLIPSE, and ARROWs with closed heads. It is also used for filling the boxes with the
DENSITY\BOXES command. See Table 2.55 on page 233 for a description of the interpretations
of the FILL keyword.

See the SET HATCH command for information on changing the hatch pattern definitions.
See the DISPLAY HATCH command for information on how to display examples of the hatch

110

Commands

patterns.

HATCH

Optional parameters: n { v a }

The GET HATCH command is used for obtaining the hatch pattern definitions that are used for
text bolding, for filling areas under curves or histograms, and for use by the TILE, PIEGRAPH,
and FIGURE commands.

The SET HATCH command is used for changing the hatch pattern definitions. The SET HATCH

command does not choose the hatch pattern to be used by other commands. It only alters
the definition of a hatch pattern.

If just the keyword HATCH is entered, a table of the spacings and angles for all ten hatch
patterns is displayed. If the hatch pattern number, n, is entered, then only pattern n will
be displayed. If the hatch pattern number, an output vector, v, and an output scalar, a,
are entered, then v will contain the spacings and a will contain the angle for that pattern
number.

The hatch pattern number, n, should be between one and ten. A hatch pattern is composed
of an angle and from one to ten spacings. The default spacings and angles are listed in
Table 2.56 on page 235. The angles are in degrees and the spacing lengths, by default,
are expressed in centimeters, but if the units are changed to inches, with the SET UNITS

command, the lengths will be converted to inches. See Figure 2.7 on page 61 for examples
of the hatch patterns. See the DISPLAY command, page 58, for information on how to display
examples of the hatch patterns.

When an object is being filled, a line is drawn inside the object at the specified angle, then
a parallel line is drawn at the first spacing, and so on for the number of spacings in that
pattern. This process is repeated until the object is filled.

LINE

Optional parameters: n { v }

The GET LINE command is used for obtaining the definition of the line types that are used
by the commands: GRAPH, LINE, PICK, ELLIPSE, FIGURE, and ZEROLINES.

The SET LINE command is used for changing the definition of the line types. This command
does not choose the line type to be used by other commands. It only alters the definition of
a line type. To choose a line type, use the SET LINTYP command.

111

Commands

If just the keyword LINE is entered, a table of the spacings for all ten line types is displayed. If
the line type number, n, and an output vector, v, are entered, then nothing will be displayed.
For example, to get line type 2 into vector X2, enter:

GET LINE 2 X2

See the SET LINE command for information on how the line types are defined. There are
ten line types available. The defaults are listed in Table 2.58 on page 236. The lengths
are expressed in centimeters, the default, but if the units are changed to inches, with the
SET UNITS command, the lengths will be converted to inches. See Figure 2.8 on page 62 for
examples of the default line types. See the DISPLAY command, page 58, for information on
how to display examples of the line types.

TENSION

TENSION controls the spline tension for the functions using cubic splines:

DERIV, INTEGRAL, INTERP, SMOOTH, SPLINTERP, and SPLSMOOTH.

SEED

SEED is the random number seed value. This seed is updated whenever the GENERATE\RANDOM
command is entered, or the RAN is used.

POSTRES

POSTRES controls the PostScript graphics output resolution, in dots per inch. This applies to
dot filled text characters and dot types of DENSITY plots. The resolution can be changed at
any time, so different parts of a single drawing can be drawn with different resolutions.

SPEED

SPEED controls the pen plotter speed. This applies to Hewlett-Packard, Houston, and Roland
RDGL II pen plotters. The speed can be changed at any time, so different parts of a single
drawing can be drawn at different speeds.

WIDTH

WIDTH controls the character width of the alphanumeric monitor screen. The value for WIDTH

should be between 2 and 132.

XPREV

112

Commands

XPREV is the last world x-coordinate that was drawn by any graphics command. The value
of this keyword is automatically updated.

YPREV

YPREV is the last world y-coordinate that was drawn by any graphics command. The value
of this keyword is automatically updated.

NCURVES

NCURVES is the total number of data curves that have been drawn, using the GRAPH command,
since the last CLEAR command. The value of this keyword is automatically updated.

UNITS

Note: The value of the UNITS keyword is a string instead of a numeric value. So, if you enter:
GET UNITS X, the variable X will be a string variable.

UNITS controls the plotting units type, either centimeters, CM, the default, or inches, IN.

CUNITS

Note: The value of the CUNITS keyword is a string instead of a numeric value. So, if you
enter: GET CUNITS X, the variable X will be a string variable.

CUNITS is the units type for the graphics cursor readout when the graphics cursor is invoked
by the PICK, PEAK, LINE, or FIGURE command when running under X Windows and mouse
button two is pressed. If WORLD is chosen, the numbers displayed depend on the current
units type, either centimeters or inches, as chosen with SET UNITS. If GRAPH is chosen, the
numbers displayed depend on the current graph axis scales.

FONT

Note: The value of the FONT keyword is a string instead of a numeric value. So, if you enter:
GET FONT X, the variable X will be a string variable.

FONT controls the graphics font. For a list of the font names, see Table 2.60 on page 243.

The DISPLAY FONT command will draw a font table for any font.

VERSION

113

Commands

Note: The value of the VERSION keyword is a string instead of a numeric value. So, if you
enter: GET VERSION X, the variable X will be a string variable.

This is the current program’s version number. It is character valued, with a length of 5.

VERSIONDATE

Note: The value of the VERSIONDATE keyword is a string instead of a numeric value. So, if you
enter: GET VERSIONDATE X, the variable X will be a string variable.

This is the current program’s version date. It is character valued, with a length of 20.

SHOWHISTORY

SHOWHISTORY controls how many lines of history to display for each numeric variable as a
result of the SHOW command.

SHOWHISTORY

n < 0 → all stored history lines will be displayed
n = 0, 1 → only the latest history line will be displayed
n > 0 → a maximum of n lines of history will be displayed for each variable

MAXHISTORY

MAXHISTORY is the maximum number of history lines to store for each numeric variable.
MAXHISTORY was added because if a variable had its value changed within a large DO loop, a
new history line was added each time the loop was processed, which could lead to virtual
memory problems.

WRAP

If WRAP = 0, history lines and string variable contents lines are not wrapped when displayed
with the SHOW command. If WRAP is non-zero, these lines are wrapped.

DEVICE

Note: The value of the DEVICE keyword is a string instead of a numeric value. So, if you
enter: GET DEVICE X, the variable X will be a string variable.

This is the current hardcopy device as chosen with the DEVICE command.

114

Commands

GLOBALS
Syntax GLOBALS

This command only works under VAX/VMS.

The GLOBALS command displays the names of global sections to which you have access.
This command is meant to be used in conjunction with the MAP\FIOWA or the MAP\FIOWABIG
commands.

GRAPH
Syntax GRAPH { ‘legendtext’ } x y { ye1 { xe1 { ye2 { xe2 }}}}
Qualifiers \AXESONLY, \NOAXES, \POLAR, \REPLOT, \HISTOGRAM
Defaults axes drawn, \REPLOT, \NOPOLAR, \NOHISTOGRAM, legendtext ignored

Examples GRAPH X Y

GRAPH ‘legend entry’ X Y YERR XERR

GRAPH\NOAXES X Y

GRAPH\HISTOGRAM X Y

GRAPH\POLAR RAD THETA

command
The GRAPH command draws: data with axes GRAPH

just the data GRAPH\NOAXES
just the axes GRAPH\AXESONLY

The data curve may be a histogram. The parameters must be vectors, but can be vectors of
length one. The input vectors can have different lengths as the minimum length of all of the
input vectors will be used.

Plotting symbols

The SET PCHAR command controls the plotting symbols, or the appearance of the histogram
bars. For information on how to set the plotting symbol type, size, colour, and angle; as well
as how to set hatch fill patterns, colours, and relative bar size for histograms, refer to the
SET PCHAR command section.

Axis scaling

Autoscaling of the axes may apply if the two vectors, x and y, are entered. Refer to the SET

AUTOSCALE command for information on how to set up autoscaling for the axes.

Use the SCALES command, page 226, to manually set the scales for the axes.

115

Commands

Graph legend

If LEGEND is ON, a legend entry is drawn into a legend frame box. A legend entry consists of
a short line segment, with plotting symbol(s), and a string. The legend entry is drawn when
the GRAPH command is entered. The string portion of the legend entry is expected as the first
parameter of the GRAPH command, for example:

GRAPH ‘legend entry’ X Y

If LEGEND is OFF, a string entered as a first parameter with the GRAPH command is ignored.
Refer to the LEGEND command, page 137, for more information on a graph legend.

Plotting data and axes

By default, if the GRAPH command is entered with neither the \AXESONLY qualifier nor the
\NOAXES qualifier is used, then axes will be drawn as well as the data curve or histogram.
Autoscaling will apply if it is on. For example:

GRAPH X Y ! plots axes and data curve

GRAPH\HISTOGRAM X Y ! plots axes and histogram

Plotting axes only

If the GRAPH\AXESONLY command is entered with no parameters, autoscaling does not apply.
The minima, maxima, and number of increments will be the same as the last set of axes
drawn. The axes scales can be set up before entering the GRAPH\AXESONLY command, using
the SCALES command. Autoscaling may apply if two parameters, x and y, are entered. For
example:

SET AUTOSCALE ON ! turn on autoscaling

GRAPH\AXESONLY X Y ! plot axes autoscaled to the data

SCALES -5 5 0 10 20 0 ! -5 <= x <= 5 and 10 <= y <= 20

GRAPH\AXESONLY ! plot the axes only

Plotting data only

The GRAPH\NOAXES command plots the data, but does not draw axes. Autoscaling will not
apply. The GRAPH\NOAXES command overlays on an existing set of axes. For example:

116

Commands

GRAPH\NOAXES X Y ! overlay data curve on current axes

GRAPH\HIST\NOAX X Y ! overlay histogram on current axes

If the LEGEND is ON then the data variables are not necessary. That is, you can enter:

GRAPH\NOAXES ‘legendentry’

and an entry is made to the legend, but no curves are plotted. The plotting character, as set
by the SET PCHAR command, will be used in the legend.

Replotting data on a common scale

By default, the graph will be stored for replotting. If the \NOREPLOT qualifier is used, the
graph will not be saved for replotting. The default is \REPLOT.

To redraw a graph with multiple data sets so that all the data will appear within the axis
boundaries, use the REPLOT command in association with the SET AUTOSCALE command. For
example:

SET AUTOSCALE ON ! turn on autoscaling

SET PCHAR -1 ! set plotting character to ‘box’

GRAPH X Y ! plot data with axes

SET PCHAR -2 ! set plotting character to ‘cross’

GRAPH\NOAXES U V ! overlay another data curve

CLEAR\NOREPLOT ! clears graphics but not the replot buffers

REPLOT ! replot both data sets on common scale

Refer to the REPLOT command, page 208, for more information.

Histograms

It is possible to draw four types of histograms using the SET HISTYP approach, or you can
use the \HISTOGRAM qualifier to plot a histogram with tails to y = 0 and profile along the
x-axis.

Using the HISTYP keyword

Table 2.39 on page 118 shows the histogram type that will be produced depending on the
value of HISTYP.

Using the \HISTOGRAM qualifier

117

Commands

HISTYP Result

0 (default value) line graph, not a histogram

1 histogram with no tails and profile along the x-axis.
You may control the width and colour of each individual bar.

2 histogram with tails to y = 0 and profile along the x-axis.
You may control the filling pattern, width and colour of each individual
bar

3 histogram without tails and profile along the y-axis.
You may control the height and colour of each individual bar.

4 histogram with tails to x = 0 and profile along the y-axis.
You may control the filling pattern, height and colour of each individual
bar

Table 2.39: The HISTYP keyword

The \HISTOGRAM qualifier is inconsistent when used in conjunction with the \AXESONLY qual-
ifier.

Using the \HISTOGRAM qualifier is equivalent to using a HISTYP setting of 2. A histogram with
tails to y = 0 and profile along the x-axis will be plotted. The following three commands:

SET HISTYP 2 ! force histogram plotting

GRAPH X Y ! plot axes and histogram

SET HISTYP 0 ! reset to default value

are equivalent to the single command:

GRAPH\HIST X Y

Filling

To fill the area under a histogram, you can use the SET PCHAR command. The SET PCHAR

command allows you to fill each histogram bar with a different fill pattern. This only applies
to histograms with tails, HISTYP = 2 or 4.

See the SET PCHAR command for more information on filling, colours, and relative bar size
for histograms.

See the SET HATCH command, page 228, for information on changing the hatch pattern defi-

118

Commands

nitions.

See the DISPLAY command for information on how to display examples of the hatch patterns.

Polar coordinates

If the \POLAR qualifier is used, the input vectors, x and y, are assumed to represent polar
coordinates, where x contains the radial components and y contains the angular compo-
nents, in degrees. The polar coordinates are transformed to rectangular coordinates before
plotting, but the vectors x and y are returned unchanged.

Error bars

Syntax GRAPH { ‘legendtext’ } x y { ye1 { xe1 { ye2 { xe2 }}}}

The optional vectors ye1, xe1, ye2, and xe2 are interpreted as errors for drawing error bars.
You can have symmetric or asymmetric error bars.

Symmetric error bars

For symmetric error bars, the error variable should contain one half of the total error. See
Table 2.40.

parameters
present Result

ye1 but not ye2 symmetric vertical error bars will be drawn at the point (x[j],y[j]), the
error bar is drawn from y[j]-ye1[j] to y[j]+ye1[j]

xe1 but not xe2 symmetric horizontal error bars will be drawn at the point (x[j],y[j]),
the error bar is drawn from x[j]-xe1[j] to x[j]+xe1[j]

Table 2.40: Symmetric error bars

Asymmetric error bars

For asymmetric error bars, the first error variable contains the lower error and the second
error variable contains the upper error. See Table 2.41.

Error bar shape

The error bars will have “feet”, that is, short line segments, one at each end of the error
bar, which are perpendicular to the error bar. The size of the foot is the same as the
size of the plotting symbol, which can be changed using the SET %CHARSZ command or by

119

Commands

parameters
present Result

ye1 and ye2 asymmetric vertical error bars are drawn at the point (x[j],y[j]), the
error bar is drawn from y[j]-ye1[j] to y[j]+ye2[j]

xe1 and xe2 asymmetric horizontal error bars are drawn at the point (x[j],y[j]), the
error bar is drawn from x[j]-xe1[j] to x[j]+xe2[j]

Table 2.41: Asymmetric error bars

entering a relative size vector with the SET PCHAR command. The error bar will be clipped at
the boundaries of the plotting symbol if the symbol is symmetric under 90◦ rotations, for
example, a box (symbol number 1).

Filling

To fill the area under a curve, use the SET LINTYP command. See also the histogram discus-
sion above, for specifics on filling histograms. If 101 ≤ LINTYP ≤ 110, then the hatch pattern
LINTYP-100 is chosen. If 211 ≤ LINTYP ≤ 299, then the dot fill pattern LINTYP-200 is chosen.
The polygonal region defined by the (x, y) coordinate pairs, with the last point connected to
the first, will be filled with the chosen hatch or dot pattern.

Hatch patterns

101 ≤ |LINTYP| ≤ 110 means to fill using a hatch pattern. The filling will be done with hatch
pattern |LINTYP|-100. For example, if LINTYP = 108, then hatch pattern number 8 will be
used.

A hatch pattern is composed of an angle and one to ten spacings. These spacings are simply
cycled through as the region is being filled, that is, a line is drawn inside the region at the
specified angle, then a parallel line is drawn at the first spacing, then another parallel line
is drawn at the second spacing, and so on for the number of spacings in that pattern. This
process is repeated until the region is filled. The hatch patterns can be redefined with the
SET HATCH command and displayed with the DISPLAY FILL command. There are ten hatch
patterns available.

Dot fill patterns

211 ≤ |LINTYP| ≤ 299 means to fill using a dot pattern. The filling will be done with dot pattern
|LINTYP|-200. For example, if LINTYP = 234, then dot pattern 34 will be used. If LINTYP < 0,
then the dots are erased instead of turned on.

120

Commands

A dot pattern is of the form: uv, where the digit u is the increment number of dots to light up
horizontally, 1 ≤ u ≤ 9, and the digit v is the increment number of dots to light up vertically,
1 ≤ v ≤ 9. For example, a dot pattern of 34 means to light up every third dot horizontally
and every fourth dot vertically. If uv is negative, then the dots are erased instead of turned
on. Note that 200 is interpreted the same as 211, that is, every dot is lit.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A ”good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

Examples

The following script demonstrates the plotting of error bars. See Figure 2.14.

X=[0:20] ! generate some "data"

Y=X^2-20*X+50 !

YEL=10*RAN(X) ! lower error

YEU=10*RAN(X) ! upper error

YES=20*RAN(X) ! symmetric error

SET PCHAR -1 ! set plotting symbol

WINDOW 5 ! set window

LABEL\X ‘Asymmetric errors’

GRAPH X Y YEL,,YEU ! plot with asymmetric errors

WINDOW 6 ! change windows

LABEL\X ‘Symmetric errors’

GRAPH X Y YES ! plot with symmetric errors

Figure 2.14: Plotting error bars with the GRAPH command

121

Commands

The following script demonstrates filling under area under a curve. See Figure 2.15.

X=[0:20] ! generate some "data"

Y=X^2-20*X+50 !

XX[1]=X[1] ! fix up the data so it starts at (x[1],0)

XX[2:LEN(X)+1]=X ! and ends at (x[#],0)

XX[LEN(X)+2:LEN(X)+2]=X[#]

YY[1]=0

YY[2:LEN(Y)+1]=Y

YY[LEN(Y)+2:LEN(Y)+2]=0

SET PCHAR 0 ! no plotting symbol

SET LINTYP 233 ! dot pattern (every 3rd dot both directions)

WINDOW 15 ! set window

LABEL\X ‘Dot fill’ ! label the x axis

GRAPH XX YY !

ZEROLINE\HORIZONTAL ! draw horizontal line through (0,0)

SET LINTYP 108 ! hatch pattern number 6

WINDOW 16 ! change windows

LABEL\X ‘Hatch fill’ ! label the x axis

GRAPH XX YY !

ZEROLINE\HORIZONTAL ! draw horizontal line through (0,0)

Figure 2.15: Filling the area under a curve drawn with the GRAPH command

The following script demonstrates plotting histograms and filled histograms. See Figure 2.16.

122

Commands

X=[0:24:3] ! generate some "data"

Y=X^2-20*X+50 !

SET HISTYP 1 ! histogram with no tails

WINDOW 5 ! set window

LABEL\X ‘HISTYP = 1’ ! label the x axis

GRAPH X Y ! plot the histogram

WINDOW 6 ! set window

LABEL\X ‘Narrow bars’ ! label the x axis

SET PCHAR 0 .8

GRAPH X Y ! plot the histogram

WINDOW 7 ! set window

SET HISTYP 2 ! histogram with tails

LABEL\X ‘Hatch pattern #8’

SET PCHAR 8 .8 ! hatch pattern #8

GRAPH X Y ! plot the histogram

ZEROLINES\HORIZONTAL ! draw horizontal line thru (0,0)

WINDOW 8 ! set window

LABEL\X ‘Individual bar filling’

SET PCHAR [11:99:11] .8 ! each bar filled

GRAPH X Y ! plot the histogram

ZEROLINES\HORIZONTAL ! draw horizontal line thru (0,0)

Figure 2.16: Histogram examples drawn with the GRAPH command

123

Commands

GRID
Syntax GRID x y z m

Qualifiers \POLAR, \INTERPOLATE, \INDICES, \PATTERN, \SIZE, \XYOUT, \BOUNDS,
\CHECKDUP

Defaults \NOPOLAR, \INTERPOLATE, \NOINDICES, \NOSIZE, \NOXYOUT, \NOBOUNDS,
\NOCHECKDUP

Examples GRID X Y Z M

GRID\POLAR\XYOUT R T Z M RO TO

GRID\NOINTERP\XYOUT X Y Z M XOUT YOUT

GRID\SIZE\BOUNDS 50 X Y Z M .1 .5 3 6

The GRID command creates a regular matrix from scattered data points. The three vectors, x,
y and z, are assumed to represent scattered points, where z[i] is the altitude corresponding
to the coordinates (x[i],y[i]). Suppose l = min(len(x),len(y),len(z)). By default, a
square matrix, m, is interpolated, with row and column dimensions equal to 5×

√
l.

The coordinates of element m[i,j] of the output matrix will be (xout[j],yout[i]). The
columns of m are of constant x, and the rows are of constant y.

Polar coordinates

The \NOINTERPOLATE qualifier cannot be used with the \POLAR qualifier.

If the \POLAR qualifier is used, x is assumed to contain the radial components and y is
assumed to contain the angular components, in degrees. The output matrix, m, will be
regular in polar coordinates, with the columns of constant radius and the rows of constant
angle.

Duplicate points

By default, duplicate (x,y) locations are not checked for before the matrix is made. If you
want duplicate points to be ignored, use the \CHECKDUP qualifier.

Interpolated grid

Syntax GRID x y z m

Qualifiers \POLAR, \SIZE, \XYOUT, \BOUNDS, \CHECKDUP
Defaults \NOPOLAR, \NOSIZE, \NOXYOUT, \NOBOUNDS, \NOCHECKDUP

By default, the set of scattered data points is used to construct a Thiessen triangulation of
the plane and a regular matrix, m, is interpolated.

124

Commands

Output matrix size

Syntax GRID\SIZE s x y z m

Suppose l = min(len(x),len(y),len(z)). By default, the interpolated matrix will be square,
with row and column dimensions both equal to 5 ×

√
l. If another size, s, is desired, you

must use the \SIZE qualifier, and the row and column dimensions will be both equal to s.

Output vectors

Syntax GRID\XYOUT x y z m xout yout

If output vectors, xout and yout, are desired, you must use the \XYOUT qualifier. The coor-
dinates of output matrix element m[i,j] will be (xout[j],yout[i]), where xout contains the
x-coordinates of each column and yout contains the y-coordinates of each row.

Range of interpolation

Syntax GRID\BOUNDS x y z m minx maxx miny maxy

GRID\BOUNDS\XYOUT x y z m xout yout minx maxx miny maxy

Defaults \NOBOUNDS, interpolation range = range of x and y

By default, the range of the grid interpolation is the range of values of the vectors x and y.
If the \BOUNDS qualifier is used, this range is specified by the final four numbers, minx, maxx,
miny, and maxy.

Non-interpolated grid

Syntax GRID\PATTERN x y z m

Qualifiers \XYOUT, \CHECKDUP
Defaults \NOXYOUT, \NOCHECKDUP

Suppose the vectors x and y have length h, and suppose that for some n1 and n2, x and y

have the following pattern:

x1 = x2 = · · · = xn2

xn2+1 = xn2+2 = · · · = xn2+n2

...
...

x(n1−1)n2+1 = x(n1−1)n2+2 = · · · = xn1·n2

125

Commands

y1 = yn2+1 = · · · = y(n1−1)n2+1

y2 = yn2+2 = · · · = y(n1−1)n2+2
...

...
yn2 = yn2+n2 = · · · = yn1·n2

where h = n1 · n2. If the x and y vectors have this form, it is possible to construct a matrix,
without interpolation, with n2 rows and n1 columns, that is, mi,j = zk where k = j + (i− 1)n1
for i = 1, 2, . . . , n2 and for j = 1, 2, . . . , n1.

Output vectors

Syntax GRID\PATTERN\XYOUT x y z m xout yout

If output vectors, xout and yout, are desired, you must use the \XYOUT qualifier. The coor-
dinates of output matrix element m[i,j] will be (xout[j],yout[i]), where xout contains the
x-coordinates of each column and yout contains the y-coordinates of each row. If the output
matrix has n1 columns and n2 rows, then the length of xout will be n1 and the length of yout
will be n2.

xout = [x1; xn2+1; · · · ; x(n1−1)n2+1

yout = [y1; y2; · · · ; yn2

Example

The vectors:

X = [1; 1; 1; 1; 2; 2; 2; 2; 3; 3; 3; 3]

Y = [1; 2; 3; 4; 1; 2; 3; 4; 1; 2; 3; 4]

Z = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12]

have the proper form, with n2 = 4 and n1 = 3.
If you entered the command GRID\PATTERN\XYOUT X Y Z M XO YO

the resultant variables would be:

M =


1 5 9
2 6 10
3 7 11
4 8 12

 XO = [1; 2; 3], YO = [1; 2; 3; 4]

Matrix from sparse data

126

Commands

Syntax GRID\INDICES x y z m

Qualifiers \XYOUT, \CHECKDUP
Defaults \NOXYOUT, \NOCHECKDUP

The vectors x and y are assumed to contain index locations for the z data values.

Suppose that h is the minimum length of x, y, and z; and nc = max(x[i]), nr = max(y[i])
for i = 1, . . . , h.

Then m[i,j] = 0 for i = 1, . . . , nr; j = 1, . . . , nc except m[y[i],x[i]] = z[i] for i = 1, . . . , h. m

will have nr rows and nc columns.

Output vectors

Syntax GRID\INDICES\XYOUT x y z m xout yout

If output vectors, xout and yout, are desired, you must use the \XYOUT qualifier. The coor-
dinates of output matrix element m[i,j] will be (xout[j],yout[i]), where xout contains the
x-coordinates of each column and yout contains the y-coordinates of each row. If the output
matrix has nc columns and nr rows, then xout = [1:nc] and yout = [1:nr].

Example

Suppose

X = [1; 4; 1; 3; 5]

Y = [2; 1; 6; 4; 6]

Z = [10; 15; 20; 25; 30]

after the command: GRID\INDICES\XYOUT X Y Z M XO YO

the resultant variables will be:

M =



0 0 0 15 0
10 0 0 0 0
0 0 0 0 0
0 0 25 0 0
0 0 0 0 0

20 0 0 0 30


XO = [1 : 5], YO = [1 : 6]

127

Commands

HARDCOPY
Syntax HARDCOPY keyword { queue }

HARDCOPY keyword { file }

The HARDCOPY command is used for obtaining graphics hardcopies for the currently active
device type. The initial default graphics hardcopy type is an HP LaserJet bitmap at 150 dpi.
Use the DEVICE command to choose a different graphics hardcopy device type.

Printing and saving

The first command parameter is a keyword which refers to the action of printing or saving
the graphics. This depends on which graphics hardcopy device is currently active. Refer
to Table 2.42 for a listing of the appropriate hardcopy print and save codes for the bitmap
device types. Refer to Table 2.43 for a listing of the appropriate hardcopy print and save
codes for the non-bitmap device types.

device action
keyword code parameter description default

P { queue } print on a queue HP$LASER

PC { queue } print on a queue -compressed- HP$LASER

S { file } save in a file HPLASER.PLT

HPLASER A auxiliary port output
T { file } TEXoutput file file HPTEX.PLT

TC { file } TEXoutput file -compressed- HPTEX.PLT

TJ { file } TEXoutput file -justified- HPTEX.PLT

TJC { file } TEXoutput file -compressed-justified- HPTEX.PLT

P { queue } print on a queue INK JET

PT { queue } print on a queue -transparency- INK JET

INKJET S { file } save in a file INKJET.PLT

A auxiliary port output
P { queue } print on a queue HP$THINKJET

HPTHINKJET S { file } save in a file HPTHINK.PLT

A auxiliary port output
P { queue } print on a queue LNPTR

PRINTRONIX S { file } save in a file PX.PLT

A auxiliary port output

Table 2.42: HARDCOPY command print and save codes for bitmap devices

Note: Compressed format can speed up the printing of a drawing by as much as a factor of
5. Compressed format is recognized only by the LaserJet IIP, the LaserJet III, and later model

128

Commands

device action
keyword code parameter description default

P { queue } print on a queue POST$SCRIPT

POSTSCRIPT S { file } save in a file POSTSCRIPT.PLT

A auxiliary port output
P { queue } print on a queue HPLTR

HPPLOTTER S { file } save in a file HPP.PLT

A auxiliary port output
GKS S { file } save file GKS.PLT

P { queue } print on a queue HOUSTON

HOUSTON S { file } save in a file HOUSTON.PLT

A auxiliary port output
P { queue } print on a queue IMAGEN

IMAGEN S { file } save in a file IMAGEN.PLT

A auxiliary port output
P { queue } print on a queue LA100

LA100 S { file } save in a file LA100.PLT

A auxiliary port output
P { queue } print on a queue LN03

LN03+ S { file } save in a file LN03.PLT

A auxiliary port output
P { queue } print on a queue RDGL

ROLAND S { file } save in a file RDGL.PLT

A auxiliary port output

Table 2.43: HARDCOPY command print and save codes for non-bitmap devices

129

Commands

printers. Do NOT use compressed format output on other than these devices.

Examples

Suppose that the Hewlett-Packard pen plotter output has been enabled, with the command
DEVICE HPPLOTTER. To print the graphics directly on queue QUENAME, enter:

HARDCOPY P QUENAME

Suppose that the HP LaserJet bitmap has been enabled with the DEVICE HPLASERJET com-
mand. To save the graphics in a file, FILE.PLT, for inclusion in a TEXor LATEXdocument in
justified format, enter:

HARDCOPY TJ FILE.PLT

Suppose a PostScript printer has been enabled with the DEVICE POSTSCRIPT command. To
save the graphics in a PostScript file, FILE.PSC, to be printed later, enter:

HARDCOPY S FILE.PSC

HELP
Syntax HELP { string ... }

HELP\LIBRARY libname { string ... }
Qualifiers \PAGE, \LIBRARY
Defaults \NOPAGE, \NOLIBRARY

For VMS users:

The HELP command invokes the on-line help facility. To get information about a specific
topic, include it as the string with the HELP command. To leave help quickly, type control-z.

Paging the output

By default, output to the screen is not displayed by pages, but output to the screen contin-
ues until the information display ends. If the \PAGE qualifier is used, output to the screen is
paged, that is, the output stops after each screen full of information is displayed.

User defined library

The HELP\LIBRARY command allows the user to specify a help library other than the default
PHYSICA help library. The full filename specification is required, that is:

130

Commands

disk:[directory]libname.hlb

The \LIBRARY qualifier can be used with the \PAGE qualifier.

For UNIX users:

The HELP command invokes an on-line help facility that mimics the built-in VMS help facility.
To browse the help information, enter just the HELP command. To get information about a
specific topic, include it as the string with the HELP command, but then no subtopics will
be displayed. To leave help quickly, type control-d.

INPUT
Syntax INPUT x1 { x2 . . . x8 }

INPUT\MATRIX m nr nc

Qualifier \MATRIX
Default create vectors

The INPUT command is used to interactively enter data, from the terminal keyboard, into
vector(s) or into a matrix. The default is to create vectors.

If the INPUT command is used in a script file, input will still be expected from the terminal
keyboard.

Vectors

Syntax INPUT x1 { x2 . . . x8 }

Enter one set of numbers per line, that is, enter x1[i] . . . x8[i] all on one line. The maxi-
mum number of vectors that can be input with one command is 8.

VMS: Input is terminated by typing control-z.

UNIX: Input is terminated by typing control-d.

Making corrections

If you want to change a previous entry, say the nth entry, enter In before the new entries. All
entries must be present. For example, suppose you are creating three vectors, X, Y, and Z,
and when you are entering the fourth set of numbers, you realize you have made a mistake
in the second entry. The following example shows how you could correct the mistake.

131

Commands

PHYSICA: INPUT X Y Z

Enter 3 numbers, (control-Z ends)

(1) >> 10 .1 1000

(2) >> 20 2 2000

(3) >> 30 .3 3000

(4) >> I2 20 .2 2000

(4) >> 40 .4 4000

(5) >> 50 .5 5000 <control-z>

PHYSICA:

and then you will have the following vectors:

X = [10; 20; 30; 40; 50]

Y = [0.1; 0.2; 0.3; 0.4; 0.5]

Z = [1000; 2000; 3000; 4000; 5000]

Matrix

Syntax INPUT\MATRIX m nr nc

The INPUT\MATRIX command is used to interactively enter data, from the terminal keyboard,
into a matrix. A new matrix will be created.

The number of rows, nr, and the number of columns, nc, must be entered. Enter one row
of the matrix, that is, nc numbers, per line. Only nr lines will be requested.

Making corrections

If you want to change a previous row, say the nth row, enter In before the new entries. All
entries must be present. For example, suppose you are creating a matrix, M, with 5 columns
and 3 rows. When you are entering the third set of numbers, you realize you have made a
mistake in the second set. The following example shows how you could correct the mistake.

PHYSICA: INPUT\MATRIX M 3 5

Enter 5 numbers

(row 1) >> 1 2 3 4 5

(row 2) >> 6 7 8 9 10

(row 3) >> I2 6 7 -8 9 10

(row 3) >> 11 12 13 14 15

PHYSICA:

132

Commands

and you will have the following matrix:

M =

 1 2 3 4 5
6 7 −8 9 10

11 12 13 14 15


INQUIRE

Syntax INQUIRE ‘prompt string’ v1 { v2 . . . }
Defaults if vI does not exist, it is assumed to be a scalar

Examples INQUIRE ‘Enter a value >>’ A

INQUIRE ‘Enter YES or NO >>’ TXT

The INQUIRE command is intended for use in script files. The prompt string is written to the
monitor screen and you are expected to enter the correct number and type of values, cor-
responding to the variable names following the prompt string. You can inquire for scalars,
vectors, matrices, or string variables.

If just a carriage return is typed in response to an INQUIRE prompt, the variable(s) that are
being requested will keep their current value(s). This allows you to have default values for
inquired variables.

If variable vI does not exist, it is assumed to be a scalar. If vI is a scalar, the user is expected
to enter a literal constant or a scalar. For example,

S=3 ! default value is 3

INQUIRE ‘Enter scalar >> ’ S

If vI is a vector, the user is expected to enter a set of values or a vector. For example,

V=[1:10] ! default values

INQUIRE ‘Enter vector >> ’ V

If vI is a matrix, the user is expected to enter a matrix. For example,

MATRIX M 5 5

INQUIRE ‘Enter matrix >> ’ M

If vI is a string variable, the user is expected to enter a literal string or a string variable. For
example,

A=‘yes’ ! default is yes

133

Commands

INQUIRE ‘Enter Yes or No >> ’ A

Examples

Suppose you want a script that asks the user a question requiring a yes or no response, with
the script branching depending on the response. Following is an example of this procedure.
Note that the response is converted to uppercase, since it must be in uppercase for the
checks to find a YES or NO.

DUM=‘yes’ ! make a dummy string variable

ASK: ! a label

INQUIRE ‘Enter YES or NO >>’ DUM ! get a response from the keyboard

IF EQS(UCASE(DUM),‘YES’) THEN ! check if YES

...

...

GOTO NEXT ! it was YES, so continue

ENDIF

IF EQS(UCASE(DUM),‘NO’) THEN ! check if NO

...

...

GOTO NEXT ! it was NO, so continue

ENDIF

DISPLAY ‘Invalid response: expecting YES or NO’

GOTO ASK: ! go back and ask again

NEXT: ! continue with the script

...

...

In the following example, the first command defines X to be a vector of length 1. The second
command defines S to be a scalar. The third command creates a scalar N and assigns it the
value 5.

VECTOR X 1

SCALAR S

N = 5

INQUIRE ‘Enter a vector with ’//RCHAR(N)//‘ entries and a scalar >>’ X S

The INQUIRE command will write out the prompt and wait for you to type in a vector set and
a single value. For example:

Enter a vector with 5 entries and a scalar >> [0;1;3.5;-4;100] 10.3

134

Commands

JOURNAL
Syntax JOURNAL filename

Qualifiers \APPEND, \MACRO
Defaults \NOAPPEND, \NOMACRO, initial journal file = PHYSICA.JOURNAL

A journal file is a record of all user input to PHYSICA, as well as all non-graphics output,
such as error messages, from PHYSICA. The initial state is to have the journaling of inter-
active input and output on, journaling of script file input and output off, and the initial
journal file name is PHYSICA.JOURNAL.

Journaling can be disabled by entering the DISABLE JOURNAL command. This closes the file.
Enter ENABLE JOURNAL to open the last journal file that was open, and to append subsequent
journal entries to this file. To also enable the writing of script file input and output to the
journal file, use the ENABLE JOURNAL\MACRO command.

To just disable journaling of script file input and output, use the DISABLE JOURNAL\MACRO
command.

To open a new journal file, use the JOURNAL command. To open with append, use the \APPEND
qualifier.

To find out whether a journal file is currently open, and if so, to display the name of the
current journal file, enter the STATUS command.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE myjournal

physica

journal $FILE

The environment variable can be just the first part of the filename, for example,
setenv FILE my

physica

journal $FILEjournal

KEYWORD
Syntax KEYWORD

135

Commands

The KEYWORD command enters an interactive mode, where you type a keyword and the online
help locations of that keyword are displayed. The help locations are separated by blanks,
while vertical bars, |, separate the levels within each location. For example, typing the
keyword shell will display the help locations DISABLE|SHELL ENABLE|SHELL. You could then
find information on shell by typing HELP DISABLE SHELL or HELP ENABLE SHELL.

The wildcard is *. An initial wildcard and/or a final wildcard are allowed. For example,
inc displays inch inches nlxinc nlyinc nsxinc nsyinc which are valid keywords; while
inc* displays inch inches.

Typing a TAB, or control-I, is similar to using a final wildcard, in that all matching keywords
are displayed, unless there is a unique keyword, and then the keyword is completed for you.

LABEL
Syntax LABEL { ‘textstring’ }
Qualifiers \XAXIS, \YAXIS
Defaults no x-axis label, no y-axis label

Examples LABEL\XAXIS TXTVAR[5][1:10]

LABEL\XAXIS

LABEL\YAXIS ‘This’//CHAR(39)//‘s a label with a single quote’

LABEL\YAXIS ‘<alpha,beta,^>10’

The LABEL command sets the automatic x- or y-axis text label. Use the \XAXIS qualifier to
set the x-axis label and use the \YAXIS qualifier to set the y-axis label.

The default font can be changed with the SET FONT command. To change the size of the
x-axis text label use the SET command, with either XLABSZ or %XLABSZ. To change the size of
the y-axis text label use the SET command, with either YLABSZ or %YLABSZ.

The x-axis automatic text label is drawn, centred, below the x-axis. The x-axis label is
drawn only if and when the x-axis is drawn. The y-axis automatic text label will be drawn,
centred, to the left of the y-axis. The y-axis label is drawn only if and when the y-axis is
drawn. The commands that draw axes are: GRAPH, CONTOUR, DENSITY, and REPLOT.

Turning off the labels

Entering the LABEL\XAXIS command without a parameter indicates that no automatic x-axis
text label is to be drawn.

Entering the LABEL\YAXIS command without a parameter indicates that no automatic y-axis
text label is to be drawn.

136

Commands

Example

The following script demonstrates automatic axis labeling, and produced Figure 2.17 on
page 137.

LABEL\XAXIS ‘<alpha,beta,gamma> X-AXIS TEST’

LABEL\YAXIS ‘Y-AXIS TEST <sigma,^>2<_> > 5’

GRAPH\AXESONLY

Figure 2.17: Automatic axis labels using the LABEL command

LEGEND
Syntax LEGEND ON | OFF

LEGEND FRAME ON | OFF | { xlo ylo xhi yhi }
LEGEND TRANSPARENCY ON | OFF

LEGEND AUTOHEIGHT ON | OFF

LEGEND NSYMBOLS n

LEGEND TITLE { ‘title string’ }
LEGEND STATUS

Defaults legend off, frame on, transparency on, autoheight on,
\PERCENT, (xlo,ylo) = (55,22.5), (xhi,yhi) = (78,45),
number of plotting symbols = 1, no title

If LEGEND is ON, a legend entry is drawn into a legend frame box when the GRAPH command is
entered. A legend entry consists of a short line segment with plotting symbols, and a string.

137

Commands

The string portion of a legend entry

If LEGEND is ON, the string portion of a legend entry is expected as the first parameter of the
GRAPH command. For example:

GRAPH ‘legend entry’ X Y

If LEGEND is OFF, a string entered as a first parameter with the GRAPH command is ignored.

The string may contain formatting commands. See the PLOTTEXT command, page 165, for
information on text formatting.

If LEGEND is ON then the data variables are not necessary, that is, you can enter: GRAPH\NOAXES
‘Legend entry’ and an entry is made to the legend but no curves are plotted.

Legend entry text height

Syntax LEGEND AUTOHEIGHT ON

LEGEND AUTOHEIGHT OFF

Default ON

By default, the height of the string portion of the legend entry will be determined so that
the string fits ”lengthwise” in the legend frame box. If you want to specify the height of the
string portion of the legend entry, enter the LEGEND AUTOHEIGHT OFF command. The default
is AUTOHEIGHT ON. When AUTOHEIGHT is OFF, the text height will be the current value of TXTHIT,
as specified with the SET command. You can also include the text height as a text formatting
command, <Hnn.n> or <Hnn.n%>, within the string.

Do not include a text height formatting command when AUTOHEIGHT is ON. This will cause
infinite looping, as the program attempts to adjust the text height to fit within the frame.

The line segment portion of a legend entry

The line segment portion of a legend entry is drawn with the same line type and plotting
symbol as the corresponding data curve.

Plotting symbols

Syntax LEGEND NYSMBOLS n

Default number of symbols = 1

The number of plotting symbols drawn on the line segment can be specified by using the

138

Commands

NSYMBOLS keyword. The default is n = 1, to plot one symbol. If one symbol is drawn, it will be
in the middle of the line segment. If more one symbol is drawn, they will be equally spaced
along the line segment, with one symbol at each end. If no symbols are drawn, the line
segment will still be drawn. If no symbols are plotted on the data curve, no symbols will
appear in the legend entry. Only the first n plotting symbols used for the data curve will be
drawn in the legend entry.

Plotting symbols for the data curve are chosen with the SET PCHAR command.

The frame box

Syntax LEGEND FRAME { units } { xlo ylo xhi yhi }
LEGEND FRAME ON

LEGEND FRAME OFF

Defaults ON, \PERCENT, (xlo,ylo) = (55,22.5), (xhi,yhi) = (78,45)

Use the FRAME keyword to control the legend frame box. Legend entries are drawn starting
from the top of the frame box. No clipping is done at the edges of the frame box, so entries
may appear outside the frame box.

If LEGEND FRAME OFF is entered, the outline of the frame box will not be drawn. The default
is ON, that is, to draw the legend frame box outline. If neither OFF nor ON is entered, it is
assumed that you are entering the corner coordinates of the frame box.

Coordinates

The coordinates of the lower left corner of the legend frame box are (xlo,ylo), and the
coordinates of the upper right hand corner are (xhi,yhi). The default lower left corner is
(55,22.5), and the default upper right corner is (78,45), expressed as percentages of the
current window.

If any of xlo, ylo, xhi, and yhi are not entered, the graphics cursor will be used to choose
the missing coordinates.

Units

The frame box coordinates may be expressed in three types of units, which are chosen by
command qualifier. The default is \PERCENT. See Table 2.44 for a listing of the qualifiers and
their interpretations.

For example, if the \PERCENT qualifier is used, then a location of (50, 50) represents the centre
of the current window. If the \WORLD qualifier is used, the coordinates are in units of the

139

Commands

qualifier interpretation of the coordinates

\PERCENT percentages of the current window, as chosen with the WINDOW command.

\GRAPH graph units, that is, the units defined by the minimum and maximum
values for the last graph drawn. If no graph has been drawn yet, the
defaults are −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1

\WORLD centimeters or inches, as chosen with the SET UNITS command

Table 2.44: Types of units recognized by the LEGEND command

world coordinate system, the plotting units. The default world coordinate system units are
centimeters. See the DEVICE command for tables showing the dependence of plotting units
on the graphics hardcopy output device.

Transparency

Syntax LEGEND TRANSPARENCY ON

LEGEND TRANSPARENCY OFF

Default ON

When the legend entries are drawn originally, the heights of the strings will likely all be
different if AUTOHEIGHT is ON, and whatever is behind the frame box will be visible in the
frame box. That is, the legend will be transparent. If the REPLOT command is entered, all
the strings will be redrawn at the same height, using the minimum height of all the legend
entries, and, if TRANSPARENCY is OFF, the background of the frame box will be erased. The
default is TRANSPARENCY ON.

Note: This background erasing only applies to the monitor screen and to bitmap graphics
hardcopy output, such as HP LaserJet output.

Remember, the legend frame box background will only be erased when a REPLOT command
is entered.

Moving or resizing the legend frame box

The frame box can be moved and/or resized. First enter the LEGEND FRAME command to
specify a new frame box, and then enter the REPLOT command.

The legend title

140

Commands

Syntax LEGEND TITLE { ‘title string’ }
Default no title

The default is to have no legend title. If there is a legend title, it is drawn just above the
top of the frame box. The height of the legend title will be the current value of TXTHIT, as
specified with the SET command. Text formatting commands may be included in the title
string.

The legend title can be turned off by entering the LEGEND TITLE command without a title
string.

Status

Syntax LEGEND STATUS

Use the STATUS keyword to display, on the monitor screen, the current status of the legend
attributes.

Example

The following script produces figure 2.18 on page 143.

141

Commands

! first define the elements of a array string variable

T[1]=‘sin(<FITALIC.3>x<FTSAN>)<FITALIC.3>e<fITALIC.3,^>x<FTSAN>/5’

T[2]=‘<FITALIC.3>x<FTSAN>/2-5’

T[3]=‘(<FITALIC.3>x<FTSAN>/3.5)<^>2<_>+3<FITALIC.3>x<FTSAN>/3.5’

T[4]=‘cos(<FITALIC.3>x<FTSAN>)<FITALIC.3>e<FTSAN,^>-<FITALIC.3>x<FTSAN>/9’

X = [0:4*PI:.5] ! generate some data

LEGEND ON ! turn legend on

LEGEND FRAME 20 50 50 80 ! define the legend frame

LEGEND FRAME ON ! draw the frame box outline

LEGEND TITLE ‘<FROMAN.SERIF>Test legend’

SET LINTYP 1 ! draw the first data curve

SET PCHAR 1 ! plotting symbol

LEGEND NSYMBOLS 1 ! one plotting symbol in legend entry

GRAPH T[1] X SIN(X)*EXP(X/5) ! T[1] is the legend string entry

SET LINTYP 10 ! draw the second data curve

SET PCHAR 2 ! plotting symbol

LEGEND NSYMBOLS 2 ! 2 symbols in legend entry

CURVE T[2] X X/2-5 ! T[2] is the legend string entry

SET LINTYP 5 ! draw the third data curve

SET PCHAR 3 ! plotting symbol

LEGEND NSYMBOLS 3 ! 3 symbols in legend entry

CURVE T[3] X (X/3.5)^2+3*X/3.5 ! T[3] is the legend string entry

SET LINTYP 7 ! draw the fourth data curve

SET PCHAR 13 ! plotting symbol

LEGEND NSYMBOLS 4 ! 4 symbols in legend entry

CURVE T[4] X COS(X)*EXP(-X/9) ! T[4] is the legend string entry

REPLOT ! replot data on common scale

LINE
Syntax LINE

LINE\XYOUT x y { pen_code { line_type { colour { thickness }}}}

LINE x y { pen_code { line_type { colour { thickness }}}}

Qualifiers \GRAPH, \PERCENT, \WORLD, \XYOUT

Defaults \PERCENT, interactive drawing

This command draws line segments. If no parameters are entered with the LINE command,
the graphics crosshair is used to draw interactively. If the \XYOUT qualifier is used, the
graphics crosshair is used to draw the line segments, and the parameters are assumed to
be output vectors in which to store the line segment coordinates and other attributes. If the
\XYOUT qualifier is not used, and vectors are entered as parameters, then the input vectors

142

Commands

Figure 2.18: An example illustrating the graph LEGEND

are assumed to contain coordinates and other attributes for the line segments, and the
graphics crosshair is not used.

Plotting units

If the \PERCENT qualifier is used, then the values of the coordinates will be interpreted as
being in percentages of the current window, for example, (50, 50) represents the centre of
the current window. This is the default if no units qualifier is used.

If the \GRAPH qualifier is used, then the values of the coordinates will be interpreted as being
in graph units, that is, the units defined by the minimum and maximum values for a graph.
These units are taken from the last graph drawn, or, if no graph has been drawn yet, they
are the default values: −1 <= x <= 1 and −1 <= y <= 1.

If the \WORLD qualifier is used, then the values of the coordinates will be interpreted as being
in centimeters or inches, depending on the units type chosen with the SET UNITS command.
The default world units are centimeters.

X Windows

When running under X Windows, mouse button two toggles the continuous display of the
graphics cursor location. The PHYSICA keyword CUNITS is the units type for these numbers.
If CUNITS = WORLD, the numbers depend on the current units type, either CM or IN, as chosen
with SET UNITS. If CUNITS = GRAPH, the numbers displayed depend on the current graph axis

143

Commands

scales. If CUNITS = PERCENT, the numbers depend on the current window.

Non-interactive drawing

Syntax LINE x y { pen_code { line_type { colour { thickness }}}}

Defaults pen_code = [3; 2; 2; ...], line_type = [1; 1; 1; ...],
colour = [1; 1; 1; ...], thickness = [1; 1; 1; ...]

Vectors x and y should contain the x and y coordinates for the line segments’ end points.
Optional vector pen_code should contain the pen codes, either 2 (connect) or 3 (disconnect)
for each point. Optional vector line_type should contain the line type codes (between 1 and
10) for the line segments. The line types are described in the SET LINE command section.
Optional vector colour should contain the colour codes (between 1 and 8). Optional vector
thickness should contain the the line thickness for bitmap and PostScript hardcopy output.

144

Commands

key action

Q quit the LINE command

M display the command menu

/ clear the alpha-numeric terminal screen
This has no affect on the graphics

U start a line segment
A mark will be drawn at the current location, but is not entered into the plot file, or into
an open EDGR file, it is just there for reference

D end a line segment
A line segment is drawn from the last location that was chosen with the U or D key to the
current location. This line segment will be entered into the plot file, and into an open
EDGR file

T try a line segment
A line segment is drawn from the last location that was chosen with the U or D key to the
current location. This line segment will not be entered into the plot file, or into an open
EDGR file. If the line segment is acceptable, do not move the crosshair, and type the D

key. If the line segment is not acceptable, simply move to another location and try again;
this line segment will then be erased.

L change the line type
The current line type code is displayed and a new code can be entered. No carriage return
is necessary after the new code is entered.
The line type should be between 1 and 10, to choose number 10, enter an A. The line
types are described in the SET LINE command section. The default line type is 1.

C change the colour
The current code is displayed and a new code can be entered. No carriage return is
necessary after the new code is entered.
1=white, 2=red, 3=green, 4=blue, 5=yellow, 6=cyan, 7=magenta, 8=white

N change the units
The current units code is displayed and a new code can be entered. No carriage return is
necessary after the new code is entered.
1 - percentages of the world coordinate system
2 - world coordinate system units (centimeters or inches)
3 - graph units
4 - percentages of the current window

X toggle the display of the x and y coordinates at the bottom of the terminal screen. This is
for user reference only. By default, the x and y coordinates are not displayed.

Table 2.45: The LINE command interactive menu

145

Commands

LIST
Syntax LIST x1 { x2 . . . x5 } { n1 { n2 { n3 }}}

LIST\MATRIX matrix

LIST\MATRIX\FORMAT matrix (format)

Qualifiers \PAGE, \MATRIX, \FORMAT, \COUNTER
Defaults vector(s) expected, n1 = 1, n3 = 1, not paged, format = 1PD13.4, \COUNTER
Examples LIST X Y Z

LIST X Y Z 1 10 2

LIST\PAGE X[10:#] Y Z

LIST\MATRIX\FORMAT M[2:11,5:20:2] (6(F10.3,2X))

By default, the LIST command displays, on the monitor screen, a listing of the specified
vectors, xI[n1:n2:n3], with a counter displayed on the left under the heading #. n1 defaults
to 1 and n3 defaults to 1 if not entered. If n2 is not entered, all of the elements of each vector
are listed. If the counter is not desired, use the \-COUNTER qualifier.

Paging the output

The \PAGE qualifier only applies to listings of vectors.

If the \PAGE qualifier is used, the listing will be paged, that is, after every twenty lines have
been displayed, you will be asked if you want to continue or quit. Type the Q key to quit.
Type any other key to continue the listing. No carriage return is necessary.

Listing a matrix

Syntax LIST\MATRIX matrix

LIST\MATRIX\FORMAT matrix (format)

Qualifiers \MATRIX, \FORMAT
Defaults format = 1PD13.4

The LIST\MATRIX command displays a matrix on the monitor screen. The format defaults
to 1PD13.4. Use the \FORMAT qualifier to indicate that a user specified format has been
entered. The format must be enclosed in parentheses, (and). Any standard FORTRAN

format is valid, but only REAL variables can be displayed. Do not use INTEGER, LOGICAL, or
CHARACTER formats.

146

Commands

LOAD
Syntax LOAD filename{,libraries}
Examples LOAD MYFILE

LOAD MYFILE,LIB1/LIB,LIB2/LIB

The LOAD command is only available under VAX/VMS.

The LOAD command dynamically loads and links an object module of a user written subrou-
tine or a user written REAL*8 function. The filename is the compiled object module.

If a function is loaded, it can only be used in expressions, via the name USERN. If a subroutine
is loaded, it can only be used with the CALL command, with no specified name.

If your subroutine or function requires other routines, either object modules files or ob-
ject module libraries, just include the other file names and/or library names in the LOAD

command. For example:

LOAD somename,OTHER1.OBJ,DISK:[DIR]LIBRARY/LIB

Restrictions

• The complete linked module has a size limit of 256, 000 bytes (500 blocks).

• Only one object module can be loaded at any time. A subsequent LOAD command will
simply replace the old module with the new.

Arguments

A user written function can have up to 20 REAL*8 arguments, all of which must be scalars.

A user written subroutine can have up to 15 arguments, which can be a mixture of con-
tstants, scalars, vectors, matrices, quote strings, and string variables. The numeric argu-
ments must be REAL*8.

The user must call the loaded subroutine or function with the correct number and type of
arguments, else an addressing exception will result, and the program may be corrupted.

Subroutines

The name of a subroutine to be loaded dynamically via the LOAD command is irrelevant and
can be anything the user desires. A user written subroutine must have the following form:

147

Commands

SUBROUTINE subname(IATYPE,ICODE,IUPDATE,IER,arg1,arg2,...)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

Other than the required arguments, IATYPE, ICODE, IUPDATE, and IER, there may be from
1 to 15 arguments in the subroutine argument list. The user is responsible for insuring
that the correct number and type of arguments are used when actually employed with the
CALL command. The parameters used in the CALL command, argI, which are passed as
arguments to the subroutine, may be constants, scalars, vectors, matrices, quote strings,
or string variables. The number of arguments and the type of argument must agree with the
actual subroutine.

All of the numeric aguments, except for the required integer arguments IATYPE, ICODE,
IUPDATE, and IER, must be REAL*8. A string argument is passed as a LOGICAL*1 array.

Note: The integer arguments IATYPE, ICODE, IUPDATE, and IER should not be mentioned as
parameters with the CALL command.

See the file: PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.FOR for some subroutine examples.

IATYPE

IATYPE is an INTEGER*4 array, length 15, that indicates the type of each of the subroutine
arguments argI. See Table 2.4 on page 15.

ICODE

ICODE is an INTEGER*4 array, dimensioned 3 by 15, that indicates the dimension of each of
the subroutine arguments argI. Never extend variables beyond their original size as passed
to the subroutine. If a variable is shortened inside the subroutine, the subroutine must
update the new dimensions in the ICODE array, so that PHYSICA can reduce the variable
dimensions appropriately. See Table 2.5 on page 16.

The ICODE array will be filled by PHYSICA with the current dimensions of the arguments, so
the user written subroutine can check and, if necessary, update the dimensions of any of
the subroutine arguments.

Never extend vectors, matrices, or string variables beyond their original sizes as passed to
the user written subroutine. If a variable’s size is shortened inside the subroutine, then the
subroutine must update the ICODE array so that these variable dimensions can be reduced
internally by PHYSICA upon return from the subroutine.

148

Commands

IUPDATE

IUPDATE is an INTEGER*4 array, length 15, that the user routine sets to indicate to PHYSICA
whether one of the argI arguments has been modified inside that subroutine.

The default value for IUPDATE(i) is 0. Set IUPDATE(i) to 1 to indicate that the ith argument,
argI, has been modified. Never extend variables beyond their original size as passed to the
subroutine. If a variable is shortened inside the subroutine, the subroutine must update
the new dimensions in the ICODE array, so that PHYSICA can reduce the variable dimensions
appropriately.

IER

IER is an INTEGER*4 variable that defaults to the value 0. Your routine can set IER to indicate
to PHYSICA that an error has occured in the routine. Arithmetic errors, such as division by
zero, over/underflow, will be asynchronously trapped. If other error tests are to be done
inside the subroutine, the user flags the error by setting IER = -1 before the RETURN. If the
CALL command was executed from within a script, this error flag causes PHYSICA to abort
that script and control is passed back to the keyboard.

Numeric arguments

All the numeric arguments of your subroutine, except for the integer arguments IATYPE,
ICODE, IUPDATE, and IER, must be REAL*8. A string argument is passed as a LOGICAL*1 array.
Dimension numeric array arguments with length 1, for example:

REAL*8 X(1), Y(1), Z(1)

String arguments

All the string arguments of your subroutine must be LOGICAL*1, and should be dimensioned
1, for example:

LOGICAL*1 LFILE(1)

You can convert this to a string, say, CHARACTER*80 CFILE, using the following method:

LENF = ICODE(1,i)

DO I = 1, LENF

CFILE(I:I) = CHAR(LFILE(I))

END DO

149

Commands

where LFILE is the ith argument.

Accessing matrix data

If a matrix is passed as an argument to a user written subroutine, the elements of the matrix
can only be accessed using a calculated index. To access element m[i,j] of the matrix m,
use m[i+(j-1)*nrows] for i=1, ..., nrows and j=1, ..., ncols.

Subroutine example

Consider the following subroutine, in file LOAD1.FOR, for calculating the cumulative product
of the elements of a vector. Note the use of the mandatory integer arrays for checking input
parameter types and sizes, for indicating which variables have changed, and for flagging
errors.

150

Commands

SUBROUTINE LOAD1(IATYPE,ICODE,IUPDATE,IER,X,Y)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 X(1), Y(1)

C This subroutine requires two vector arguments, with the length of Y

C greater than or equal to the length of X, and calculates the cumulative

C product of X and stores the results in Y.

C First check for input errors

IF(IATYPE(3) .NE. -99)THEN

WRITE(*,*)’ ERROR: too many arguments for loaded subroutine’

IER = -1

RETURN

END IF

IF(IATYPE(2) .EQ. -99)THEN

WRITE(*,*)’ ERROR: not enough arguments for loaded subroutine’

IER = -1

RETURN

END IF

IF(IATYPE(1) .EQ. -99)THEN

WRITE(*,*)’ ERROR: not enough arguments for loaded subroutine’

IER = -1

RETURN

END IF

IF(IATYPE(2) .NE. 1)THEN

WRITE(*,*)’ ERROR: second argument is not a vector’

IER = -1

RETURN

END IF

IF(IATYPE(1) .NE. 1)THEN

WRITE(*,*)’ ERROR: first argument is not a vector’

IER = -1

RETURN

END IF

IF(ICODE(1,2) .LT. ICODE(1,1))THEN

WRITE(*,*)’ ERROR: second vector length < first vector length’

IER = -1

RETURN

END IF

IUPDATE(2) = 1 ! indicates the second argument is changed

Y(1) = X(1)

DO I = 2, ICODE(1,1)

Y(I) = Y(I-1)*X(I)

END DO

RETURN

END

151

Commands

To compile this source code, from within PHYSICA, creating an object module, load it, and
then to make use of it, enter:

$FORTRAN LOAD1

LOAD LOAD1

X=[1:20]

VECTOR XPROD 20

CALL X XPROD

SCALAR\DUMMY J

LIST X XPROD RPROD(X[J],J,1:20) ! RPROD function is the same as LOAD1

Functions

A user written function should have the following form:

REAL*8 FUNCTION funcname(ARG1,ARG2,...,ARGM)

REAL*8 ARG2,ARG2,...,ARGM

The name of the function, funcname, is irrelevant, since, when the function is used in an
expression, the name that is used must be USERN.

Note: There is no ICODE array for a function.

There may be from 1 to 20 arguments. All arguments must be REAL∗8 scalars.

All arguments of the function are scalars. When the function is used in an expression, you
can use vectors or matrices as arguments since the expression evaluator will process the
function one element at a time.

Functions are not used with the CALL command. A user written function can be used wher-
ever a function can be used in an expression.

Arithmetic errors, such as division by zero, overflow, or underflow, will be asynchronously
trapped.

Note: There are also eight user written functions which are loaded at run time via a share-
able image. These eight functions must be called USER1, USER2, . . . , USER8.

Function example

152

Commands

Suppose you want to use a function, ANYNAME, which has three arguments, x1, x2, and x3,
and returns the sum of x1 and x2 when x3 is within 1

2 of
√

x2
1 + x2

2, else it returns 0.

REAL*8 FUNCTION ANYNAME(X1,X2,X3)

IMPLICIT REAL*8 (A-H,O-Z)

ANYNAME = 0.0D0

IF(ABS(SQRT(X1**2+X2**2)-X3) .LT. 0.5D0)ANYNAME = X1+X2

RETURN

END

To compile this source code, from within PHYSICA, creating an object module, load it, and
then to make use of it, enter:

$FORTRAN ANYNAME

LOAD ANYNAME

=USERN(A,B,C)

A simple way to test the above function:

X=RAN([1:100])

Y=RAN([1:100])

Z=RAN([1:100])

U1=USERN(X,Y,Z)

U2=(X+Y)*(ABS(SQRT(X^2+Y^2)-Z)<.5)

and compare U1 with U2.

MAP
Syntax MAP\FIOWA global

MAP\FIOWABIG global

MAP\YBOS
MAP\HBOOK name

The MAP command is used to map onto shared memory or a global section. The FIOWA,
FIOWABIG, and NOVA options are only available under VAX/VMS. The YBOS option is only avail-
able under DEC AXP OSF/1. The HBOOK option is available for global sections under VAX/VMS
and for shared memory under all UNIX systems supported in the CERN libraries.

HBOOK

153

Commands

Syntax MAP\HBOOK name

A “snapshot” is taken of the data in the named global section or shared memory. To access
the most current data, re-enter the MAP command. The variables created are the same as
with the RESTORE\HBOOK command. Use the GLOBALS command under VAX/VMS to see the
global section names to which you have access. Refer to the RESTORE\HBOOK command for
information on what variables are created and their definitions.

FIOWA

Syntax MAP\FIOWA globalname

MAP\FIOWABIG globalname

The MAP\FIOWA and MAP\FIOWABIG commands only work under VAX/VMS.

The MAP command is used to map onto a global section. A “snapshot” is taken of the data in
the global section. To access the most current data, re-enter the MAP command. The vari-
ables created are the same as with the RESTORE\FIOWA command. Use the GLOBALS command
to see the global section names to which you have access. Refer to the RESTORE command
for information on what variables are created and their definitions.

Use the \FIOWABIG qualifier to access data sets made with the “big” version of FIOWA.

YBOS

Syntax MAP\YBOS

The MAP\YBOS command only works under Digital Unix.

The MAP command is used to map onto shared memory. A “snapshot” is taken of the data in
the shared memory. To access the most current data, re-enter the MAP\YBOS command. The
variables created are the same as with the RESTORE\YBOS and with the RESTORE\YBOS\DOTPLOT
commands. Refer to the RESTORE command for information on what variables are created
and their definitions.

MATRIX
Syntax MATRIX m1 { m2 . . . } nrow ncol

Examples MATRIX M 10 20

MATRIX M1 M2 M3 10 20

The MATRIX command creates new matrices or changes the dimensions of existing matrices.
Each mI will be a matrix with nrow rows and ncol columns.

154

Commands

If mI exists and is a matrix, then it will be either trimmed down to the specified dimensions
or zero filled to expand it.

If mI exists but is not a matrix, it will be destroyed first and then re-created as a zero filled
matrix with nrow rows and ncol columns. If mI does not exist, it will be created as a zero
filled matrix with nrow rows and ncol columns.

MONITOR
Syntax MONITOR { keyword }

The MONITOR command is used to select a graphics output monitoring device. Table 2.46
lists the currently recognized graphics display device types.

Selecting a monitor type necessitates clearing the graphics.

The MONITOR command should be entered before opening an EDGR file.

device keyword

Digital VT640 VT640

Digital VT241 VT241

Citoh CIT-467 CIT467

Tektronix 4010/12 TK4010

Tektronix 4107 TK4107

Plessey PT-100G PT100G

Seiko GR-1105 GR1105

X Window system X

Generic terminal GENERIC

Table 2.46: Monitor device types and corresponding keywords

Disabling/enabling graphics monitor output

Use the MONITOR OFF command to disable graphics output to the monitor. This can be useful
when executing command files which the user is confident of and does not need to monitor.
The hardcopy output is not affected, and is much quicker to obtain. To make the previous
monitor type again available, enter the MONITOR ON command. When ON is used, the monitor
type that was last in use will again be available for monitoring graphics.

The generic terminal driver

The generic terminal driver is a driver that is controlled by a data file that can be created
and modified by the user. The file contains lists of escape sequences for performing the

155

Commands

various terminal functions. Creating such a file for a given terminal may allow it to be used
with PHYSICA even though it is not explicitly supported.

This generic terminal data file name is passed to the program by a logical name, on VMS
systems, or by an environment variable, on UNIX systems. This name must be assigned
before you run the PHYSICA program.

VMS: $ DEFINE TRIUMF$GENTERM disk:[directory]filename

UNIX: % setenv TRIUMF_GENTERM <directory>filename

NEWS
Syntax NEWS

Use the NEWS command to display the latest information about changes in the program and
new features pertaining to the PHYSICA program.

ORIENTATION
Syntax ORIENTATION keyword

Default initial orientation = LANDSCAPE

The ORIENTATION command sets the graphics orientation. This requires that the graphics be
cleared, which is done automatically.

Note: The ORIENTATION command should be entered before opening an EDGR file with the
EDGR OPEN command.

There are two basic graphics orientations available.

keyword result

LANDSCAPE the world coordinate system large dimension is horizontal
PORTRAIT the world coordinate system large dimension is vertical

The initial orientation is landscape.

Landscape orientation means, for example, that text, with a text angle of zero, will be drawn
across the wide dimension of the plotter paper, or that a graph will appear with the x-axis
drawn across the wide dimension of the plotter paper.

Portrait orientation means, for example, that text, with a text angle of zero, will be drawn
across the narrow dimension of the plotter paper, or that a graph will appear with the x-axis

156

Commands

drawn across the narrow dimension of the plotter paper.

The world coordinate system

The world coordinate system plotting units depend four things:

• the graphics orientation;
• the graphics hardcopy device type;
• the graphics hardcopy device size;
• the type of graphics units.

Refer to the DEVICE command, page 47, for tables showing the world coordinate system
plotting units for the various devices.

The type of graphics units are chosen with the SET UNITS command.

PEAK
Syntax PEAK xout yout

PEAK\PNUM xout yout num

Qualifiers \PNUM
Defaults num = number of last drawn data curve, \NOPNUM

The PEAK command brings up the graphics cursor, and interacts with the user through a
keystroke menu, to find the minima or maxima of the current data curve drawn on the
screen. The coordinates of the peaks so found are stored in the specified variables xout

and yout. By default, the data curve referenced is the last one drawn. When the graphics
cursor is brought up, the program is waiting for input of a one or two character keycode.

Choosing the data curve

Syntax PEAK\PNUM xout yout num

Any one of the data curves currently on the screen may be specified explicitly by using the
\PNUM qualifier and including the scalar num. This scalar specifies which data curve, in the
order they were drawn, is to be selected.

X Windows

When running under X Windows, mouse button two toggles the continuous display of the
graphics cursor location. The PHYSICA keyword CUNITS is the units type for these numbers.
If CUNITS = WORLD, the numbers depend on the current units type, either CM or IN, as chosen

157

Commands

with SET UNITS. If CUNITS = GRAPH, the numbers displayed depend on the current graph axis
scales. If CUNITS = PERCENT, the numbers depend on the current window.

Code keys

Remember that this command assumes that a graph is present on the screen and none of
the plot characteristics have been changed after the graph was done. After entering the PEAK

command, the graphics cursor will appear. Typing a special code key results in a specific
action. See Table 2.47 on page 158.

key action

< moves the graphics cursor to the nearest peak (or dip) to the left

> moves the graphics cursor to the nearest peak (or dip) to the right

Pn defines criterion for peak finding to be n points monotonically increasing,
followed by n points monotonically decreasing. (default n= 1) Note: works
only with > when enabled, n= 0 disables this function

Fn fits least-squares parabola to 2*n+1 nearby points (n= 1, . . . , 9) and moves
the graphics cursor to the fitted peak location, e.g., F3 would peak fit the
surrounding 7 pts

Cn use the nth curve on the screen for subsequent codes

+ search for peaks (maxima)

- search for dips (minima). This is the default.

A amplitude required for peak (or dip). The user is prompted to enter a
limiting amplitude by returning two cursor y-coordinates (abort with Z)

Y set the y tolerance parameter. Move the cursor to the desired y value and
enter any character (abort with Z)

N disable the y tolerance flag

Z aborts entry of cursor coordinates for A,Y codes

D display the last peak position in graph coordinates

R record and save the last peak position

S save the last peak position and mark with a symbol

/ alphanumeric clear

Q quit

All other characters ignored

Table 2.47: Key codes for the PEAK command

158

Commands

PICK
Syntax PICK { xout yout { y1 { n1 } y2 { n2 } . . . }}

PICK\NPTS num { xout yout { y1 { n1 } y2 { n2 } . . . }}
Qualifiers \NPTS, \POLYGON, \MATRIX, \COUNTS, \MIN, \MAX, \DISPLAY
Defaults nI = I, \NONPTS, \NOPOLYGON, \NOMATRIX, \NOCOUNTS, \NOMIN, \NOMAX,

\DISPLAY

The default action for the PICK command is to pick points off a graph which is currently
displayed on the monitor screen, and to optionally save the values in output vectors, xout
and yout. It is assumed that a graph is present on the screen and none of the plot char-
acteristics have been changed after the plot was done. The graphics cursor is used, and
various actions depend on which key is typed from the keyboard. If xout and yout are not
entered, then no points will be saved.

X Windows

When running under X Windows, mouse button two toggles the continuous display of the
graphics cursor location. The PHYSICA keyword CUNITS is the units type for these numbers.
If CUNITS = WORLD, the numbers depend on the current units type, either CM or IN, as chosen
with SET UNITS. If CUNITS = GRAPH, the numbers displayed depend on the current graph axis
scales. If CUNITS = PERCENT, the numbers depend on the current window.

Specifying the number of points

Syntax PICK\NPTS num { xout yout { y1 { n1 } y2 { n2 } . . . }}

When the \NPTS qualifier is used, a scalar, num, is expected which will be the maximum
number of points that can be recorded with that command. When you have recorded num

points, the command automatically stops.

Code keys

Remember that this command assumes that a graph is present on the screen and none of
the plot characteristics have been changed after the graph was done. After entering the PICK

command, the graphics cursor will appear. Typing a special code key results in a specific
action. See Table 2.48.

If the \-DISPLAY qualifier is used, it turns off the message display for the default action,
which is picking points off a graph. This was added to clean up the terminal window for
those using the PICK command who do not desire to see the (x, y) locations or the menu.
These can be turned on inside the PICK command by typing the O key.

159

Commands

key action

D Digitize the current crosshair position and display the coordinates corre-
sponding to that location

R same as D, but also record the coordinates, in graph units, of that location
in the optional vectors xout and yout, record the interpolated value of
curve nI in vector yI. The number of recorded points is displayed

M same as R, but place a marker at the recorded location

C same as M, but also connect that point to the last recorded point with a
line segment

O turn on message display

Q quit picking points

Table 2.48: Key codes for the PICK command

Automatic digitizing of previously graphed data

It is possible to automatically digitize points off of previously drawn data curves by making
use of the optional parameters yI (vector name) and nI (number). Assuming that the total
number of curves that have been plotted on the currently displayed graph is at least nI, then
the coordinate corresponding to the horizontal (independent) location of the crosshair will
be interpolated on the nIth curve and saved in the vector yI. Linear interpolation is used,
and extrapolation is allowed. If the number nI is not present following the vector yI, then
nI defaults to I.

Examples

Suppose you have entered the following commands to draw three data curves:

GRAPH X1 Y1

GRAPH\NOAXES X2 Y2

GRAPH\NOAXES X3 Y3

To pick points off the three data sets, you could enter: PICK XP YP YP1 YP2 YP3 Move
the crosshair horizontally across the screen and type the R key at each location where you
desire a value. The vector YP1 will the the interpolated values from curve (X1,Y1), vector
YP2 will contain those from (X2,Y2), and vector YP3 will contain those from (X3,Y3). The
horizontal (independent) coordinates will be contained in the vector XP.

160

Commands

Suppose you have drawn the same three data sets as above, but you only want to pick
points off of the third curve drawn, that is, (X3,Y3). Enter: PICK XP YP YP3 3

Move the crosshairs horizontally across the screen and type the R key at the locations where
you desire values off the third curve. The vector YP3 will contain the interpolated values from
curve (X3,Y3), while the horizontal (independent) coordinates will be contained in vector XP.

Choosing the vertices of a polygon

Syntax PICK\POLYGON xp yp

The \POLYGON qualifier indicates that you are picking vertex points for a polygon. The only
difference between \POLYGON and the default, \NOPOLYGON, is that a final point is added when
you quit picking points. This final point will be the same as the first point picked, thus
closing the polygon.

Matrices

Syntax PICK\MATRIX nrow ncol mxout myout

PICK\MATRIX\MIN { xin yin } m mxout myout

PICK\MATRIX\MAX { xin yin } m mxout myout

Defaults xin = [1;2;3;. . .], yin = [1;2;3;. . .]

The PICK\MATRIX command allows you to pick points off the screen using the graphics cursor.
The x coordinates of the points are placed in matrix mxout, while the y coordinates are placed
in matrix myout. The user must specify the size of these output matrices in nrow, the number
of rows, and ncol, the number of columns. Both mxout and myout will be created with the
same dimensions.

This feature was included to be used in conjunction with the BIN2D\MATRIX command,
page 9.

Finding regional minima for a matrix

The PICK\MATRIX\MIN command allows you to choose circular regions on the screen, by
choosing centres and radii. The minimum value of the matrix, m, contained within this
circle will be found. The x coordinate of these minima will be output into matrix mxout, the
y coordinates will be output into matrix myout.

Finding regional maxima for a matrix

The PICK\MATRIX\MAX command allows the user to choose circular regions on the screen,
by choosing centres and radii. The maximum value of the matrix, m, contained within this

161

Commands

circle will be found. The x coordinate of these maxima will be output into matrix mxout, the
y coordinates will be output into matrix myout.

Determining regional counts for data sets

Syntax PICK\COUNTS { xin } ydata counts

PICK\COUNTS\MATRIX { xin yin } m counts

Defaults xin = [1;2;3;. . .], yin = [1;2;3;. . .]

The PICK\COUNTS command allows you to pick pairs of points off the screen. The number of
counts of the vector ydata inside that region will be displayed on the screen and stored in
the output vector, counts. The input vector, xin, should contain the x coordinates for the
data ydata. xin defaults to [1;2;3;...] if not entered.

Matrices

The PICK\COUNTS\MATRIX command allows you to pick rectangular regions off the screen. The
number of counts of the matrix inside each such region will be displayed on the screen and
stored in the output vector, counts. The input vectors, xin and yin, should contain the x and
y coordinates for the matrix, where xin corresponds to the columns and yin corresponds
to the rows, that is, m[i,j] has coordinates (xin[j],yin[i]). xin and yin both default to
[1;2;3;...] if not entered.

PIEGRAPH
Syntax PIEGRAPH w e f c o r { cx cy { a }}
Qualifiers \GRAPH, \PERCENT, \WORLD
Defaults \PERCENT, a = 0

The PIEGRAPH command draws piecharts. The first five parameters are vectors which define
each wedge of the pie. See Table 2.49.

Coordinates

The parameters r, cx, cy, and a should be literal constants or scalars. The radius of the pie
chart is r. The parameters cx and cy represent the x and y location of the centre of the pie
chart. The starting angle, in degrees, for the first wedge can be optionally specified with the
parameter a, which defaults to zero.

If either cx or cy is not entered, the graphics cursor will be used to choose that coordinate.
If both cx and cy are present, the graphics cursor will not be used.

162

Commands

w wedge values, in whatever units are applicable
the sum of all the wedge values is 100% of the pie chart

e explode values, as a percent of the radius
f filling codes

f = 0 then no filling
1 ≤ |f| ≤ 10 then fill with hatch pattern

11 ≤ |f| ≤ 99 then fill with dot pattern
f < 0 then the outline of the wedge is not drawn,

but hatch pattern |f| is drawn
c colour numbers for the wedge fill pattern
o colour numbers for the wedge outline

Table 2.49: The pie wedge defining characteristics

Units

The pie chart coordinates may be expressed in three types of units, which are chosen by
command qualifier. The default is \PERCENT. See Table 2.50 for a listing of the qualifiers and
their interpretations.

qualifier interpretation of the coordinates

\PERCENT percentages of the current window, as chosen with the WINDOW command.

\GRAPH graph units, that is, the units defined by the minimum and maximum
values for the last graph drawn. If no graph has been drawn yet, the
defaults are −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1

\WORLD centimeters or inches, as chosen with the SET UNITS command

Table 2.50: Types of units recognized by the PIEGRAPH command

For example, if the \PERCENT qualifier is used, then a location of (50, 50) represents the centre
of the current window. If the \WORLD qualifier is used, the coordinates are in units of the
world coordinate system, the plotting units. The default world coordinate system units are
centimeters. See the DEVICE command for tables showing the dependence of plotting units
on the graphics hardcopy output device.

Figure 2.19 illustrates how each individual pie wedge is drawn.

Pie wedge filling

163

Commands

Figure 2.19: Pie chart wedge definition

Each wedge of the pie can be filled with either a grey scale dot fill pattern or a hatch pattern.

Hatch patterns

A hatch pattern is composed of an angle and one to ten spacings. These spacings are simply
cycled through as the region is being filled, that is, a line is drawn inside the region at the
specified angle, then a parallel line is drawn at the first spacing, then another parallel line
is drawn at the second spacing, and so on for the number of spacings in that pattern. This
process is repeated until the region is filled. The hatch patterns can be redefined with the
SET HATCH command and displayed with the DISPLAY FILL command. There are ten hatch
patterns available.

Dot fill patterns

A dot pattern is of the form: uv, where the digit u is the increment number of dots to light up
horizontally, 1 ≤ u ≤ 9, and the digit v is the increment number of dots to light up vertically,
1 ≤ v ≤ 9. For example, a dot pattern of 34 means to light up every third dot horizontally
and every fourth dot vertically. If uv is negative, then the dots are erased instead of turned
on.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A “good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

164

Commands

Example

The following script produces Figure 2.20.

PIE_VALUES=[12.1;18.2;24.2;15.2;30.3]

EXPLODE=[10;10;0;25;0]

FILL=[8;33;44;7;22]

WCOLOUR=[1;2;3;4;5]

OCOLOUR=[5;4;3;2;1]

PIEGRAPH PIE_VALUES EXPLODE FILL WCOLOUR OCOLOUR 40 50 50

Figure 2.20: An example of a pie chart

PLOTTEXT
Syntax PLOTTEXT filename

The PLOTTEXT command is used to draw lines of formatted text that are read from a file.
Text formatting commands can be interspersed in the lines of text. The text formatting

165

Commands

commands are summarized in Table 2.51.

Every text formatting command must be bracketed by the command delimiters, except for
comment lines, which do not require the trailing command delimiter.

There is also a set of special reserved character names, see Figure 2.6 on page 61. These
special names must be enclosed by the command delimiters, for example, <alpha><beta>.
See the DISPLAY command on page 58 for information on how to display these special re-
served names.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE mytext

physica

plottext $FILE

The environment variable can be just the first part of the filename, for example,
setenv FILE my

physica

plottext $FILEtext

Comments

Command form: <! comment...

To insert comment lines in a formatted text file, that is, lines that will not be drawn on the
plot, include <! in positions one and two of a line. The rest of the line will be considered to
be a comment and will be ignored. This is useful for documenting formatted text files. For
example, this input:

<!

<! Use PORTRAIT orientation

<!

<H3%><S5%><FROMAN.SWISSL>This is an example of a formatted

<! text file with comments

produces this output:

Command delimiters

166

Commands

<! comment line

<Qx>,<Qxy> set command delimiters

<-> line continuation

< > insert blank line

<Hxx.x>, <Hxx.x%> text height

<Sxx.x>, <Sxx.x%> line spacing

<Mxx.x>, <Mxx.x%> left margin

, <Bn>, <Bn:m> grey scale or hatch fill

<Cn> colour

<Ffontname> text font

<JC>, <JCxx.x>, <JCxx.x%> centre

<JL>, <JLxx.x>, <JLxx.x%> left justify

<JR>, <JRxx.x>, <JRxx.x%> right justify

<Zxx.x>, <Zxx.x%> insert horizontal space

<_> sub-script mode

<^> super-script mode

 italics mode

<X> hexadecimal mode

<\b> macron (bar) under previous character

<\d> dot under previous character

<\^> circumflex over previous character

<\’> acute over previous character

<\‘> grave over previous character

<\"> umlaut over previous character

<\~> tilde over previous character

<\=> macron (bar) over previous character

<\.> dot over previous character

<\u> breve over previous character

<\v> v over previous character

<\H> dieresis (double quote) over previous char-
acter

Table 2.51: PLOTTEXT command text formatting commands

167

Commands

Command form: <Qx>, <Qxy>
Default delimiters: < and >

To set the leading command delimiter to x and the trailing command delimiter to y, include
<Qxy> in the formatted text. If a single character, x, is to be the leading and the trailing
command delimiter, simply include <Qx> in the formatted text. This is useful when the
current command delimiters are required as characters to be drawn.

Within a file, the command delimiters will remain as set until changed with another <Qx> or
<Qxy> command, but the command delimiters always default to < and > when the PLOTTEXT

command is entered.

For example, this input:

<FTSAN><H.6><S1.2>Change the delimiters from <Q\> < and >

to \Q<>\ \ and back to <Q\> < >\Q<>\

produces this output:

Continuation Lines

Command form: <->

To continue a line of formatted text onto the next line of a file, include <-> at the end of the
line. The next line of text will be drawn at the end of the line with the continuation. Blanks
at the end of the line with the continuation command, but before the <-> will be included,
as well as blanks at the beginning of the next line.

This is useful when you have so many text formatting commands in a line that the line
becomes very long. The maximum input line length is 255 characters, so it is necessary to
continue the line onto two or more input lines.

For example, this input:

<H0.5><S1>TH<FROMAN.FUTURA>IS <FROMAN.FASHON>is <->

<FROMAN.SERIF>a<FROMAN.SWISSL>n example <->

of a file

containing <->

continued lines

168

Commands

produces this output:

Inserting a blank line

Command form: < >

To insert a blank line in the plotted text use < >. Blank lines that are encountered in a
formatted text file are simply ignored.

For example, this input:

<H.6><S1.2>The following blank line is ignored.

There will be a blank line after this.< >

This line is preceded by a blank line.

produces this output:

Character height

Command form: <Hxx.x>, <Hxx.x%>
Default height: the current value of TXTHIT

To set the character height to xx.x units, include <Hxx.x> in the formatted text. This applies
to subsequent text. The units, either centimeters or inches, are defined by the SET UNITS

command. To set the height as a percentage of the height of the current window, that is,
YUWIND - YLWIND, use <Hxx.x%>.

Within a file, the text height will remain as set until changed with another <Hxx.x> or
<Hxx.x%> command, but the text height always defaults to the current value of TXTHIT when
the PLOTTEXT command is entered.

For example, this input:

169

Commands

<FROMAN.SWISSL><H0.5><S2>C<H.6>h<H.7>a<H.9>r<->

<H1.1>a<H1.4>c<H1.7>t<H1.4><->

<H1.1>e<H.9>r <H.7>h<H.6>e<H.5>ight can be

<H1>changed <H2>at <H1>any <H.5>time,

but care <H1>must<H.5>

<S2>be taken with the <H1>line<H.5> spacing

produces this output:

Line spacing

Command form: <Sxx.x>, <Sxx.x%>
Default line spacing: 1.5× TXTHIT

To set the line spacing to xx.x units, include <Sxx.x> in the formatted text. The units, either
centimeters or inches, are defined by the SET UNITS command. To set the line spacing as a
percentage of the height of the current window, that is, YUWIND - YLWIND, use <Sxx.x%>.

The line spacing is the distance from the bottom of the previous text line to the bottom of
the current text line. This spacing is the automatic vertical spacing to be used between text
lines, but line spacing takes place immediately, so that each character in a text line may be
drawn at any vertical distance, always measured from the bottom of the previous text line.

Within a file, the line spacing will remain as set until changed with another <Sxx.x> or
<Sxx.x%> command, but the line spacing always defaults to 1.5× the current value of TXTHIT
when the PLOTTEXT command is entered.

For example, this input:

170

Commands

<H0.5><S.8>Line spacing <S1.2>can be <S.8>changed

at any time in a line<S1.4>

and can be <S1.6>positive <S-.4>or negative<S1.4>

it may be set to zero

<S0><JL10>to continue a line<S1.2>

But be careful of setting to zero<S0>

at the end of a line

produces this output:

Left margin

Command form: <Mxx.x>, <Mxx.x%>
Default left margin: 0.01× (XUWIND − XLWIND)

To set the left margin to xx.x units, include <Mxx.x> in the formatted text. The units, either
centimeters or inches, are defined by the SET UNITS command. To set the left margin as a
percentage of the width of the current window, that is, XUWIND - XLWIND, use <Mxx.x%>.

The left margin applies to the subsequent text lines. It does not apply to the current line.

Within a file, the left margin will remain as set until changed with another <Mxx.x> or
<Mxx.x%> command, but the left margin always defaults to 0.01× the width of the current
window.

For example, this input:

<H0.5><S1.2>An example using the left margin:

<M2.5>Margin changes take effect

on the next line, except it does

<JL3>affect justification immediately

<M3.5><JL2>affect justification immediately<M1>

as you can see

171

Commands

produces this output:

Bolding

Command form: <Bn>, <Bn:m>,
Default: no bolding

Bolding means that the text characters will be filled with a dot pattern or a hatch pattern.
Bolding should only be used with the fonts: ROMAN.SERIF, ROMAN.FUTURA, ROMAN.FASHON,

ROMAN.LOGO1, ROMAN.SWISSL, ROMAN.SWISSM, ROMAN.SWISSB, or TRIUMF.OUTLINE.

When <Bn> is encountered, subsequent characters will be filled. Within a file, bolding will
remain as set until different fill pattern(s) are selected with another <Bn> or <Bn:m> command.
Bolding is turned off by entering the command.

n = 0 then no filling
1 ≤ |n| ≤ 10 then fill with hatch pattern

11 ≤ |n| ≤ 99 then fill with dot pattern
n < 0 then the outline of the character is not drawn,

but hatch pattern |n| is drawn

When <Bn:m> is encountered, the two hatch patterns |n| and |m| are used to fill the characters.
This can be used to create a cross-hatching pattern. This feature cannot be used with two
dot patterns.

For example, this input:

<H.8><S1.5><B1><FROMAN.SERIF>Hatch fill bolding

font = <FROMAN.LOGO1>ROMAN.LOGO1

Bold pattern # 1

<B7:8>Bold patterns # 7 # 8

<H.8><S2.5><B11>Dot pattern 11

<S1.5><B22>Dot pattern 22

<B33>Dot pattern 33

172

Commands

produces this output:

Dot fill patterns

A dot pattern is of the form: uv, where the digit u is the increment number of dots to light up
horizontally, 1 ≤ u ≤ 9, and the digit v is the increment number of dots to light up vertically,
1 ≤ v ≤ 9. For example, a dot pattern of 34 means to light up every third dot horizontally
and every fourth dot vertically. If uv is negative, then the dots are erased instead of turned
on. Note that 200 is interpreted the same as 211, that is, every dot is lit.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A “good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

Hatch patterns

A hatch pattern is composed of an angle and one to ten spacings. These spacings are simply
cycled through as the region is being filled, that is, a line is drawn inside the region at the
specified angle, then a parallel line is drawn at the first spacing, then another parallel line
is drawn at the second spacing, and so on for the number of spacings in that pattern. This
process is repeated until the region is filled. The hatch patterns can be redefined with the
SET HATCH command and displayed with the DISPLAY FILL command. There are ten hatch
patterns available.

Colour

Command form: <Cn>
Default colour: the current colour as set by the COLOUR command

173

Commands

To set the colour, include <Cn> in the text. This applies to subsequent text.

Within a file, the colour will remain as set until changed with another <Cn> command,
but the colour always defaults to the current colour as set by the COLOUR command. See
Table 2.6, page 20, for the colour associated with each colour code.

For example:

<FSCRIPT.2><S1.2><H.6><C2>Colour <C3>cannot <C4>be <C5>displayed

<C6>on <C7>photocopies, <C1>but <C2>try <C3>this

<C4>formatted <C5>text <C6>on a <C7>colour device

Font

Command form: <Ffontname>
Default font: the current font as selected with the SET FONT command

To select a font, include <Ffontname> in the formatted text. This will apply to subsequent
text. Within a file, the font will remain as set until changed with another <Ffontname>

command, but the font always defaults to the current font as set by the SET FONT command.

The manual TRIUMF GRAPHICS FONTS contains font tables. See Table 2.60 on page 243 for
a list of the font names.

For example, this input:

<H0.5><S1><FROMAN.SWISSL>An example containing many fonts:

<FGOTHIC.ENGLISH>Gothic example <FSCRIPT.2>Script example

<FKANJI4>Kanji example

<FCYRILLIC.2>Cyrillic example

<S1.5><FMATH>0123456789 SJKMOPQR

produces this output:

Centre justification

174

Commands

Command form: <JC>, <JCxx.x>, <JCxx.x%>

To centre text at the location xx.x units from the left edge of the current window, that is,
XLWIND, include <JCxx.x> before the text. The units, either centimeters or inches, are defined
by the SET UNITS command. To centre the text at a location defined as a percentage of the
width of the current window, that is, XUWIND - XLWIND, use <JCxx.x%>.

If no number is present, that is, <JC>, the text will be centred at the location midway in the
window between the right edge, XUWIND, and the left edge.

The centred text will include all text after the <JC>, <JCxx.x> or <JCxx.x%> command and up
to the next justification command (justify left, right, or centre) or up to the end of the line,
whichever comes first.

It is possible to centre about any position on the current line, in any order, and to mix left
and right justifications with centering on the same line.

For example, this input:

<H0.5><S1.2>Example using centre justification:

<JC>This is centred on the page

<JC5>Column 1<JC12>Column 2

<JC5>-0.002<JC12>198.32

<S1.4><JC5><PM>0.75<JC12><Integrl><beta>d<sigma>

produces this output:

Left justification

Command form: <JL>, <JLxx.x>, <JLxx.x%>

To left justify text at the location xx.x units from the left edge of the current window, that is,
XLWIND, include <JLxx.x> before the text. The units, either centimeters or inches, are defined
by the SET UNITS command. To left justify the text at a location defined as a percentage of
the width of the current window, that is, XUWIND - XLWIND, use <JLxx.x%>.

175

Commands

If no number is present, that is, <JL>, the text will be left justified at the left edge of the
window.

The left justified text will include all text after the <JL>, <JLxx.x> or <JLxx.x%> command and
up to the next justification command (justify left, right, or centre) or up to the end of the
line, whichever comes first.

It is possible to left justify about any position on the current line, in any order, and to mix
left and right justifications with centering on the same line.

For example, this input:

<H0.5><S1.2>Example using left justification:

<JC>This is centred on the page

<JL11>Column 2<JL2>Column 1

<JL2>-0.002<JL11>198.32

<S1.5><JL2><PM>0.75<JL11><INTEGRL><beta>d<sigma>

This is left justified to the left margin

produces this output:

Right justification

Command form: <JR>, <JRxx.x>, <JRxx.x%>

To right justify text at the location xx.x units from the left edge of the current window,
that is, XLWIND, include <JRxx.x> before the text. The units, either centimeters or inches,
are defined by the SET UNITS command. To right justify the text at a location defined as a
percentage of the width of the current window, that is, XUWIND - XLWIND, use <JRxx.x%>.

If no number is present, that is, <JR>, the text will be right justified at the right edge of the
window, that is, XUWIND.

The right justified text will include all text after the <JR>, <JRxx.x> or <JRxx.x%> command
and up to the next justification command (justify left, right, or centre) or up to the end of

176

Commands

the line, whichever comes first.

It is possible to left justify about any position on the current line, in any order, and to mix
left and right justifications with centering on the same line.

For example, this input:

<H0.5><S1.2>Example using right justification:

<JR>This is justified to the right edge

<JR16>Column 2<JR7>Column 1

<JR7>-0.002<JR16>198.32

<JR7><PM>0.75<JR16><INTEGRL><beta>d<sigma>

This is left justified

produces this output:

Horizontal spacing

Command form: <Zxx.x>, <Zxx.x%>

To insert a horizontal space of xx.x units, include <Zxx.x> in the formatted text. The units,
either centimeters or inches, are defined by the SET UNITS command. To set the horizontal
space as a percentage of the width of the current window, that is, XUWIND - XLWIND, use
<Zxx.x%>.

The horizontal space, which may be positive or negative, is measured from the current
location.

Note: The right, centre and left justification tabs, are measured from the left edge of the
window.

For example, this input:

177

Commands

<H0.5><S.8>Example of horizontal spacing:

<H.8><S2>Include a 2cm sp<Z2>ace

or move back-<Z-5><S4>wards and down

<S2>Remember to reset

the line spacing

produces this output:

Sub-script mode

Command form: <_>

To enter sub-script mode, include <_> in the formatted text. Subsequent text will have 60%
the current height and will be vertically spaced down a distance equal to 60% of the current
height. This allows for multiple levels of sub-scripts, but for every level of sub-scripting,
there must be a corresponding level of super-scripting to bring the text back “up”.

Within a file, each level of sub-scripting remain in effect until <^>, super-script mode, is
encountered.

For example, this input:

<H0.5><S1>Sub-scripts are easy X<_>ABC<^>

Multiple levels of sub_scripts are allowed

Just remember to go "up" as many

times as you go "down"

<S3><H2><UPSILON><_><THETA><_><PSI><_>5<^><^><^><->

<H.5>and back to normal

178

Commands

produces this output:

Super-script mode

Command form: <^>

To enter super-script mode, include <^> in the formatted text. Subsequent text will have
60% the current height and will be vertically spaced up a distance equal to 60% of the current
height. This allows for multiple levels of super-scripts, but for every level of super-scripting,
there must be a corresponding level of sub-scripting to bring the text back “down”.

Within a file, each level of super-scripting remain in effect until <_>, sub-script mode, is
encountered.

For example, this input:

<H0.5><S1>Super-scripts are easy X<^>ABC<_>

Multiple levels of super_scripts are allowed

Just remember to go "down" as many

times as you go "up"

<S3><H2><UPSILON><^><THETA><^><PSI><^>5<_><_><_><->

<H.5>and back to normal

produces this output:

Slanted mode

Command form:

179

Commands

To control slanted, or emphasis, mode, include in the formatted text. acts like a
toggle switch in that the first time is encountered slanted mode will be turned on, that
is, subsequent text will be slanted, and the next time it is encountered, slanted mode will
be turned off. Slanted mode may be used for any character in any font, even with bolding
on.

For example, this input:

<H0.6><S1.2>Slanted in the TSAN font

<FSTANDARD>Slanted in the STANDARD font

<FROMAN.SWISSL>Slanted in the ROMAN.SWISSL font

<FSCRIPT.2>Slanted in a SCRIPT font

<FROMAN.SERIF>Slanted in font ROMAN.SERIF

The final <Q\> \Q<>\ turns slanted mode off

produces this output:

Note: The graphics editor EDGR does not recognize slanted mode. So, if you open an EDGR
file and include slanted text, when you edit the graphics with EDGR, the text will not be
slanted.

Hexadecimal mode

Command form: <X>

To control hexadecimal text input mode, include <X> in the formatted text. <X> acts like a
toggle switch in that the first time <X> is encountered, hexadecimal mode is turned on, and
the next time it is encountered, hexadecimal mode is turned off. Hexadecimal mode means
that the text is be assumed to be pairs of hexadecimal digits that represent non-keyboard
characters.

The hexadecimal codes for characters depend on which font is being used. Refer to the font
tables in the TRIUMF GRAPHICS FONTS manual for these codes. Also, see the DISPLAY FONT

command for information on how to display any font table.

For example, this input:

180

Commands

<H0.5><S.8>An example of hexadecimal input

in the default font <Rightarrow> TSAN

Greek letters:

<H1><S1.7><X>CACBCCCDCECFDADBDCDDDEDF<X>

<H.5><S1.2>and other symbols:

<H1><S1.7><X>4AAFB96954555657<X>

produces this output:

Accents

Command

<\b> macron (bar) under previous character
<\d> dot under previous character
<\^> circumflex over previous character
<\’> acute over previous character
<\‘> grave over previous character
<\"> umlaut over previous character
<\~> tilde over previous character
<\=> macron (bar) over previous character
<\.> dot over previous character
<\u> breve over previous character
<\v> v over previous character
<\H> dieresis (double quote) over previous

character

Table 2.52: Formatted text accent special characters

To place one of the special accents on a character, insert the appropriate command imme-
diately after that character. The accent will be centred over or under that character. See
Table 2.52 for a listing of the accent commands. See Figure 2.21 for examples of the accents
on the letter “o” in the TRIUMF.2 font.

Not all fonts allow for accents. For example, the cyrillic font or the hiragana font. The accent

181

Commands

Figure 2.21: Example accents on the letter “o”

will be positioned fairly well over the lower case letters “a”, “e”, “o”, and “u”, but not perfectly
positioned. You can use EDGR to relocate the accent if its position is not to your liking.

For example, this input:

<H0.3><S0.8>An example of accents

in the default font, TSAN, <->

<JL40%><H0.5>a<\^> e<\u> o<\=> u<\"><H0.3>

<FTSAN>in the ROMAN.SERIF font <->

<FROMAN.SERIF><JL40%><H0.5>a<\’> e<\‘> o<\~> u<\.><H0.3>

<FTSAN>in the STANDARD font <->

<FSTANDARD><JL40%><H0.5>a<\v> e<\H> o<\^> u<\~>

produces this output:

POLYGON
Syntax POLYGON xpoly ypoly xdata ydata key

Qualifiers \INSIDE
Defaults \INSIDE

The POLYGON command creates a vector, key, which will have the same length as the input
vectors, xdata and ydata. By default, key[i] = 1 if the point (xdata[i],ydata[i]) is inside
the polygon defined by input vectors xpoly and ypoly, otherwise key[i] = 0. If the \NOINSIDE
qualifier is used, key[i] = 0 if the point (xdata[i],ydata[i]) is inside the polygon, otherwise
key[i] = 1.

Example

182

Commands

You can use this command is conjunction with the PICK\POLYGON command to choose a
polygon and the DESTROY command to eliminate data points within the chosen polygon. The
following script produces Figure 2.22.

GEN\RANDOM X -5 5 200 ! generate some "data"

GEN\RANDOM Y 10 20 200 !

SET PCHAR -16 ! choose unjoined point plotting symbol

WINDOW 5 !

GRAPH X Y ! display the data graphically

PICK\POLYGON XP YP ! interactively choose a polygon around the

! data you want to eliminate

POLYGON XP YP X Y K ! create key vector, K

DESTROY X Y IFF (K=1) ! eliminate unwanted data

WINDOW 6 !

GRAPH X Y ! display data without unwanted points

SET PCHAR 0 ! choose no plotting symbol, joined

GRAPH\NOAXES XP YP ! overlay the polygon you chose above

Figure 2.22: An example demonstrating the POLYGON command

QUIT
Syntax QUIT

Qualifiers \CLEAR
Defaults \NOCLEAR

The QUIT command is the cleanest way to stop the program. This does a complete FORTRAN
STOP. You cannot re-enter PHYSICA after quitting, without re-running the program.

If the \CLEAR qualifier is appended to the QUIT command, the graphics is cleared before the
program is stopped.

183

Commands

READ
Syntax READ file{\line range} x1{\c1} { x2{\c2} . . . }

READ\FORMAT file{\line range} (frmt) x1 { x2 . . . }
READ\UNFORMATTED file{\line range} (frmt) x1 { x2 . . . }

READ\SCALAR file{\n} s1{\c1} { s2{\c2} . . . }
READ\SCALARS\FORMAT file{\n} (frmt) s1 { s2 . . . }
READ\SCALARS\UNFORMATTED file{\n} (frmt) s1 { s2 . . . }

READ\MATRIX file{\n} m nrows { ncols }
READ\MATRIX\FORMAT file{\n} (frmt) m nrows { ncols }
READ\MATRIX\UNFORMATTED file\n (frmt) m nrows { ncols }

READ\TEXT file{\line range} txtvar

READ\TEXT\FORMAT file{\line range} (frmt) txtvar

READ\TEXT\UNFORMATTED file{\line range} (frmt) txtvar

Qualifiers \VECTORS, \SCALARS, \MATRIX, \TEXT, \ASCII, \UNFORMATTED, \FORMAT,
\CONTINUE, \CLOSE, \APPEND, \OVERLAY, \EXTEND, \ERRSTOP, \ERRFILL,
\ERRSKIP, \FLIPPED, \MESSAGES

Defaults \VECTORS, \ASCII, \-FORMAT, \-CONTINUE, \-CLOSE, \-APPEND,
\-OVERLAY, \EXTEND, \ERRSTOP, \FLIPPED, \MESSAGES

Examples READ FILE.DAT X Y Z

READ\APPEND\FORMAT FILE.DAT\3 (2X,3F10.2) X Y Z

READ\FORMAT FILE.DAT\[2:100:2] (6X,F10.3,2X,F10.3) X\3 Y\1 Z\7
READ FILE.DAT 4X

READ\SCALAR FILE.DAT A B C

READ\SCALAR\FORMAT FILE.DAT\3 (2X,3F10.2) A B C

READ\SCALAR FILE.DAT\2 A\3 B\1 C\7
READ\MATRIX FILE.DAT M 10 20

READ\MATRIX\FORMAT FILE.DAT\3 (7(F10.3,2X)) M 10 20

READ\TEXT FILE.DAT T

READ\TEXT FILE.DAT\3 T

READ\TEXT\FORMAT FILE.DAT\3 (2X,A10) T[2]

READ\TEXT FILE.DAT\[2;3;15] T

READ is a general purpose command for reading vectors, scalars, a matrix, or string variables
from a file. The maximum record length that can be read is 32768 bytes.

The variable type that will be read is determined by a command qualifier. The default,
requiring no special qualifier, is to read data into vectors. Reading data into other variable
types is chosen by using the appropriate qualifier. Refer to Table 2.53. The parameters that

184

Commands

are expected depend on which of these qualifiers is used.

variable type qualifier

multiple vectors \VECTORS (default)

multiple scalars \SCALARS

one matrix \MATRIX

one string or one string array \TEXT

Table 2.53: Variables that can be read and their required qualifiers

By default, informational messages are displayed on the terminal monitor. If the \NOMESSAGES,
or \-MESSAGES, qualifier is used, these informational messages will not be displayed.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE dum.dat

physica

read $FILE x y z

The environment variable can be just the first part of the filename, for example,
setenv FILE dum

physica

read $FILE.dat x y z

Opening and closing files

By default, the file is closed after the read, so that a subsequent READ of the same file will
start reading at the first record of the file. If the \CONTINUE qualifier is used, the file will not
be closed after processing that READ command, and a subsequent READ of the same file will
begin reading at the next record. If the \CLOSE qualifier is used, the file will be closed first
and then reopened before reading, so that READ\CLOSE always begins reading with the first
record in the file.

Examples

The command READ\SCALARS\CLOSE\CONTINUE DUM.DAT N first closes the file DUM.DAT, reads
the first record, and leaves the file open.

If you entered: READ\SCALARS DUM.DAT N after the previous command, the second record
would be read.

185

Commands

The commands READ\CLOSE\CONTINUE DUM.DAT\[1:10] X

READ\CONTINUE DUM.DAT\[1:10] Y

would read the first ten records into vector X and the next ten records into vector Y.

Reading data into vectors

By default, vectors are read from columns of numbers in an ASCII file. The file is read by
records, using free format. The cIth column is placed into vector xI. cI defaults to I. Every
record is read, from record 1 to the end of file. If xI exists, it will be destroyed, and a new xI

vector created.

ASCII files

Syntax READ file{\line range} x1{\c1} { x2{\c2} . . . }
READ\FORMAT file{\line range} (frmt) x1 { x2 . . . }

Qualifiers \FORMAT, \CONTINUE, \CLOSE, \APPEND, \OVERLAY, \EXTEND, \ERRSTOP,
\ERRFILL, \ERRSKIP, \MESSAGES

Defaults \-FORMAT, \-CONTINUE, \-CLOSE, \-APPEND, \-OVERLAY, \EXTEND,
\ERRSTOP, \MESSAGES

By default, or if the \ASCII qualifier is used, the file is assumed to be an ASCII file and is
read by records, starting with the first record.

A scalar appended to the file name, file\n, specifies the starting record. The first n − 1
records will be skipped.

A vector appended to the file name, file\x, specifies from which records to read data. The
first x[1] − 1 records will be skipped. The data will be read from records x[1], x[2], . . . , x[#].
Records x[i] + 1 to x[i+ 1]− 1 will be skipped. The vector x must be monotonically increasing.

By default, the Ith column is placed into vector xI. The column number can be specified by
appending a scalar, cI, to the vector name as a qualifier. In this case, the cIth column can
be placed into the xI vector. For example, after the command:

READ DUM.DAT W\2 X\4 Y Z\1

W would contain column 2, X would contain column 4, Y would default to column 3, and Z

would contain column 1.

By default, free format is used for reading the data. Number fields can be separated by
blanks or by commas. The \FORMAT qualifier must be used to indicate that a format is

186

Commands

present. The format must be enclosed in parentheses, (and). If a format is used, column
numbers cannot be specified. Standard FORTRAN formats are valid, but only REAL variables
can be read, so do not use INTEGER, LOGICAL or CHARACTER formats. All values are converted
to REAL*8 for internal storage.

To read different numbers of elements into vectors with a single READ command, use the
\NOEXTEND, or \-EXTEND, qualifier. The output length of a vector will be number of values that
are read, to a maximum of that vector’s original length. For example, suppose that vector X

has length 10 and vector Y has length 20, and suppose you enter:

READ\-EXTEND file\[1:20] X Y

If 20 records are read, vector X will be made with a length of 10 and vector Y will be made
with a length of 20. If only 15 records are read, vector X will have length 10 but vector Y will
only have length 15.

By default, a new vector is created to hold the newly read data. If the \OVERLAY qualifier is
used, an existing vector will have the newly read data overlayed on the original data. The
resultant vector length may be longer, but never shorter. Use the \APPEND qualifier to append
the newly read data onto the end of existing vectors.

\-EXTEND is incompatible with \OVERLAY.
\-EXTEND is incompatible with \APPEND.

Field counts are specified by an integer preceding the vector name. Field counts must be
literal integers, that is, they cannot be scalar variables. For example:

READ FILE.DAT 3X 2Y Z

will read 6 numbers from each record, placing the first 3 numbers into X[i], X[i+1], X[i+2], the
next 2 numbers into Y[i], Y[i + 1], and the last number into Z[i]. This command is equivalent
to:

READ FILE.DAT X X X Y Y Z

Records beginning with an exclamation mark, !, are considered to be comments and are
ignored.

By default, \ERRSTOP, an invalid field stops the read, but the data that has been read up to
the error is saved. If the \ERRSKIP qualifier is used, an invalid field causes the entire record
to be skipped. If the \ERRFILL qualifier is used, an invalid field causes the entire record to
be filled with the value of ERRFILL if a format was entered, or only the invalid field will be set

187

Commands

to ERRFILL if no format was entered. By default, ERRFILL = 0, but it’s value can be changed
with the SET command and it’s value obtained with the GET command.

Example 1

FILE.DAT

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

command result
READ FILE.DAT 3X 2Y Z X = [1;2;3;7;8;9;13;14;15]

Y = [4;5;10;11;16;17]

Z = [6;12;18]

READ FILE.DAT 3X X = [1; 2; 3; 7; 8; 9; 13; 14; 15]

READ DUM.DAT 6X X = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18]

Example 2

DUM.DAT

1 23.7 0.1000E-5

2 -31.4 0.2000E-3

3 9.09 0.3000E-1

4 10.001 0.4000E+1

5 -2.0 0.5000E+2

6 30.2 0.6000E+3

command result
READ DUM.DAT X Y X = [1;2;3;4;5;6]

Y = [23.7;-31.4;9.09;10.001;-2.0;30.2]

READ DUM.DAT\3 X Y X = [3;4;5;6]

Y = [9.09;10.001;-2.0;30.2]

READ DUM.DAT\[2:4] X\3 Y X = [.0002;.03;4.0]

Y = [-31.4;9.09;10.001]

READ\FORMAT DUM.DAT\[1:5:2] (2X,F8.4,E9.4) X Y X = [23.7;9.09;-2.0]

Y = [.000001;.03;50.0]

Example 3

188

Commands

Sample data file:
DUM.DAT

10 20 30

40 50 60

70 80 90

this is a test

100 200 300

400 500 600

700 800 900

test line two

-10 -20 -30

-40 -50 -60

-70 -80 -90

This script reads data into vectors and allows
the user to choose when to stop reading.

LNUM = 1

START:

READ DUM.DAT\LNUM X Y Z

IF ~EXIST(‘X’) THEN GOTO DONE ! end of file

LIST X Y Z

ANS=‘Y’

INQUIRE ‘read again ? (Y|n)’ ANS

IF NES(UCASE(ANS),‘Y’) THEN GOTO DONE

LNUM = LEN(X)+LNUM+1

GOTO START

DONE:

Unformatted binary files

Syntax READ\UNFORMATTED file{\line range} (frmt) x1 { x2 . . . }
Qualifiers \CONTINUE, \CLOSE, \APPEND, \OVERLAY, \EXTEND, \MESSAGES
Defaults \-CONTINUE, \-CLOSE, \-APPEND, \-OVERLAY, \EXTEND, \MESSAGES

If the \UNFORMATTED qualifier is used, the file is assumed to be an unformatted binary file.
The two methods of reading data from unformatted binary files, by record or stream, are
indicated by the prescription paramter, (frmt), which is required when the \UNFORMATTED
qualifier is used. The frmt prescription must be enclosed in parenthesis, (and). For
example:

real*4 x(100), y(100)

do i = 1, 100

write(unit)x(i),y(i) ! written by record (100 records)

end do

write(unit)x,y ! written as a stream (1 record)

write(unit)(x(i),y(i),i=1,100) ! written as a stream (1 record)

The qualifiers \ERRSTOP, \ERRSKIP, and \ERRFILL cannot be used with the \UNFORMATTED qual-
ifier.

Reading by record

189

Commands

The frmt codes: R4 R8 I1 I2 I4 L1 L4 Xn

specify that the data is to be read by record, and indicate the data type and the number of
bytes for each value in each record. The Xn code specifies skipping over n bytes. All values
are converted to REAL*8 for internal storage.

For example: READ\UNFORMATTED FILE.DAT (3R4,X8,I2) X Y Z A

indicates 22 bytes per record: REAL*4, REAL*4, REAL*4, skip 8 bytes, INTEGER*2.

A vector appended to the file name, file\x, specifies from which records to read data. The
first x[1] − 1 records will be skipped. The data will be read from records x[1], x[2], . . . , x[#].
Records x[i] + 1 to x[i+ 1]− 1 will be skipped. The vector x must be monotonically increasing.

To read different numbers of elements into vectors with a single READ command, use the
\NOEXTEND, or \-EXTEND, qualifier. The output length of a vector will be number of values that
are read, to a maximum of that vector’s original length. For example, suppose that vector X

has length 10 and vector Y has length 20, and suppose you enter:

READ\UNFORMATTED\-EXTEND file\[1:20] (2R4) X Y

If 20 records are read, vector X will be made with a length of 10 and vector Y will be made
with a length of 20. If only 15 records are read, vector X will have length 10 but vector Y will
only have length 15.

By default, a new vector is created to hold the newly read data. If the \OVERLAY qualifier is
used, an existing vector will have the newly read data overlayed on the original data. The
resultant vector length may be longer, but never shorter. Use the \APPEND qualifier to append
the newly read data onto the end of existing vectors.

\-EXTEND is incompatible with \OVERLAY.
\-EXTEND is incompatible with \APPEND.

Field counts must be literal integers, that is, they cannot be scalar variables. Field counts
are specified by an integer preceding the vector name.

For example: READ\UNFORMATTED FILE.DAT (6R8) 3X 2Y Z

will read 6 numbers from each record, placing the first 3 numbers into X[i], X[i+1], X[i+2], the
next 2 numbers into Y[i], Y[i + 1], and the last number into Z[i]. This command is equivalent
to: READ\UNFORMATTED FILE.DAT (6R8) X X X Y Y Z

Stream reading

The frmt codes: 1B 2B 4B 8B

190

Commands

specify that the data is to be read as a stream, and indicate the data type only. All values
are converted to REAL*8 for internal storage. The number of values to read is indicated by
creating the vectors before issuing the READ command. The number of values to read into a
vector will be exactly the current length of that vector.

For example: VECTOR X 100

VECTOR Y 200

READ\UNFORMATTED FILE.DAT (4B) X Y

indicate that 100 REAL*4 values are to be read into X and 200 REAL*4 values into Y.

A scalar appended to the file name, file\n, specifies the starting record. The first n − 1
records will be skipped.

Restrictions: vector line ranges cannot be used
field counts cannot be used
\-EXTEND is always in effect
\OVERLAY cannot be used
\APPEND cannot be used

Example 1

Suppose you have written some data using the code fragment:

REAL*8 X(10), Y(10), Z(10)

INTEGER*2 NUM

...

OPEN(UNIT=20,FILE=’DUM.DAT’,FORM=’UNFORMATTED’)

NUM = 10

WRITE(20)NUM ! first record contains length of arrays

WRITE(20)X,Y,Z ! stream write the arrays, this writes all of X

... ! followed by all of Y, then all of Z

You could read this data using the commands:

READ\UNFORMATTED\SCALARS DUM.DAT (I2) N ! get length of vectors

VECTOR X Y Z N ! create vectors with length N

READ\UNFORMATTED DUM.DAT\2 (8B) X Y Z ! stream read vectors

Example 2

191

Commands

Suppose you have written some data using the code fragment:

REAL*8 X(10), Y(10), Z(10)

...

OPEN(UNIT=20,FILE=’DUM.DAT’,FORM=’UNFORMATTED’)

NUM = 10

WRITE(20)NUM ! first record contains array length

WRITE(20)(X(I),Y(I),Z(I),I=1,10) ! stream write the arrays,

... ! but mix the arrays

You could read this data using the commands:

READ\UNFORMATTED\SCALARS DUM.DAT (I2) N ! get length of vectors

READ\UNFORMATTED\MATRIX DUM.DAT\2 (8B) M 3 N ! stream read as a matrix

X = M[1,*] ! extract first row

Y = M[2,*] ! extract second row

Z = M[3,*] ! extract third row

Example 3

Suppose you have written some data using the code fragment:

REAL*8 X(10), Y(10), Z(10)

...

OPEN(UNIT=20,FILE=’DUM.DAT’,FORM=’UNFORMATTED’)

DO I = 1, 10

WRITE(20)X(I),Y(I),Z(I) ! write the arrays by record

END DO

...

You could read this data using the command:

READ\UNFORMATTED DUM.DAT (3R8) X Y Z ! read by record

Example 4

Suppose you have written some data using the code fragment:

192

Commands

REAL*8 X(10), Y(10), Z(10)

INTEGER*2 NUM

...

OPEN(UNIT=20,FILE=’DUM.DAT’,FORM=’UNFORMATTED’)

NUM = 10

WRITE(20)NUM ! first record contains length of arrays

WRITE(20)X ! stream write the X array

WRITE(20)Y ! stream write the Y array

WRITE(20)Z ! stream write the Z array

...

You could read this data using the commands:

READ\UNFORMATTED\SCALARS\CONTINUE DUM.DAT (I2) N ! don’t close file

VECTOR X Y Z N ! create vectors of length N

READ\UNFORMATTED\CONTINUE DUM.DAT (8B) X ! stream read

READ\UNFORMATTED\CONTINUE DUM.DAT (8B) Y ! stream read

READ\UNFORMATTED\CONTINUE DUM.DAT (8B) Z ! stream read

Example 5

To read the unformatted binary file DUM.DAT, bytes 5 − 8 into X, bytes 9 − 12 into Y, bytes
13− 16 into Z, enter the command:

READ\UNFORMATTED DUM.DAT (X4,3R4) X Y Z

To read the same file, but putting all the data into the vector Y, that is, bytes 5− 8 into Y[i],
bytes 9− 12 into Y[i + 1], bytes 13− 16 into Y[i + 2], where i = [1; 4; 7; . . .], enter the command:

READ\UNFORMATTED DUM.DAT (X4,3R4) 3Y

To start reading at the end of the second record of the file and to read THETA (INTEGER*4)

from bytes 1− 4, and PHI (REAL*8) from bytes 5− 12, enter the command

READ\UNFORMATTED DUM.DAT\2 (I4,R8) THETA PHI

Reading data into scalars

The READ\SCALARS command reads scalar numbers from one record of a file. By default, the
first record is read from an ASCII file, and, if no errors are encountered on the read, the Ith
number is placed into scalar sI. New scalar variables are created. By default, no scalars will

193

Commands

be made if an invalid field is encountered on the read. A scalar appended to the file name,
file\n, specifies the starting record. The first n− 1 records will be skipped.

ASCII files

Syntax READ\SCALARS file{\n} s1{\c1} { s2{\c2} . . . }
READ\SCALARS\FORMAT file{\n} (frmt) s1 { s2 . . . }

Qualifiers \FORMAT, \CONTINUE, \CLOSE, \MESSAGES
Defaults \-FORMAT, \-CONTINUE, \-CLOSE, \MESSAGES

By default, or if the \ASCII qualifier is used, the file is assumed to be an ASCII file and the
first record is read. Specify which record to read by appending a scalar to the file name as
a qualifier, file\n. By default, no scalars will be created if an invalid field is encountered
while reading.

By default, the Ith number field is placed into scalar sI. The field number can be specified
by appending a scalar, cI, to the scalar name as a qualifier. In this case, the cIth field can
be placed into the sI scalar.

For example, after the command: READ\SCALARS DUM.DAT W\2 X\4 Y Z\1

W would contain field 2, X would contain field 4, Y would default to field 3, and Z would
contain field 1.

The \FORMAT qualifier must be used to indicate that a format is present. The format must be
enclosed in parentheses, (and). If a format is used, field numbers cannot be specified.

Standard FORTRAN formats are valid, but only REAL variables can be read, so do not use
INTEGER, LOGICAL or CHARACTER formats. All values are converted to REAL*8 for internal stor-
age.

If the \ERRFILL qualifier is used, an invalid field causes the invalid field to be set to ERRFILL.
By default, ERRFILL = 0, but it’s value can be changed with the SET command, and obtained
with the GET command. \ERRFILL cannot be used with a format.

Example

DUM.DAT

1 23.7 0.1000E-5

2 -31.4 0.2000E-3

3 9.09 0.3000E-1

194

Commands

command result
READ\SCALARS DUM.DAT A B A = 1 B = 23.7

READ\SCALARS DUM.DAT A\3 B A = .000001 B = 23.7

READ\SCALARS DUM.DAT\3 A B A = 3 B = 9.09

READ\SCALARS DUM.DAT\2 A\3 B A = .0002 B = −31.4

READ\SCALARS\FORMAT DUM.DAT (2X,F8.4,E9.4) A B A = 23.7 B = .000001

Unformatted binary files

Syntax READ\SCALARS\UNFORMATTED file{\n} (frmt) s1 { s2 . . . }
Qualifiers \CONTINUE, \CLOSE, \MESSAGES
Defaults \-CONTINUE, \-CLOSE, \MESSAGES

If the \UNFORMATTED qualifier is used, the file is assumed to be an unformatted binary file. By
default, the first record is read. Specify which record to read by appending a scalar to the
file name as a qualifier, file\n. No scalars will be created if an invalid field is encountered
while reading. The (frmt) paramter is a prescription that specifies how the record is to
be read and is required when the \UNFORMATTED qualifier is used. The prescription must be
enclosed in parenthesis, (and).

The frmt codes: R4 R8 I1 I2 I4 L1 L4 Xn

indicate the data type and the number of bytes for each value in the record. The Xn code is
used to skip over n bytes. All values are converted to REAL*8 for internal storage.

Examples

READ\SCALARS\UNFORMATTED DUM.DAT (3R4,X8,I2) A B C D

reads 22 bytes from the first record: REAL*4, REAL*4, REAL*4, skip 8 bytes, INTEGER*2 and
creates 4 scalars from these numbers.

READ\SCALARS\UNFORMATTED DUM.DAT (X10,R8) A

creates scalar A from the REAL*8 number in bytes 11− 18 of the first record.

Reading data into a matrix

By default, a two dimensional array is read by records, starting with the first record, from
an ASCII file, in free format, where nrows is the first dimension, the number of rows, and
ncols is the second dimension, the number of columns. The first dimension must be entered

195

Commands

exactly. If the second dimension is not known, do not enter a value for ncols, and the read
will continue until the end of file. The actual second dimension will be displayed when the
read operation is done. A new matrix variable will be made. No matrix will be made if an
error is encountered on the read.

A scalar appended to the file name, file\n, specifies the starting record. The first n − 1
records will be skipped.

ASCII files

Syntax READ\MATRIX file{\n} m nrows { ncols }
READ\MATRIX\FORMAT file{\n} (frmt) m nrows { ncols }

Qualifiers \FORMAT, \CONTINUE, \CLOSE, \FLIPPED, \MESSAGES
Defaults \-FORMAT, \-CONTINUE, \-CLOSE, \FLIPPED, \MESSAGES

By default, or if the \ASCII qualifier is used, the file is assumed to be an ASCII file and
is read by records. A scalar appended to the file name as a qualifier, file\n, specifies the
starting record. The file will be read from the nth record to the end of file.

The \FORMAT qualifier must be used to indicate that a format is present. The format must be
enclosed in parentheses, (and).

Standard FORTRAN formats are valid, but only REAL variables can be read, so do not use
INTEGER, LOGICAL or CHARACTER formats. All values are converted to REAL*8 for internal stor-
age.

Flipped

Suppose you have a matrix M which has 3 rows and 4 columns. When you enter WRITE\MATRIX file M the
rows of the matrix are written into records of the file. There will be 3 records, each contain-
ing 4 numbers. But, if you then entered READ\MATRIX file M 3 4 the input matrix would
be scrambled, because READ puts the first record into the first column, the second record
into the second column, and so on. Thus, the matrix is transposed, or flipped. To read it
in properly, you would have to enter READ\MATRIX file M 4 3 and then take the transpose,
M = <-M. So, there is a qualifier, \-FLIPPED, which has the syntax:

READ\MATRIX\-FLIPPED file matrix ncolumns nrows

Note: In the default, without the \-FLIPPED qualifier, the syntax remains: READ\MATRIX file matrix nrows n

Example 1

196

Commands

the code fragment

REAL*4 M(7,5)

DO J = 1, 5

DO I = 1, 7

M(I,J) = 10*I+J

END DO

END DO

WRITE(1,10)M

10 FORMAT(3F4.0)

creates the file

11. 21. 31.

41. 51. 61.

71. 12. 22.

32. 42. 52.

62. 72. 13.

23. 33. 43.

53. 63. 73.

14. 24. 34.

44. 54. 64.

74. 15. 25.

35. 45. 55.

65. 75.

command

READ\MATRIX\FORMAT file (3F4.0) M 7 5

result

M =



11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55
61 62 63 64 65
71 72 73 74 75


Example 2

the code fragment

REAL*4 M(7,5)

DO J = 1, 5

DO I = 1, 7

M(I,J) = 10*I+J

END DO

END DO

WRITE(1,10)M

10 FORMAT(14F4.0)

creates the file 11. 21. 31. 41. 51. 61. 71. 12. 22. 32. 42. 52. 62. 72.

13. 23. 33. 43. 53. 63. 73. 14. 24. 34. 44. 54. 64. 74.

15. 25. 35. 45. 55. 65. 75.

197

Commands

command

READ\MATRIX\FORMAT file (14F4.0) M 7 5

result

M =



11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55
61 62 63 64 65
71 72 73 74 75


Example 3

the code fragment

REAL*4 M(7,5)

DO J = 1, 5

DO I = 1, 7

M(I,J) = 10*I+J

END DO

END DO

DO J = 1, 5

WRITE(1,10)(M(I,J),I=1,7)

END DO

10 FORMAT(4F4.0)

creates the file

11. 21. 31. 41.

51. 61. 71.

12. 22. 32. 42.

52. 62. 72.

13. 23. 33. 43.

53. 63. 73.

14. 24. 34. 44.

54. 64. 74.

15. 25. 35. 45.

55. 65. 75.

command

READ\MATRIX file M 7 5

result

M =



11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55
61 62 63 64 65
71 72 73 74 75


Example 4

198

Commands

the code fragment

REAL*8 M(7,5)

DO J = 1, 5

DO I = 1, 7

M(I,J) = 10*I+J

END DO

END DO

WRITE(1,10)((M(I,J),J=1,5),I=1,7)

10 FORMAT(5F5.0)

creates the file

11. 12. 13. 14. 15.

21. 22. 23. 24. 25.

31. 32. 33. 34. 35.

41. 42. 43. 44. 45.

51. 52. 53. 54. 55.

61. 62. 63. 64. 65.

71. 72. 73. 74. 75.

command

READ\MATRIX file M 5

result

M =


11 21 31 41 51 61 71
12 22 32 42 52 62 72
13 23 33 43 53 63 73
14 24 34 44 54 64 74
15 25 35 45 55 65 75


Example 5

the code fragment

REAL*8 M(5,8)

DO J = 1, 8

DO I = 1, 5

M(I,J) = 10*I+J

END DO

END DO

WRITE(1,10)((M(I,J),I=1,5),J=1,8)

10 FORMAT(5F5.0)

creates the file

11. 21. 31. 41. 51.

12. 22. 32. 42. 52.

13. 23. 33. 43. 53.

14. 24. 34. 44. 54.

15. 25. 35. 45. 55.

16. 26. 36. 46. 56.

17. 27. 37. 47. 57.

18. 28. 38. 48. 58.

199

Commands

command

READ\MATRIX file M 5

result

M =


11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
51 52 53 54 55 56 57 58


Example 6

the code fragment

REAL*8 M(5,8)

DO J = 1, 8

DO I = 1, 5

M(I,J) = 10*I+J

END DO

END DO

WRITE(1,10)((M(I,J),J=1,8),I=1,5)

10 FORMAT(4F5.0)

creates the file

11. 12. 13. 14.

15. 16. 17. 18.

21. 22. 23. 24.

25. 26. 27. 28.

31. 32. 33. 34.

35. 36. 37. 38.

41. 42. 43. 44.

45. 46. 47. 48.

51. 52. 53. 54.

55. 56. 57. 58.

command

READ\MATRIX file M 4

result

M =


11 15 21 25 31 35 41 45 51 55
12 16 22 26 32 36 42 46 52 56
13 17 23 27 33 37 43 47 53 57
14 18 24 28 34 38 44 48 54 58


command

READ\MATRIX file M 8

result

M =



11 21 31 41 51
12 22 32 42 52
13 23 33 43 53
14 24 34 44 54
15 25 35 45 55
16 26 36 46 56
17 27 37 47 57
18 28 38 48 58



200

Commands

Example 7

Suppose you have the file DUM.DAT Header line 1

Header line 2

1.0 2.0 3.0 4.0 5.0 6.0 7.0

1.1 2.1 3.1 4.1 5.1 6.1 7.1

1.2 2.2 3.2 4.2 5.2 6.2 7.2

1.3 2.3 3.3 4.3 5.3 6.3 7.3

1.4 2.4 3.4 4.4 5.4 6.4 7.4

command

READ\MATRIX DUM.DAT\3 M 7

result

M =



1.0 1.1 1.2 1.3 1.4
2.0 2.1 2.2 2.3 2.4
3.0 3.1 3.2 3.3 3.4
4.0 4.1 4.2 4.3 4.4
5.0 5.1 5.2 5.3 5.4
6.0 6.1 6.2 6.3 6.4
7.0 7.1 7.2 7.3 7.4


Unformatted binary files

Syntax READ\MATRIX\UNFORMATTED file{\n} (frmt) m nrows { ncols }
Qualifiers \CONTINUE, \CLOSE, \MESSAGES
Defaults \-CONTINUE, \-CLOSE, \MESSAGES

If the \UNFORMATTED qualifier is used, the file is assumed to be an unformatted binary file.
The two methods of reading data from unformatted binary files, by record or stream, are
indicated by the prescription, (frmt), paramter, which is required whith the \UNFORMATTED

qualifier. A scalar appended to the file name as a qualifier, file\n, specifies the starting
record. The frmt prescription must be enclosed in parenthesis, (and).

For example: real*8 x(100,10)

do j = 1, 10

write(unit)(x(i,j),i=1,100) ! write 10 records

end do

write(unit)x ! stream write

write(unit)(x(i,j),i=1,100),j=1,10) ! stream write

201

Commands

Reading by record

Syntax READ\MATRIX\UNFORMATTED file{\n} (frmt) m nrows { ncols }

The frmt codes: R4 R8 I1 I2 I4 L1 L4 Xn

specify that the data is to be read by record, and indicate the data type and the number
of bytes for each value in each record. The Xn code specifies skipping over n bytes. For
example, (20R4) indicate 80 bytes per record: 20 REAL*4 values. All values are converted to
REAL*8 for internal storage. If the number of columns, ncols, is not entered, records will be
read until an end of file is reached.

Stream reading

Syntax READ\MATRIX\UNFORMATTED file{\n} (frmt) m nrows ncols

The frmt codes: 1B 2B 4B 8B

specify that the data is to be read as a stream, and indicate the data type only. The number
of values to read is indicated by the number of rows, nrows, and the number of columns,
ncols, both of which are required. All values are converted to REAL*8 for internal storage.

For example: READ\MATRIX\UNFORMATTED DUM.DAT (4B) M 10 100 indicate that 1000 REAL*4

values are to be stream read into matrix M with 10 rows and 100 columns.

Example 1

Consider the code fragment:

REAL*8 X(7,5)

INTEGER*2 NR, NC

DATA NR /7/, NC /5/

DO J = 1, 5

DO I = 1, 7

X(I,J) = 10*I+J

END DO

END DO

OPEN(UNIT=20,FILE=’DUM.DAT’,FORM=’UNFORMATTED’)

WRITE(20)NR,NC ! first record contains dimensions

WRITE(20)X ! stream write the array

202

Commands

commands

READ\UNFORM\SCALARS DUM.DAT (2I2) NR NC

READ\UNFORM\MATRIX DUM.DAT\2 (8B) M NR NC

result

M =



11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55
61 62 63 64 65
71 72 73 74 75


Example 2

Consider the code fragment:

REAL*8 X(7,5)

INTEGER*2 NR

DATA NR /7/

DO J = 1, 5

DO I = 1, 7

X(I,J) = 10*I+J

END DO

END DO

OPEN(UNIT=20,FILE=’DUM.DAT’,FORM=’UNFORMATTED’)

WRITE(20)NR ! first dimension, number of rows

DO J = 1, 5

WRITE(20)(X(I,J),I=1,7) ! write by records (5 records)

END DO

commands

READ\UNFORM\SCALARS DUM.DAT (I2) NR

FMT = ‘(’//RCHAR(NR)//‘R8)’

READ\UNFORM\MATRIX DUM.DAT\2 FMT M NR

result

M =



11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55
61 62 63 64 65
71 72 73 74 75


Reading data into a string variable

By default, the READ\TEXT command reads the first record from an ASCII file as a string,
making a string variable. The maximum line length that can be read is 255 characters. If a
single line is read, a string variable will be made. If multiple lines are read, an array string

203

Commands

variable will be made.

A scalar appended to the file name, file\n, specifies the record to read as data. The first
n− 1 records will be skipped. A string variable will be made.

A vector appended to the file name, file\x, specifies from which records to read data. The
first x[1] − 1 records will be skipped. The data will be read from records x[1], x[2], . . . , x[#].
Records x[i] + 1 to x[i+ 1]− 1 will be skipped. The vector x must be monotonically increasing.
Multiple lines will be read only if multiple line numbers are indicated. a string array variable
will be made.

ASCII files

Syntax READ\TEXT file{\line range} txtvar

READ\TEXT\FORMAT file{\line range} (frmt) txtvar

Qualifiers \FORMAT, \CONTINUE, \CLOSE, \MESSAGES
Defaults \-FORMAT, \-CONTINUE, \-CLOSE, \MESSAGES

By default, when no format is entered, the entire line, up to 255 characters is read. The
\FORMAT qualifier must be used to indicate that a format is present. The format must be
enclosed in parentheses, (and).

The frmt codes: nX means to skip over n characters
An means to read n characters

For example: (2X,A10) means to skip the first two characters and read the next ten.

Examples

command result
READ\TEXT DUM.DAT\4 TXT reads the fourth record into a scalar string variable

READ\TEXT DUM.DAT\[4:8] TXT reads 5 strings from records 4 to 8
into a string array variable

Unformatted binary files

Syntax READ\TEXT\UNFORMATTED file{\line range} (frmt) txtvar

Qualifiers \CONTINUE, \CLOSE, \MESSAGES
Defaults \-CONTINUE, \-CLOSE, \MESSAGES

If the \UNFORMATTED qualifier is used, the file is assumed to be an unformatted binary file.
By default, the first record is read. The (frmt) paramter is a prescription that specifies

204

Commands

how the record is to be read and is required when the \UNFORMATTED qualifier is used. The
prescription must be enclosed in parenthesis, (and). The only allowable prescription is
(An), which means to read n characters. For example: (A10) means to read the first ten
characters from the record.

REBIN
Syntax REBIN v vout n

REBIN m mout nr nc

The REBIN command rebins the data in either:

the vector v by the compression factor n; or
the matrix m by the row compression factor nr and the column compression factor nc.

Rebinning vectors

Syntax REBIN v vout n

Suppose that the length of vector v is N then:

vout[i] =
n∑
k=1

v[(i− 1)n + k] for i = [1 :
N

n
],

that is, the length of vout will be N
n , and

vout[1] =
n∑
i=1

v[i]

vout[2] =
2n∑

i=n+1

v[i]

. . .

vout[
N

n
] =

N
nn∑

i=(Nn−1)n+1

v[i]

If (Nn)× n is not equal to N , then the last element of vout will be incomplete. For example, if
N = 10 and n = 3 then vout will have 3 elements:

vout[1] = v[1] + v[2] + v[3]

vout[2] = v[4] + v[5] + v[6]

vout[3] = v[7] + v[8] + v[9]

205

Commands

and v[10] will not be included in vout.

Examples

Suppose that vector X has 20 elements. After the command: REBIN X XOUT 2

XOUT[1] = X[1] + X[2]

XOUT[2] = X[3] + X[4]

XOUT[3] = X[5] + X[6]

...

XOUT[10] = X[19] + X[20]

After the command: REBIN [1:1000] X 3

X[1] = 1+2+3

X[2] = 4+5+6

X[3] = 7+8+9

...

X[333] = 997+998+999

A warning will be given that the length of [1:1000] is not evenly divisible by 3 and so the
last bin is incomplete.

Rebinning matrices

Syntax REBIN m mout nr nc

Suppose that matrix m has N rows and M columns, then:

mout[i, j] =
nc∑
l=1

nr∑
k=1

m[(i− 1)nr + k, (j − 1)nc + l] for i = [1 :
N

nr
], j = [1 :

M

nc
],

that is, the matrix mout will have N
nr rows and M

nc columns.

mout[1, 1] =
nc∑
j=1

nr∑
i=1

m[i, j]

mout[1, 2] =
2nc∑

j=nc+1

nr∑
i=1

m[i, j]

206

Commands

mout[2, 1] =
nc∑
j=1

2nr∑
i=nr+1

m[i, j]

mout[2, 2] =
2nc∑

j=nc+1

2nr∑
i=nr+1

m[i, j]

. . .

If (Nnr × nr is not equal to N , then the last row of mout will be incomplete. If (Mnc × nc is not
equal to M , then the last column of mout will be incomplete.

Example

Suppose that M is a matrix:

M =



1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36
7 14 21 28 35 42
8 16 24 32 40 48


Then after the command: REBIN M MOUT 2 3

MOUT =


18 45
42 105
66 165
90 225


Note that:

MOUT[1, 1] = 1 + 2 + 3 + 2 + 4 + 6

MOUT[1, 2] = 4 + 5 + 6 + 8 + 10 + 12

MOUT[2, 1] = 3 + 6 + 9 + 4 + 8 + 12

MOUT[2, 2] = 12 + 15 + 18 + 16 + 20 + 24, etc.

207

Commands

REFRESH
Syntax REFRESH

The REFRESH command is relevant only when using an X Window monitor. The X Window
graphics window, and the zoom window, if it exists, will be redrawn. This has no affect on
a graphics hardcopy.

RENAME
Syntax RENAME oldname newname

RENAME old* new*

RENAME *old *new

The RENAME command renames variables. The simplest case is to rename one variable. For
example:

RENAME XOLD XX ! renames the variable XOLD to XX

If the wildcard * is the last character in the old name, all variables beginning with the
preceding characters will be renamed. For example:

RENAME X1* XX* ! renames X1 to XX, X1X to XXX, and X1Y to XXY

If the wildcard is the first character in the old name, all variables that end with the suc-
ceeding characters will be renamed. For example:

RENAME *X *Y2 ! renames X to Y2, AX to AY2, XX to XY2

REPLOT
Syntax REPLOT { nw }

REPLOT\ALLWINDOWS
Qualifiers \AXES, \ALLWINDOWS, \TEXT
Defaults \AXES, nw = current window number, \-TEXT

By default, information pertaining to curves produced by the GRAPH command, as well as an
automatically plotted curve from the ELLIPSE command, are saved in replot buffers. When
a set of axes is drawn and then data is overlayed on those axes, all of the data may not
appear within the axis boundaries. You can use the REPLOT command to have all of the
data appear on a single autoscaled graph. The window number, nw, defaults to the current
window number. When the \NOAXES qualifier is used, the data will be replotted but the graph
axes will not be drawn.

208

Commands

What is saved

For each data set, the window number in which it was drawn is saved, along with the
plotting symbols, including their types, colours, connectivity, angles, and sizes are saved
for replotting. Also saved are: error bar types, line thicknesses, line types, colours, and
histogram types.

Strings

Strings that were drawn with the TEXT command will also be replotted. If the \GRAPH qualifier
is used with the TEXT command, the location of the replotted text will remain fixed with
respect to the graph’s coordinate system. Otherwise, the location of the replotted text will
remain fixed with respect to the window.

The \-TEXT qualifier means to replot the data curves but not any strings that had also been
drawn using the TEXT command. The default is \TEXT, which means to also replot any such
strings.

Enable/Disable

After the DISABLE REPLOT command is entered, subsequent data curves will not be saved
in the replot buffers. Use the ENABLE REPLOT command to re-enable saving. If replotting is
enabled, it can be disabled for individual commands by use of the \NOREPLOT qualifier, for
example, GRAPH\NOREPLOT.

Windows

If the window number nw is entered, the current window becomes window nw. Only the data
drawn into window nw will be replotted.

If the REPLOT command is entered without a window number, and without the \ALLWINDOWS
qualifier, the graphics will be automatically cleared. If using a window number or \ALLWINDOWS,
it is up to the user to ensure that the appropriate windows are cleared before entering the
REPLOT command.

Clearing the graphics

Use the CLEAR\NOREPLOT command to clear all graphics without emptying the replot buffers.

Use the ERASEWINDOW, page 76, command to erase the graphics from a window. This only
applies to the terminal monitor, to PostScript graphics, and to bitmap graphics.

209

Commands

Use the CLEAR\REPLOTONLY command to clear the replot buffers without clearing the graphics.

Redraw all windows

Use the REPLOT\ALLWINDOWS command to replot all windows that have some data stored in
the replot buffers. It is up to the user to ensure that the appropriate windows are cleared
before entering the REPLOT\ALLWINDOWS command.

Examples

The following sequence of commands draws a graph of 20*X versus 10*X and overlays a
graph of (X^3)/10 versus X^2 on the same set of axes. To see the complete drawing, the
REPLOT command is used.

X=[1:20] ! create some data

WINDOW 5 ! choose graphics window

SET PCHAR -1 ! set plotting symbol

GRAPH 20*X 10*X ! plot 10*X vs 20*X with axes

SET PCHAR -2 ! choose different plotting symbol

GRAPH\NOAXES X^2 (X^3)/10 ! overlay (X^3)/10 vs X^2 on same axes

CLEAR\NOREPLOT ! clear graphics but not replot buffers

REPLOT ! replot all data on common scale

Suppose that you have plotted a graph of vectors Y1 vs. X1 in window number 5; a graph of
vectors Y2 vs. X2 in window number 7, and overlain a plot of Y3 vs. X3 also in window 7. To
replot both windows, use the REPLOT\ALLWINDOWS command.

WINDOW 5 ! choose window

GRAPH X1 Y1 ! plot data and axes

WINDOW 7 ! choose window

GRAPH X2 Y2 ! plot data and axes

GRAPH\NOAXES X3 Y3 ! overlay a curve

CLEAR\NOREPLOT ! clear graphics but not replot buffers

REPLOT\ALL ! replot window 5 and window 7

RESIZE
Syntax RESIZE

The RESIZE command brings up the graphics cursor, allowing PHYSICA to know when the
graphics window is resized by dragging a corner or side of the graphics window. Quit RESIZE
by pressing the Q key while the cursor is in the graphics window.

210

Commands

Using the RESIZE command before changing the shape of the graphics window is not nec-
essary under VMS or Digital Unix. Resizing should be done with the RESIZE command under
Linux, Silicon Graphics IRIX, Sun SOLARIS, and IBM AIX or the PHYSICA window will not
match the actual graphics window.

Use the REFRESH command to simply redraw the contents of the graphics window, which is
sometimes needed after resizing or uncovering the graphics window.

RESTORE
Syntax RESTORE filename

Qualifiers \PHYSICA, \FIOWA, \XFIOWA, \MUD, \MSR, \IMSR, \CHAOS, \YBOS, \HBOOK

Defaults \PHYSICA

The RESTORE command is used to restore specially formatted data sets:

previously saved PHYSICA sessions; FIOWA type data sets; µSR type data sets; µSR MUD type
data sets; IµSR type data sets; CHAOS type data sets; YBOS type data sets, HBOOK type data
sets.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE mysession

physica

restore $FILE

The environment variable can be just the first part of the filename, for example,
setenv FILE my

physica

restore $FILEsession

PHYSICA sessions

Syntax RESTORE file

Qualifier \TTBUFFERS
Default \TTBUFFERS

By default, the RESTORE command, or RESTORE\PHYSICA, restores a previously saved PHYSICA
run. Normally it would be used immediately after entering PHYSICA to continue a previous
session that was saved with the SAVE command, page 224. An attempt is made to restore

211

Commands

the plots that were active at the time the SAVE command was issued, similar to entering the
REPLOT\ALLWINDOWS command. Since some graphics is not REPLOTable, such as contour plots
and density plots, this does not always work as expected. The hardcopy device as chosen
with the DEVICE command is restored, as well as the orientation.

Note: This command should be used with caution, since the current run will be irrevocably
lost in the process of restoring a previous run.

The run time loaded subroutine or function information is not restored, but must be regen-
erated explicitly in the restored session with the LOAD command, page 147.

The input line recall buffers, that is, the dynamic buffer, the static buffer, and the keypad
buffer, are restored also, by default. If you do not want to restore these buffers when
resuming a PHYSICA session, use the \-TTBUFFERS qualifier.

FIOWA data sets

Syntax RESTORE\FIOWA filename

The RESTORE\FIOWA command restores FIOWA type data files containing histograms and scat-
terplots. No special qualifiers are need to restore data sets made with the “big” version of
FIOWA. When you restore a file (or map to shared memory), the following PHYSICA variables
are created automatically:

variable name type description
DATA vector all the histogram and scatterplot data
NHIST scalar number of histograms
NSCAT scalar number of scatterplots
HTITLE string string containing all the histogram titles
HXLABEL string string containing all the histogram labels
STITLE string string containing all the scatterplot titles
SXLABEL string string containing all the scatterplot xlabels
SYLABEL string string containing all the scatterplot ylabels

Histograms

The following histogram related vectors are created automatically:

212

Commands

variable name description
NBINS number of bins
HSTART starting index
HXLO x minimum
HXINC bin size
HYLO y minimum
HYINC y increment
HLO underflow
HHI overflow
STRTHT starting index for title
STRTHX starting index for xlabel
LENHT length of title
LENHX length of xlabel

Scatterplots

The following scatterplot related variables are created automatically:

variable name type description
NSBINX vector number of bins in x
NSBINY vector number of bins in y
ISCAT vector index of first bin
SXLO vector x minimum
SXINC vector x increment
SYLO vector y minimum
SYINC vector y increment
OUTSID matrix underflows and overflows
STRTST vector starting index for title
STRTSX vector starting index for xlabel
STRTSY vector starting index for ylabel
LENST vector length of title
LENSX vector length of xlabel
LENSY vector length of ylabel

The scatterplot overflows and underflows are stored in a matrix named OUTSID, which always
has 8 rows, and is defined below for scatterplot number j.

213

Commands

x-low x-ok x-high
y-high y-high y-high
OUTSID[4,j] OUTSID[3,j] OUTSID[2,j]

x-low x-ok x-high
y-ok y-ok y-ok
OUTSID[5,j] OUTSID[1,j]

x-low x-ok x-high
y-low y-low y-low
OUTSID[6,j] OUTSID[7,j] OUTSID[8,j]

FIOWA examples

To draw histogram n:

label\xaxis htitle[strtht[n]:strtht[n]+lenht[n]-1]

scalar\dummy j

graph\hist loop(hxlo[n]+(j-0.5)*hxinc[n],j,1:nbins[n]) -

data[hstart[n]:hstart[n]+nbins[n]-1]

To draw scatterplot n, using the diffusion type of density plot:

label\xaxis stitle[strtst[n]:strtst[n]+lenst[n]-1]

scalar\dummy j

x = loop(sxlo[n]+(j-0.5)*sxinc[n],j,1:nsbinx[n])

y = loop(sylo[n]+(j-0.5)*syinc[n],j,1:nsbiny[n])

m = fold(data[iscat[n]:iscat[n]+nsbinx[n]*nsbiny[n]-1],nsbinx[n])

density\profiles\diffusion x y <-m ! <- is the transpose operator

XFIOWA data sets

Syntax RESTORE\XFIOWA filename

The RESTORE\XFIOWA command restores eXpanded FIOWA type data files containing his-
tograms and scatterplots (as modified by Tom Huber from the original FIOWA). These data
files are ASCII and so are transportable between platforms, unlike the original FIOWA files
which are written as unformatted data.

No special qualifiers are need to restore data sets made with the “big” version of FIOWA.
When you restore an XFIOWA file, you get the same PHYSICA variables as with a FIOWA file.

HBOOK data sets

214

Commands

Syntax RESTORE\HBOOK filename

RESTORE\HBOOK\DIR filename directory

Examples RESTORE\HBOOK FILE.DAT

RESTORE\HBOOK\DIR FILE.DAT ‘/SUB1/SUB2’

The RESTORE\HBOOK command restores HBOOK type data files containing histograms and 2d

histograms (scatterplots). If the \DIR qualifier is used, the ZEBRA RZ directory within the file
can be specified, using the absolute pathname in the ZEBRA syntax. When you restore a file,
you get the following PHYSICA variables:

variable name type description
DATA vector all the histogram and scatterplot data
HERROR vector histogram and scatterplot errors
NHIST scalar number of histograms
NSCAT scalar number of scatterplots
HTITLE string string containing all the histogram titles
STITLE string string containing all the scatterplot titles

The HERROR vector contains the errror contents of all the histograms and scatterplots. Access
this information in the same way as you access the /verb+DATA+ vector, for example, for
histogram /verb+n+: error = herror[hstart[n]:hstart[n]+nbins[n]-1].

Listing

Syntax RESTORE\HBOOK\LIST filename

RESTORE\HBOOK\LIST\DIR filename directory

If you use the \LIST qualifer, a listing of the contents of the data file will be displayed on
your monitor screen. If the \DIR qualifier is used, the ZEBRA RZ directory within the file can
be specified, using the absolute pathname in the ZEBRA syntax. The listing is produced by
the HLDIR routine from the CERN library.

Ntuples

Syntax RESTORE\HBOOK\RWN filename id

RESTORE\HBOOK\RWN\DIR filename directory id

This command will restore the Row Wise Ntuple with identification number id from an
HBOOK data file. If the \DIR qualifier is used, the ZEBRA RZ directory within the file can
be entered, using the absolute pathname in the ZEBRA syntax. By default, a vector will be
created for each variable in the Ntuple, where the names of these vectors will be the tag

215

Commands

names of the variables in the Ntuple.

For now, Column Wise Ntuples cannot be restored in PHYSICA.

If the \MATRIX qualifier is used, an array string variable, named NTAGSn, will be created
containing the tag names for the variables in the Ntuple, and a matrix, named NTUPLEn, will
be created containing the data, where n is the identification number id.

Histograms

The following histogram related vector variables will be created automatically:

variable name description
ID1 histogram identifier
NBINS number of bins
NOENT number of entries
HMEAN mean value
HSTD standard deviation
HEQUIV number of equivalent events
HSTART starting index
HXLO x minimum
HXINC bin size
HLO underflow
HHI overflow
STRTHT starting index for title
LENHT length of title

NOENT[j] is the number of original entries in histogram [j], including underflows and over-
flows.

HLO[j] is the sum of the weights for events below the histogram lower limit. If you did
not use weights when filling the histogram, then HLO is the number of events below the
histogram lower limit.

HHI[j] is the sum of the weights for events above the histogram upper limit. If you did
not use weights when filling the histogram, then HHI is the number of events above the
histogram upper limit.

The number of equivalent events returned in HEQUIV is based on the channel contents only.
If wi represents the contents of event i, then

number of equivalent events =
∑

(wi)2/
∑

(w2
i)

216

Commands

This is what it is supposed to be, but it seems to be just the total number of entries in the
histogram, which is the same as NOENT. To calculate this value inside PHYSICA, you could
use:

y = data[hstart[n]:hstart[n]+nbins[n]-1]

! hsum will be the sum of the weights inside the histogram limits

statistics\-message y hsum\sum

! hsum2 will be the sum of the squares of the weights

statistics y*y hsum2\sum

hequiv[n] = hsum*hsum/hsum2

The standard deviation returned in HSTD is based on the channel contents only. If xi and wi
represent the value and contents of event i, and W =

∑
(wi), then

expectation value E(x) =
∑

(wixi)/W

mean value = E(x)

central moment of order n, M(n) = E((x−E(x))n)

standard deviation =
√

(M(2))

The mean value, or expectation value, returned in HMEAN is based on the channel contents
only. If xi and wi represent the value and contents of event i, and W =

∑
(wi), then

mean value =
∑

(wixi)/W

Scatterplots

The following 2d histogram related vector variables will be created automatically:

variable name type description
ID2 vector scatterplot identifier
SNOENT vector number of entries
NSBINX vector number of bins in x
NSBINY vector number of bins in y
ISCAT vector index of first bin
SXLO vector x minimum
SXINC vector x increment
SYLO vector y minimum
SYINC vector y increment
OUTSID matrix underflows and overflows
STRTST vector starting index for title
LENST vector length of title

217

Commands

SNOENT[j] is the number of original entries in scatterplot [j], including underflows and
overflows.

The overflows and underflows for scatterplot j are stored in a matrix named OUTSID, which
always has 8 rows, and is defined below.

x-low x-ok x-high
y-high y-high y-high
OUTSID[4,j] OUTSID[3,j] OUTSID[2,j]

x-low x-ok x-high
y-ok y-ok y-ok
OUTSID[5,j] OUTSID[1,j]

x-low x-ok x-high
y-low y-low y-low
OUTSID[6,j] OUTSID[7,j] OUTSID[8,j]

HBOOK examples

To draw histogram n:

label\xaxis htitle[strtht[n]:strtht[n]+lenht[n]-1]

scalar\dummy j

graph\hist loop(hxlo[n]+(j-0.5)*hxinc[n],j,1:nbins[n]) -

data[hstart[n]:hstart[n]+nbins[n]-1]

To draw scatterplot n, using the diffusion type of density plot:

label\xaxis stitle[strtst[n]:strtst[n]+lenst[n]-1]

scalar\dummy j

x = loop(sxlo[n]+(j-0.5)*sxinc[n],j,1:nsbinx[n])

y = loop(sylo[n]+(j-0.5)*syinc[n],j,1:nsbiny[n])

m = fold(data[iscat[n]:iscat[n]+nsbinx[n]*nsbiny[n]-1],nsbinx[n])

density\profiles\diffusion x y <-m ! <- is the transpose operator

YBOS data sets

Syntax RESTORE\YBOS filename

Qualifier \DOTPLOT
Default \NODOTPLOT

218

Commands

The RESTORE\YBOS command restores YBOS type data files containing histograms or dotplots.
Use the \DOTPLOT qualifier to specify that you want to restore a file containing dotplots. By
default, the file is assumed to contain histogram data.

Histograms

When you restore (or map to shared memory) a YBOS histogram file, for histogram number
j, you get the following PHYSICA variables:

variable name type YBOS structure name or description
HRUNNO scalar YBS.I_RUNNO

HTITLE[j] array string YBS.HISTO_ST(j).DOT_NAME

HTEST[j] array string YBS.HISTO_ST(j).TEST_NAME

HDATA[j] array string YBS.HISTO_ST(j).DATA_NAME

HIST vector YBS.HISTO

HSTART[j] vector starting index for histo j

HNBIN[j] vector YBS.HISTO_ST(j).N_BINS

HLOW[j] vector YBS.HISTO_ST(j).XLOW

HHI[j] vector YBS.HISTO_ST(j).XHI

HBINW[j] vector (HHI[j]-HLOW[j])/HNBIN[j]

HUNDER[j] vector YBS.HISTO_ST(j).XUNDER

HOVER[j] vector YBS.HISTO_ST(j).XOVER

HSUM[j] vector sum of histo j

HMEAN[j] vector mean value of histo j

HSIGMA[j] vector sigma of histo j

Dotplots

Syntax RESTORE\YBOS\DOTPLOT file

When you restore (or map to shared memory) a YBOS dot plot file, for dot plot number j,
you get the following PHYSICA variables:

219

Commands

variable name type YBOS structure name or description
DRUNNO scalar YBS.I_RUNNO

X_SYMBOL[j] array string YBS.DOT_EXTRA(j).X_SYMBOL

Y_SYMBOL[j] array string YBS.DOT_EXTRA(j).Y_SYMBOL

STEST_ALL[j] array string YBS.DOT_EXTRA(j).STEST_ALL

DOT_NAME[j] array string YBS.DOT_ST(j).DOT_NAME

SCTEST[j] array string YBS.DOT_EXTRA(j).SCTEST[1-4]

XDOT vector YBS.XDOT

YDOT vector YBS.YDOT

XLOW[j] vector YBS.DOT_ST(j).X_LOW

XHIGH[j] vector YBS.DOT_ST(j).X_HIGH

YLOW[j] vector YBS.DOT_ST(j).Y_LOW

YHIGH[j] vector YBS.DOT_ST(j).Y_HIGH

SCTEST_START[j,1:4] matrix starting character index for SCTEST[j]

SCTEST_END[j,1:4] matrix final character index for SCTEST[j]

COL_POINTER[j,1:4] matrix YBS.DOT_ST(j).COL_ST(1:4).COL_POINTER

COL_OFF[j,1:4] matrix YBS.DOT_ST(j).COL_ST(1:4).COL_OFF

Furthermore: SCTEST[j][SCTEST START[j,k]:SCTEST END[j,k]] = YBS.DOT EXTRA(j).SCTEST[k]

YBOS examples

To draw histogram n:

label\xaxis htitle[n]

scalar\dummy j

graph loop(hlow[n]+(j-1)*hbinw[n],j,1:hnbin[n]) -

hist[hstart[n]:hstart[n]+hnbin[n]-1]

To draw dotplot n:

220

Commands

do j = [1:4]

if (col_off[n,j] > 0) then

scale xlow[n] xhigh[n] 5 ylow[n] yhigh[n] 5

graph\axesonly

colour j

graph\noaxes -

xdot[col_pointer[n,j]:col_pointer[n,j]+col_off[n,j]-1] -

ydot[col_pointer[n,j]:col_pointer[n,j]+col_off[n,j]-1]

set

%xloc 32

%yloc 90-3*j

%txthit 2.0

cursor -2

text rchar(col_off[n,j],‘F6.0’)//‘/’//sctest[n]

endif

enddo

µSR MUD data sets

Syntax RESTORE\MUD file

The RESTORE\MUD command restores µSR MUD type data files containing histograms. The
actual histogram data is stored in a vector, HISTDATA, and histogram number j can be ex-
tracted using: HISTDATA[HISTSTART[j]:HISTEND[j]]. The global title is in a string variable
called TITLE. The title for histogram number j is in the array string variable HISTITLE[j].
For more information on the MUD data format, visit the URL:

http://www.triumf.ca/dagroup/modas/mud_friendly.html

General variables

221

Commands

scalars strings
RUNNUMBER TITLE

RUNDESC LAB

EXPTNUMBER AREA

ELAPSEDSEC METHOD

TIMEBEGIN APPARATUS

TIMEEND INSERT

SAMPLE

ORIENT

DAS

EXPERIMENTER

Comments

scalars vectors strings
COMMENTTYPE COMMENTPREV COMMENTAUTHOR

COMMENTNUM COMMENTNEXT COMMENTTITLE

COMMENTTIME COMMENTBODY

Histograms

scalars vectors strings
HISTNUM NUMBINS HISTTITLE

HISTSTART

HISTEND

HISTDATA

HISTTYPE

HISTNUMBYTES

HISTBYTESPERBIN

HISTFSPERBIN

HISTTO PS

HISTTO BIN

HISTGOODBIN1

HISTGOODBIN2

HISTBDGD1

HISTBKGD2

NUMEVENTS

Scalers

scalars vectors strings
SCALERTYPE SCALERCOUNTS SCALERLABEL

222

Commands

Independent variables

scalars vectors strings
INDVARTYPE INDVARLOW INDVARNAME

INDVARHIGH INDVARDESCRIPTION

INDVARMEAN INDVARUNITS

INDVARSTDDEV

INDVARSKEWNESS

µSR data sets

Syntax RESTORE\MSR file

The RESTORE\MSR command restores µSR type data files containing histograms. Histogram
number j is stored in column j of the matrix IH. The global title is in a string variable called
TITLE. The title for histogram number j is in the array string variable HTITLE[j]. There are
also associated scalars:

IRUN is the run number
NHISTS is the number of histograms
NBINS is the number of bins
NS BIN is the binning increment

The associated vectors:

TOTEV[j] is the total number of events in histogram j

IT0[j] is the start of background for histogram j

IT1[j] is the start of data for histogram j

IT2[j] is the end of data for histogram j

To plot histogram J, enter:

GRAPH\HISTOGRAM [0:(NBINS-1)*NSBIN:NSBIN] IH[1:NBINS,J]

IµSR data sets

Syntax RESTORE\IMSR file

The RESTORE\IMSR command restores IµSR type data files. Histogram number j is stored in
column j of the matrix IX. The run number is stored in a scalar called IRUNNO. The version
number is stored in a scalar called IVERS. The global title is in a string variable called
ITITLE. The subtitle, if it exists in the file, is in a string variable called ISUBTITLE. The title
for histogram number j is in the array string variable XTITLE[j].

223

Commands

To plot histogram J, enter:

GRAPH\HISTOGRAM [1:VLEN(M)(1)] IX[*,J]

CHAOS data sets

The RESTORE\CHAOS command restores CHAOS type data files containing histograms. The run
number is stored in a scalar variable named RUN NUMBER. The number of events analyzed will
be stored in a scalar variable named I ANALYZED. The number of histograms and the number
of channels are stored in scalar variables named NHIST and NCHAN. The vectors XLO, XHI,
NBINS, and HSTART will be created. Each of these will have NHIST elements. The histogram
data will be stored in a vector named HIST, with NCHAN elements.

The array string variable HNAMES will be created, with NHIST elements. HNAMES[i] is the name
of histogram number i. The array string variable TITLES will be created, with NHIST elements.
TITLES[i] is the title of histogram number i. The array string variable EVENT CALIB will be
created, with NHIST elements. EVENT CALIB[i] is the event/calibration flag for histogram
number i.

The data for histogram number I is located in HIST[HSTART[i]:NBINS[i]+HSTART[i]-1]. To
make an x vector for plotting histogram number I, enter:

GENERATE X XLO[I],,XHI[I] NBINS[I]+HSTART[I]-1

RETURN
Syntax RETURN

The RETURN command is to be used in conjunction with script files.

If the RETURN command is encountered in a script file, control passes back to the calling
script, if there is one, or to the keyboard, if that script was the top level script. You can also
type RETURN from the keyboard after a TERMINAL command to abort that script.

SAVE
Syntax SAVE file

The SAVE command saves all the data associated with the current run, that is, all variable
names, contents, and histories. This includes all scalars, vectors, matrices, and string
variables. This information is written in a special binary format into the specified file. The
run may be resumed later by means of the RESTORE command, page 211.

The plot information necessary for a replot is also saved. The window definitions are saved,

224

Commands

as well as the colour, the default filename extension for executable files, the stack file,
autoscaling type, and any aliases that have been defined. The hardcopy device as chosen
with the DEVICE command is saved, as well as the graphics ORIENTATION.

User defined routine information is not saved, but must be regenerated explicitly in the
restored session.

SCALAR
Syntax SCALAR s1 { s2 . . . }
Qualifiers \DUMMY, \VARY
Examples SCALAR A B C

SCALAR\DUMMY I J K

SCALAR\VARY P1 P2

The SCALAR command defines sI to be a scalar. If sI exists and is a scalar, there is no affect.
If sI exists but is not a scalar, it will be destroyed first. If sI does not exist, it will be created
and initialized to the value one (1).

Fit parameters

Syntax SCALAR\VARY s1 { s2 . . . }

The SCALAR\VARY command defines sI to be a scalar variable as above, but it also allows
sI to vary during a FIT. These fit parameters are treated as fixed value scalars, except by
the FIT command. The FIT command can vary a parameter’s value to minimize the least
squares residual and the result is still a scalar.

To fix a parameter so it can no longer vary use the SCALAR command with no qualifier.

Dummy variables

Syntax SCALAR\DUMMY s1 { s2 . . . }

The SCALAR\DUMMY command defines sI to be a scalar dummy variable for use in functions
requiring dummy variables: LOOP, SUM, PROD, RSUM, and RPROD. Dummy variables cannot
be used in other contexts, since they have no fixed values.

225

Commands

SCALES
Syntax SCALES { minx maxx nlxinc miny maxy nlyinc }

SCALES minx maxx miny maxy

Qualifiers \COMMENSURATE
Defaults non-commensurate axes

Examples SCALES

SCALES 0 0 0 .1 .5 0

SCALES\COMM -10 5 3 .01 .05 4

The SCALES command turns off the autoscaling feature, as set with the SET AUTOSCALE com-
mand, and sets the graph scales for subsequent graphs as follows:

minx – minimum value to display on the x-axis
maxx – maximum value to display on the x-axis
nlxinc – number of large (numbered) tic marks on the x-axis

miny – minimum value to display on the y-axis
maxy – maximum value to display on the y-axis
nlyinc – number of large (numbered) tic marks on the y-axis

If no parameters are entered, the scales will be frozen at their current values, and the
current values of minx, maxx, nlxinc, miny, maxy, and nlyinc will be displayed.

If four (4) parameters are entered, the number of labeled tic marks on the x and y-axes,
that is, nlxinc and nlyinc, default to zero (0), which means the program will choose ”nice”
numbers of increments.

Commensurate axis scaling

If the \COMMENSURATE qualifier is used, the axes will be drawn with commensurate scaling,
that is, the lengths of both axes will be adjusted to give a commensurate graph. The lengths
of the axes are adjusted at the time the SCALES\COMMENSURATE command is given, which
means that if you change windows, with the WINDOW command, after the SCALES\COMMENSURATE
command, the axis lengths will be incorrect. Choose the window you want and then set the
axis scales.

Labeled tic marks

The number of large, labeled, tic marks to be displayed on the x-axis is controlled by nlxinc.
Its initial value is 5%.

226

Commands

nlxinc < 0 the number of large tic marks on the x-axis will be nlxinc +1. If the x-
axis is logarithmic, that is, if XLOG > 1, then nlxinc may be changed to
avoid fractional powers. If the x-axis is linear, that is, if XLOG < 1, then
the x-axis minimum and maximum will not be labeled with numbers.

nlxinc = 0 the number of large tic marks on the x-axis will be automatically deter-
mined for the user. The virtual x-axis minimum and maximum will be
determined, so the x-axis may not begin or end at a large tic mark

nlxinc > 0 the number of large tic marks on the x-axis will be nlxinc +1. If XLOG > 1,
logarithmic x-axis, nlxinc may be changed to avoid fractional powers. If
XLOG < 1, linear x-axis, nlxinc will not be changed.

The number of large, labeled, tic marks to be displayed on the y-axis is controlled by nlyinc.
Its initial value is 5%.

nlyinc < 0 the number of large tic marks on the y-axis will be nlyinc +1. If the y-axis
is logarithmic, that is, if YLOG > 1, then nlyinc may be changed to avoid
fractional powers. If the y-axis is linear, that is, if YLOG < 1, then the y-axis
minimum and maximum will not be labeled with numbers.

nlyinc = 0 the number of large tic marks on the y-axis will be automatically deter-
mined for the user. The virtual y-axis minimum and maximum will be
determined, so the y-axis may not begin or end at a large tic mark

nlyinc > 0 the number of large tic marks on the y-axis will be nlyinc +1. If YLOG > 1,
logarithmic y-axis, nlyinc may be changed to avoid fractional powers. If
YLOG < 1, linear y-axis, nlyinc will not be changed.

Example

The following script produces Figure 2.23:

227

Commands

WINDOW 5 ! choose a window

SCALES -.5 .5 2 -5 5 2 ! set the graph scales

GRAPH\AXESONLY ! plot only the axes

GET ! get some GPLOT keyword values

%XLAXIS XLX !

%XUAXIS XUX !

! don’t forget the blank line

SET ! set some GPLOT keyword values

CURSOR -2 ! centred text

%XLOC (XLX+XUX)/2 ! x reference point for text

%YLOC 50 ! y reference point for text

! don’t forget the blank line

TEXT ‘SCALES -.5 .5 2 -5 5 2’ ! draw a string

WINDOW 6 !

SCALES 10 50 4 -100 -80 2 !

GRAPH\AXESONLY !

TEXT ‘SCALES 10 50 4 -100 -80 2’ !

WINDOW 7 !

SET YLOG 10 ! y-axis logarithmic, base 10

SCALES 10 50 4 2 6 4 !

GRAPH\AXESONLY !

TEXT ‘SCALES 10 50 4 2 6 4’ !

SET %YLOC 40 !

TEXT ‘YLOG = 10’ !

SET %YLOC 50 !

WINDOW 8 !

SET YLOG -2 ! base 2, numbered without powers

GRAPH\AXESONLY !

TEXT ‘SCALES 10 50 4 2 6 4’ !

SET %YLOC 40 !

TEXT ‘YLOG = -2’ !

SET
Syntax SET { keyword { value }}

SET { keyword = value }
Examples SET %XLAXIS 20

SET %XLAXIS=XLX

The SET command sets the values of the GPLOT plot characteristic keywords and the PHYSICA
specific keywords. Use the GET command, page 107, to obtain the values of these keywords.

228

Commands

Figure 2.23: An example using the SCALES command

How the SET command works

If the SET command is entered with no parameters, more than one keyword value can be ob-
tained without re-entering the SET command. Other keywords and values will be requested,
until a blank line is entered, at which time the user is put back into command line entry
mode.

If the SET command is entered with no parameters in a script file, a blank line is necessary
to indicate that the SET command is finished.

If a keyword is entered with the SET command, then only that one keyword’s value can be
changed, with that command. If a value is not entered after the keyword, the current value
is displayed. The current value is unchanged if no new value is entered.

Examples

To display the current value of XMIN, enter: GET XMIN

The following script gets the current value of XMIN and then changes it to XMIN−10, and sets
the value of XMAX to XMIN+100

229

Commands
...

GET XMIN A ! makes a scalar A

SET

XMIN A-10

XMAX A+100 ! don’t forget the blank line to finish

...

GPLOT keywords

See Appendix A for descriptions of all the GPLOT plotting characteristic keywords. The
tables produced by the MENU contain most of the keywords that can be accessed with the SET

and GET commands, along with their current values.

The GPLOT keywords: MASK, ALIAS, PMODE, PTYPE, and ERRBAR, should not be changed in
PHYSICA, as these are internally adjusted and used by various commands.

The PHYSICA keywords

The keywords, ARROLEN, ARROTYP, and ARROWID, apply to arrows drawn with the FIGURE ARROW

command, page 82. See Figure 2.24 for examples of the available arrow styles.

Figure 2.24: Arrow styles

ARROLEN

Default value: ARROLEN = 0.20

230

Commands

ARROLEN is the arrow head length expressed as a fraction of the length of the arrow’s shaft.

ARROTYP

Default value: ARROTYP = 00

ARROTYP determines the type of arrow to draw. See Table 2.54.

ARROTYP arrow style

00 open head, line segment with arrowhead at one end
01 open head, line segment with arrowhead at each end
02 open head, arrowhead at one end with no line segment
10 closed head, line segment with arrowhead at one end
11 closed head, line segment with arrowhead at each end
12 closed head, arrowhead at one end with no line segment

Table 2.54: The ARROTYP code and corresponding arrow styles

ARROWID

Default value: ARROWID = 0.15

ARROWID is the arrow head width expressed as a fraction of the length of the arrow’s shaft.

AUTOSCALE

ParametersON | OFF | XAXIS | YAXIS | COMMENSURATE

Parameter
Qualifier

\VIRTUAL

Examples SET AUTOSCALE ON

SET AUTOSCALE XAXIS\VIRTUAL
SET AUTOSCALE COMMENSURATE

The AUTOSCALE keyword controls autoscaling for graph axes. Autoscaling means to auto-
matically choose the minimum and maximum values for the axes, as well as the number
of large, numbered, tic marks for the axes. Autoscaling affects commands that draw axes,
that is, the commands GRAPH, CONTOUR, DENSITY, REPLOT, and SLICES. The type of autoscaling
that is done depends on the keyword that is used.

231

Commands

keyword result

ON Autoscale the horizontal and the vertical axes
COMMENSURATE Autoscale the horizontal and vertical axes and

change the lengths of the axes so that they will be commensurate

XAXIS Autoscale the horizontal axis only,
the vertical axis will remain as currently set

YAXIS Autoscale the vertical axis only,
the horizontal axis will remain as currently set

OFF turn off all autoscaling,
the axes will appear as they are currently set

Autoscaling remains in effect until either the command SET AUTOSCALE OFF is entered, or the
SCALES command is entered. The default is ON.

When the \VIRTUAL qualifier is used, the virtual minima and maxima for the axes will be
determined, so that the axes may not begin or end at a large tic mark. If the keyword ON

is used, both x- and y-axes will have virtual minima and maxima. If the keyword XAXIS is
used, only the x-axis will have virtual minimum and maximum. If the keyword YAXIS is
used, only the y-axis will have virtual minimum and maximum.

CNTSEP

Default value: %CNTSEP = 50%

The separation between contour labels can be set with CNTSEP or %CNTSEP. If %CNTSEP is used,
the separation is a percentage of the height of the window, that is, YUWIND-YLWIND. If CNTSEP
is used, the separation is expressed in centimeters or inches, depending on the units type
as set with the SET UNITS command.

LABSIZ

Default value: %LABSIZ = 1.5

LABSIZ, or %LABSIZ, is the size of the contour labels. %LABSIZ is the size as a percentage
of the height of the window, that is, YUWIND-YLWIND, while LABSIZ is the size expressed in
centimeters or inches, depending on the units type as set with the SET UNITS command.

LEGSIZ

Default value: %LEGSIZ = 1.6

232

Commands

LEGSIZ, or %LEGSIZ, is the size of the contour plot and density plot legend entries. %LEGSIZ is
the size as a percentage of the height of the window, that is, YUWIND-YLWIND, while LEGSIZ is
the size expressed in centimeters or inches, depending on the units type as set with the SET

UNITS command.

LEGFRMT

Default value: LEGFRMT = ‘1PE10.3′

The numeric legend entries drawn by the DENSITY and CONTOUR commands are written using
the LEGFRMT format.

ERRFILL

Default value: ERRFILL = 0

If the \ERRFILL qualifier is used with the READ command, and an invalid field is encountered
on a record in the data file, then ERRFILL will be used.

format used: all fields on that record will be set to ERRFILL

no format used: only the invalid field will be set to ERRFILL

FILL

Default value: FILL = 0

FILL is used in the FIGURE command, with the fillable figures: BOX, POLYGON, WEDGE, CIRCLE,

ELLIPSE, and ARROWs with closed heads. It is also used for filling the boxes with the
DENSITY\BOX command. See Table 2.55 for a description of the interpretations of the FILL

keyword.

FILL = 0 no filling
1 ≤ |FILL| ≤ 10 fill with hatch pattern |FILL|

11 ≤ |FILL| ≤ 99 fill with dithering pattern
if |FILL| = nm, n is the increment number of dots hori-
zontally and m is the increment number of dots to light
up vertically

FILL < 0 erase using |FILL| as above

Table 2.55: Interpretations of the FILL keyword

For example, FILL = 34 means to light up every 3rd dot horizontally and every 4th dot verti-

233

Commands

cally. FILL = −34 means to erase every 3rd dot horizontally and every 4th dot vertically. FILL

= 8 means to fill with hatch pattern 8. FILL = −8 means to erase using hatch pattern 8.

See the SET HATCH command for information on changing the hatch pattern definitions.
See the DISPLAY HATCH command for information on how to display examples of the hatch
patterns.

HATCH

Parameters: hnum { spaces angle }

The SET HATCH command is used for changing the hatch pattern definitions that are used for
text bolding, for filling areas under curves or histograms, and for use by the TILE, PIEGRAPH,
and FIGURE commands.

The SET HATCH command does not choose the hatch pattern to be used by other commands.
It only alters the definition of a hatch pattern.

If just the keyword HATCH is entered, a table of the spacings and angles for all ten hatch
patterns is displayed. You will be requested to enter a hatch pattern number, hnum, a
spacing scalar or a vector of spacings, spaces, and an angle, angle. Typing the <RETURN> key,
without entering anything, will leave the current values unchanged. If the hatch pattern
number, a spacing scalar or vector and an angle are entered, then nothing will be displayed.
For example, to set hatch pattern 3 to have spacings of [0.05;0.1;0.2] and an angle of 45◦,
enter:

SET HATCH 3 [0.05;0.1;0.2] 45

while to set hatch pattern 7 to have a single spacing of 0.5 and an angle of -45◦, enter:

SET HATCH 7 .5 -45

The hatch pattern number, hnum, should be between one and ten. A spacing vector, spacevec,
must have no more than ten elements. A hatch pattern is composed of an angle and from
one to ten spacings. The default spacings and angles are listed in Table 2.56. The angles
are in degrees and the spacing lengths, by default, are expressed in centimeters, but if the
units are changed to inches, with the SET UNITS command, the lengths will be converted
to inches. See Figure 2.7 on page 61 for examples of the hatch patterns. See the DISPLAY

command, page 58, for information on how to display examples of the hatch patterns.

When an object is being filled, a line is drawn inside the object at the specified angle, then
a parallel line is drawn at the first spacing, and so on for the number of spacings in that

234

Commands

pattern. This process is repeated until the object is filled.

Pattern Spacings
Number 1 2 angle

1 0.01 0
2 0.01 90
3 0.05 0
4 0.05 90
5 0.10 0
6 0.10 90
7 0.20 45
8 0.20 −45
9 0.20 0.10 45
10 0.20 0.10 −45

Table 2.56: The hatch pattern defaults

LINE

Parameters: n { v }

The SET LINE command is used for changing the definition of the line types that are used by
the commands: GRAPH, LINE, PICK, ELLIPSE, FIGURE, and ZEROLINES.

This command does not choose the line type to be used by other commands. It only alters
the definition of a line type. To choose a line type, use the SET LINTYP command.

If just the keyword LINE is entered, a table of the spacings for all ten line types is displayed.
You will be requested to enter a line type number, n, and a vector of spacings, v. Typing the
<RETURN> key, without entering anything, will leave the current values unchanged. If the line
type number and a spacing vector are entered, then nothing will be displayed. For example,
to set line type 2 to [0.05;0;0], enter:

SET LINE 2 [0.05;0;0]

The line type number, n, should be between one and ten. The spacing vector, v, must have
three elements. The line types come in four different styles:

• ordinary solid line
• double line of specified width
• dashed line with specified dash and space lengths
• dashed line with two different dash lengths

235

Commands

The different line types are achieved by specifying the three lengths v[1], v[2], and v[3] as
shown in Table 2.57.

v[1] v[2] v[3] Result

= 0 ordinary solid line

> 0 = 0 double line with width v[1]

> 0 > 0 = 0 dashed line with dash length v[1], space length v[2]

> 0 > 0 > 0 dashed line with first dash length v[1], space length
v[2], and second dash length v[3]

Table 2.57: Line type definitions

There are ten line types available. The defaults are listed in Table 2.58. The lengths are
expressed in centimeters, the default, but if the units are changed to inches, with the SET

UNITS command, the lengths will be converted to inches. See Figure 2.8 on page 62 for
examples of the default line types. See the DISPLAY command, page 58, for information on
how to display examples of the line types.

line type v[1] v[2] v[3]

1 0.00 0.00 0.00
2 0.07 0.00 0.00
3 0.50 0.30 0.00
4 0.50 0.30 0.10
5 0.30 0.30 0.00
6 0.30 0.30 0.10
7 0.20 0.20 0.00
8 0.20 0.20 0.05
9 0.05 0.20 0.00
10 0.05 0.30 0.00

Table 2.58: The line type defaults

SHOWHISTORY

Default value: SHOWHISTORY = 5

SHOWHISTORY controls how many lines of history to display for each numeric variable as a
result of the SHOW command.

MAXHISTORY

236

Commands

SHOWHISTORY

n < 0 → all stored history lines will be displayed
n = 0, 1 → only the latest history line will be displayed
n > 0 → a maximum of n lines of history will be displayed for each variable

Table 2.59: The SHOWHISTORY keyword interpretation

Default value: MAXHISTORY = 5

MAXHISTORY is the maximum number of history lines to store for each numeric variable.
MAXHISTORY was added because if a variable had its value changed within a large DO loop, a
new history line was added each time the loop was processed, which could lead to virtual
memory problems.

WRAP

Default value: WRAP = 0

If WRAP = 0, history lines and string variable contents lines are not wrapped when displayed
with the SHOW command. If WRAP is non-zero, these lines are wrapped.

TENSION

Default value: TENSION = 1.0

TENSION controls the spline tension for the functions using cubic splines:

DERIV, INTEGRAL, INTERP, SMOOTH, SPLINTERP, and SPLSMOOTH.

SEED

Default value: SEED = 12345

SEED is the random number seed value. This seed is updated whenever the GENERATE\RANDOM
command is entered, or the RAN is used.

POSTRES

Default value: POSTRES = 180

POSTRES controls the PostScript graphics output resolution, in dots per inch. This applies to
dot filled text characters and dot types of DENSITY plots. The resolution can be changed at

237

Commands

any time, so different parts of a single drawing can be drawn with different resolutions.

SPEED

Default value: SPEED = 20

SPEED controls the pen plotter speed. This applies to Hewlett-Packard, Houston, and Roland
RDGL II pen plotters. The speed can be changed at any time, so different parts of a single
drawing can be drawn at different speeds.

WIDTH

Default value: WIDTH = 80

WIDTH controls the character width of the alphanumeric monitor screen. The value for WIDTH

should be between 2 and 132.

XPREV

Default value: XPREV = 0

XPREV is the last world x-coordinate that was drawn by any graphics command. The value
of this keyword is automatically updated.

YPREV

Default value: YPREV = 0

YPREV is the last world y-coordinate that was drawn by any graphics command. The value
of this keyword is automatically updated.

NCURVES

Default value: NCURVES = 0

NCURVES is the total number of data curves that have been drawn, using the GRAPH command,
since the last CLEAR command. The value of this keyword is automatically updated.

PCHAR

Parameters: symbol { size { colour { angle }}}

238

Commands

PCHAR controls the plotting symbols, or the appearance of the histogram bars, when the GRAPH

command is entered. Each of the parameters may be either a literal constant, a scalar, or a
vector. Entering a constant or a scalar is similar to entering a vector whose elements are all
equal to the constant or the value of the scalar.

The interpretations of the parameters depend on the value of the GPLOT keyword HISTYP at
the time that the GRAPH command is entered. HISTYP is also changed with the SET command.
See Table 2.39 on page 118 for an explanation of HISTYP. If HISTYP = 0, the default value,
subsequent graphs will be normal line graphs.

Plotting symbols

When plotting normal line graphs, the first parameter, symbol, determines the plotting sym-
bol to draw at each data point, and whether or not to connect the symbols with line seg-
ments. Plotting symbol zero means do not draw a symbol, but just draw line segments
joining the data points. This is the default.

The symbol that will be plotted at the point (x[i],y[i]) will be the ASCII decimal equivalent
of the absolute value of symbol[i]. For example, 54 represents the ASCII character 6, 35
represents the ASCII character #, and 78 represents the ASCII character N. The maximum
absolute value of a plotting symbol is ninety-five (95), so the lower case alphabetic characters
are not available. These symbols have their lower left corners at the data point.

There are eighteen (18) special plotting symbols which are centred at the data points using
the code numbers from one (1) to eighteen (18). See Figure 2.9 on page 62. These symbols
are not translated into their ASCII decimal equivalents. See the DISPLAY command, page 58,
for information on displaying the plotting symbols on the monitor screen.

A plotting symbol value of zero means do not draw a symbol, but connect that point to
the previous point. If the value of symbol[i+1] is greater than zero, the symbol drawn at
point (x[i+1],y[i+1]) will be connected to the symbol drawn at point (x[i],y[i]). If the
value of symbol[i+1] is less than zero, the symbol drawn at point (x[i+1],y[i+1]) will not
be connected to the symbol drawn at point (x[i],y[i]).

Plotting symbol size

When plotting normal line graphs, the first optional parameter, size, controls the relative
size of each individual plotting symbol. If size is entered, the size of the symbol at point
(x[i],y[i]) will be size[i]×CHARSZ. The GPLOT keyword CHARSZ can be changed with the
SET command.

Plotting symbol colour

239

Commands

When plotting normal line graphs, the second optional vector, colour, is interpreted as the
colour code for the plotting symbol. If colour is entered, the colour code of the plotting
symbol at point (x[i],y[i]) will be colour[i]. Table 2.6 on page 20 shows the recognized
colours and their associated colour codes.

Plotting symbol angle

When plotting normal line graphs, the third optional parameter, angle, is interpreted as
the rotation angle, in degrees, of the plotting symbol. If angle is entered, the angle of the
plotting symbol drawn at point (x[i],y[i]) will be angle[i]. The angle of all of the plotting
symbols defaults to CHARA, which has a default value of 0◦. The GPLOT keyword CHARA can
be changed with the SET command.

Histograms

Parameters: fill { w { c }}

The GRAPH command used with the \HISTOGRAM qualifier plots histograms. Alternatively, SET
HISTYP n where n > 0, forces subsequent graphs to be histogram type graphs. See Table 2.39
on page 118 for an explanation of HISTYP.

HISTYP = 0 non-histogram

HISTYP = 2 or 4 tails will be drawn
the user has control over individual histogram bar filling,
width, and colour

HISTYP = 1 or 3 no tails are drawn
the user has control over individual histogram bar width,
and colour

The third optional parameter, angle, is ignored if a histogram is plotted.

Fill patterns

If HISTYP is 1 or 3, the first parameter, fill, is ignored. To fill the area under the histogram in
this case, use the SET command to set the value of LINTYP to 100+ the hatch pattern number
or to 200+ the dot pattern number. For example, 107 refers to hatch pattern number 7, while
244 refers to a dot fill pattern of every fourth dot both horizontally and vertically.

If HISTYP is 2 or 4, the first parameter, fill, determines the fill pattern for the individual
bars of the histogram. The filling can be done with grey scales or with hatch patterns.

240

Commands

100 ≤ |fill[i]| ≤ 110 means fill with a hatch pattern
200 ≤ |fill[i]| ≤ 299 means fill with a grey scale

If 200 ≤ |fill[i]| ≤ 299, the grey scale pattern fill[i]−200 will be used to fill the histogram
bar at (x[i],y[i]). For example, if fill[i] = 234, then grey scale dot pattern 34 will be
used.

fill[i] = 200 means every dot is lit (same as 211)
fill[i] > 0 means draw
fill[i] < 0 means erase

A grey scale dot pattern is of the form: uv, where the digit u is the increment number of
dots to light up horizontally, 1 ≤ u ≤ 9, and the digit v is the increment number of dots to
light up vertically, 1 ≤ v ≤ 9. For example, a grey scale dot pattern of 34 means to light up
every third dot horizontally and every fourth dot vertically. If uv is negative, then the dots
are erased instead of lighted. A grey scale pattern of zero, 00, is interpreted the same as
pattern 11, that is, every dot is lit.

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A “good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

If 100 ≤ |symbol[i]| ≤ 110, the hatch pattern fill[i]−100 will be used to fill the histogram
bar at (x[i],y[i]). For example, if fill[i] = 108, then hatch pattern 8 will be used.

fill[i] = 100 means do no fill the histogram bar
fill[i] > 0 means the histogram bar outline will be drawn
fill[i] < 0 means the histogram bar outline will not be drawn

A hatch pattern is composed of an angle and one to ten spacings. These spacings are
simply cycled through as each histogram bar is being filled, that is, a line is drawn inside
the histogram bar at the specified angle, then a parallel line is drawn at the first spacing,
then another parallel line is drawn at the second spacing, and so on for the number of
spacings in that pattern. This process is repeated until the histogram bar is filled. There
are ten hatch patterns available. See Figure 2.7 on page 61 for hatch pattern examples.

See the HATCH keyword for information on changing the hatch pattern definitions. See the
DISPLAY command for information on how to display examples of the hatch patterns.

Histogram bar width

241

Commands

The first optional parameter, w, allows the user to control the widths of individual histogram
bars. If w is entered, the width of the histogram bar at (x[i],y[i]) will be the normal width
times w[i].

Histogram bar colour

The second optional parameter, c, allows the user to control the colours of individual his-
togram bars. If c is entered, the colour code for the histogram bar at (x[i],y[i]) will be
c[i]. See Table 2.6, page 20, for the colour associated with each colour code.

UNITS

Parameter values: CM | IN

Default value: UNITS = CM

Note: The value of the UNITS keyword is a string instead of a numeric value.

UNITS controls the plotting units type, either centimeters, CM, the default, or inches, IN.

CUNITS

Parameter values: GRAPH | PERCENT | WORLD

Default value: CUNITS = PERCENT

CUNITS controls the units type for the cursor readout when the graphics cursor is invoked
by the PICK, PEAK, LINE, or FIGURE command when running under X Windows and mouse
button two is pressed. If WORLD is chosen, the numbers displayed depend on the current
units type, either centimeters or inches, as chosen with SET UNITS. If GRAPH is chosen, the
numbers displayed depend on the current graph axis scales.

FONT

Default value: FONT = TSAN

Note: The value of the FONT keyword is a string instead of a numeric value.

FONT controls the graphics font. For a list of the font names, see Table 2.60. If just the FONT

keyword is entered, a table of the font names is displayed, and you will be asked to enter
a new font name. If you type the <RETURN> key, without entering anything, the font is left
unchanged.

The DISPLAY FONT command will draw a font table for any font.

242

Commands

STANDARD ITALIC.2 GOTHIC.ENGLISH ROMAN.2

ITALIC.2A GOTHIC.FRAKTUR ROMAN.2A

SANSERIF.1 ITALIC.3 GOTHIC.ITALIAN ROMAN.3

SANSERIF.2

SANSERIF.CART SCRIPT.1 CYRILLIC.2 OLDALPH

SCRIPT.2

HELVETICA.1 KATAKANA KANJI1

GREEK.1 HIRAGANA KANJI2

TRIUMF.1 GREEK.2 KANJI3

TRIUMF.2 GREEK.2A KANJI4

TSAN GREEK.CART KANJI5

ROMAN.FUTURA ROMAN.SWISSL SPECIAL HEBREW

ROMAN.SERIF ROMAN.SWISSM MATH

ROMAN.FASHON ROMAN.SWISSB TRIUMF.OUTLINE

ROMAN.LOGO1

Table 2.60: The font names

SHOW
Syntax SHOW v1 { v2 . . . }
Qualifiers \VECTORS, \SCALARS, \MATRICES, \TEXT, \FIXED, \DUMMY, \VARY
Examples SHOW

SHOW X*

SHOW\VECTORS\SCALARS *ABC*

The SHOW command displays, on the terminal screen, a list of:

• the current vectors, their lengths and histories
• the current scalars, their values and histories
• the current matrices, their dimensions and histories
• the current string variables, their lengths and values

If a variable name is entered, only the information about that variable is listed. Wildcards,
*, are allowed in the name, and then all variables that match will be listed.

If the \VECTORS qualifier is used, only the vector variables will be listed.
If the \SCALARS qualifier is used, only the scalar variables will be listed.
If the \MATRICES qualifier is used, only the matrix variables will be listed.
If the \TEXT qualifier is used, only the string variables will be listed.

243

Commands

The qualifiers FIXED, DUMMY, and VARY are only valid when used with the \SCALARS qualifier.

\-FIXED −→ do not show scalars that are fixed (with respect to fitting)
\-DUMMY −→ do not show scalars that are dummy variables
\-VARY −→ do not show scalars allowed to vary in a fit

Combinations are allowed, for example, \-FIXED\-DUMMY means only show scalars that are
allowed to vary in a fit.

Ordered Vectors

All vectors now have an order property. Vectors are either in ascending order, descending
order, or un-ordered. The type is displayed in the SHOW command, where +O means ascend-
ing order, -O means descending order, and no symbol means un-ordered. For now, being
ordered only has an affect on the vector union, /|, and the vector intersection, /&. These op-
erations are much faster if the vector operands are ordered. The WHERE function produces an
ascending order vector, as does the SORT\UP command. The SORT\DOWN command produces
a descending order vector. This new vector property will be utilised more in the future to
enhance speed and efficiency.

Examples

Suppose you have defined the following variables:

vectors: X XX AX XB

scalars: SX XSX S 1

matrices: M1 MX1

string variables: T1 T2 ST TXT

SHOW *X the information about X, XX, AX, SX and XSX will be displayed

SHOW\S *X the information about SX and XSX will be displayed

SHOW X* the information about X, XX, XB and XSX will be displayed

SHOW\V X* the information about X, XX and XB will be displayed

SHOW X the information about X only will be displayed

SHOW *X* the information about X, XX, AX, XB, SX, XSX, MX1, and TXT will be displayed

SHOW\T *X* the information about TXT will be displayed

244

Commands

SLICES
Syntax SLICES n x y z { a }
Defaults a = 30◦

Examples SLICES 5 X Y Z

SLICES 10 X Y Z 45

The SLICES command bins the x, y, and z vectors into n slices, and produces a graphical
representation of this binned data. The x, y and z vectors are assumed to represent scattered
data points (x[i],y[i]) with altitude z[i]. The z-axis is drawn at an angle, a, in degrees. a
defaults to 30◦.

This command is open for suggestions.

Example

The following script produced Figure 2.25.

X=COS([-100:100:.5]) ! generate some "data"

Y=SIN([10:20:.025]) !

Z=SIN(X)*COS(Y) !

SET PCHAR -16 ! set plotting character to a point

SLICES 5 X Y Z 35 !

SORT
Syntax SORT x { x1 x2 . . . }
Qualifiers \UP, \DOWN
Defaults \UP
Examples SORT X Y

SORT\DOWN X Y Z

SORT\UP X Y Z

The SORT command is used for sorting vectors into ascending or descending order. By
default, the vector x is sorted into ascending order. To sort vector x into ascending order, it
is not necessary to use the \UP qualifier. Ascending order means that element 1 will be the
smallest element. To sort vector x into descending order, use the \DOWN qualifier. Descending
order means that element 1 will be the largest. Vector x will be altered.

Associated vectors

If other vectors, xI, are entered, they will not be sorted. They will be re-arranged in the same

245

Commands

Figure 2.25: An example using the SLICES command

way that x is re-arranged, that is, if element x[i] becomes x[j] because of sorting then xI[i]

will become xI[j]. This feature was included so that if data vectors are associated with each
other they can be sorted without the associations being lost.

Examples

Suppose you have three data vectors, X, Y, and Z, which represent rectangular coordinates
and an associated altitude:

X=[1;2;3;4;5]

Y=[10;8;6;4;2]

Z=[-0.3;-1.0;-0.5;2.0;-2.0]

If you want to sort Z into descending order, without breaking up the triplets, enter:

SORT\DOWN Z X Y

After which the vectors X, Y, and Z are:

X=[4;1;3;2;5]

Y=[4;10;6;8;2]

Z=[2.0;-0.3;-0.5;-1.0;-2.0]

246

Commands

However, if you want to sort Z into descending order, and are not concerned about keeping
the Y and Z associations, simply enter:

SORT\DOWN Z

Suppose you now want to re-sort Y data into ascending order, and you are concerned about
keeping the X and Z associations. Enter:

SORT Y X Z

after which:

X=[5;4;3;2;1]

Y=[2;4;6;8;10]

Z=[-2.0;2.0;-0.5;-1.0;-0.3]

STACK
Syntax STACK filename

Qualifiers \APPEND, \EXECUTE
Defaults \NOAPPEND, \EXECUTE
Examples STACK FILE.STK

STACK\APPEND FILE.STK

STACK\NOEXE FILE.STK

A stack file will contain all the subsequently entered commands. The STACK command is a
way of interactively creating a command script file, and is meant to be used in conjunction
with the EXECUTE command, page 76. Commands that are being stacked in a file can be
executed later.

To turn off the stacking feature, use the DISABLE STACK command, after which commands
will no longer be written to the previously named stack file. To re-enable the same stack
file, use the command ENABLE STACK, after which subsequent commands will be appended
to that file.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE mysession

physica

stack $FILE

The environment variable can be just the first part of the filename, for example,
setenv FILE my

247

Commands

physica

stack $FILEsession

Appending to a stack file

The default, \NOAPPEND, is to open a new file. If the \APPEND qualifier is used, then subsequent
commands will be appended to the stack file.

Executing commands while stacking

The default, \EXECUTE, is to execute commands normally. If the \NOEXECUTE qualifier is used,
then subsequently entered commands will be written to the file, but will not be executed at
that time.

STATISTICS
Syntax STATISTICS x { s1\keyword { s2\keyword . . . }}

STATISTICS\MOMENT w x n { sout }
STATISTICS\PEARSON x y rcof prob

Qualifiers \MESSAGES, \WEIGHTS, \MOMENT, \PEARSON
Defaults \MESSAGES, \NOWEIGHTS, \NOMOMENT, \NOPEARSON
Examples STATISTICS X

STATISTICS\NOMESS X XMED\MEDIAN XMEAN\MEAN
STATISTICS\WEIGHTS W X XVAR\VARIANCE XSUM\SUM
STATISTICS\MOMENT Y X 3 M3

The STATISTICS command calculates1 various statistics for the input variable x, which can
be a vector or a matrix. Specific statistics are chosen with qualifier keywords which are
appended to the output parameters with the backslash, \.

Table 2.61 shows the parameter qualifier keywords and corresponding output values for
extrema. Table 2.62 shows the parameter qualifier keywords and corresponding output
values for central measures. Table 2.63 shows the parameter qualifier keywords and corre-
sponding output values for dispersion and skewness.

Informational messages

The default is to display all the calculated statistics on the terminal screen. If the \NOMESSAGES
command qualifier is used, and if at least one output scalar is entered, then the values of

1The definitions used here are taken from “Numerical Recipes – The Art of Scientific Computing” by W.H.
Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Cambridge University Press, 1986.

248

Commands

keyword output value

\MAX maximum value of x
\IMAX index of the maximum if x is a vector

row index of the maximum if x is a matrix
\JMAX column index of the maximum if x is a matrix
\MIN minimum value of x
\IMIN index of the minimum if x is a vector

row index of the minimum if x is a matrix
\JMIN column index of the minimum if x is a matrix

Table 2.61: The STATISTICS command extrema keywords

keyword output value

\SUM arithmetic sum (unweighted)
\MEAN arithmetic mean
\GMEAN geometric mean
\MEDIAN median value
\RMS root-mean-square

Table 2.62: The STATISTICS command central measure keywords

keyword output value

\VARIANCE variance
\SDEV standard deviation
\ADEV average deviation
\KURTOSIS kurtosis
\SKEWNESS skewness

Table 2.63: The STATISTICS command dispersion and skewness keywords

249

Commands

all the statistics will not be displayed on the terminal screen.

Weights

Syntax STATISTICS\WEIGHTS w x { s1\keyword { s2\keyword . . . }}

You must use the \WEIGHTS qualifier to indicate that a weight vector is present. Weights
cannot be applied to matrix data.

A weighting factor, wi ≥ 0, could be the frequency, the probability, the mass, the reliability,
or some other multiplier. The minimum of the lengths of w and x will be used. If the lengths
are different, a warning message to that effect will be displayed on the terminal screen.

Definitions

Suppose that x is a vector with N elements.

If a weight vector, w, is entered, remember to use the \WEIGHTS command qualifier. The length
of w is assumed to also be N . If no weight is entered, let wi default to 1, for i = 1, . . . ,N .
Define the total weight: W =

∑N
j=1 wj

Sum

The sum is defined by
∑N

j=1 xj

Mean value

The mean value, x̄, is defined by x̄ = 1
W

∑N
j=1 wjxj

Geometric mean

The geometric mean, Gx, is defined, if each xi ≥ 0, by: Gx = e
1
W

PN
j=1 wj log(xj)

Median

The median is the element of x which has equal numbers of values above it and below it. If
N is even, the median is the average of the unique two central values.

Root-mean-square

The root-mean-square, RMS, is defined by RMS =
√

1
W

∑N
j=1 wjx2

j

250

Commands

Variance

The variance, µ, is defined by µ = N
W (N−1)

∑N
j=1 wj(xj − x̄)2

Standard deviation

The standard deviation, σ, is defined by σ =
√

µ

Average deviation

The average deviation, or mean deviation, δ, is defined by δ =
∑N

j=1 wj |xj − x̄|/W

Skewness

The skewness, or third moment, skew, is a nondimensional quantity that characterizes the
degree of asymmetry of a distribution around its mean. The skewness is a pure number
that characterizes only the shape of the distribution, and is defined by

skew =
N∑
j=1

wj[
xj − x̄

σ
]3/W

A positive value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends out
towards more negative x.

Kurtosis

The kurtosis, kurt, is a nondimensional quantity which measures the relative peakedness
or flatness of a distribution, relative to a normal distribution. A distribution with positive
kurtosis is termed leptokurtic; a distribution with negative kurtosis is termed platykurtic.
An in-between distribution is termed mesokurtic. The kurtosis is defined by

kurt = (
N∑
j=1

wj [
xj − x̄

σ
]4)− 3

where the −3 term makes the value zero for a normal distribution.

Moments

Syntax STATISTICS\MOMENT w x n { s }

If the \MOMENT command qualifier is used, the nth moment of vector x, with weight w, is
calculated and optionally stored in output scalar s. The moment number, n, can be any
integer > 0.

251

Commands

s = S/W , where: S =
∑N

i=1 wi × xni and W =
∑N

i=1 wi and where N is the length of x and w.

If x and w have different lengths, a warning message to that effect will be displayed, and the
minimum of the lengths of x and w will be used. If W = 0, then an error message is displayed
and s is returned as 0.

Linear correlation coefficient

Syntax STATISTICS\PEARSON x y r p

Pearson’s r, or the linear correlation coefficient, is widely used as a measure of association
between variables that are continuous. For pairs of quantities (xi, yi), for i = 1, . . . ,N , the
linear correlation coefficient r is given by the formula:

r =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

where x̄ is the mean of the xi’s, and ȳ is the mean of the yi’s.

The value of r lies between −1 and +1, inclusive. It takes on a value of +1 when the data
points lie on a straight line with positive slope, x and y increase together. The value +1
holds independent of the magnitude of this slope. If the data points lie on a straight line
with negative slope, y decreases as x increases, then r has the value −1. A value of r near
zero indicates that the variables x and y are uncorrelated.

r is a way of summarizing the strength of a correlation which is known to be significant, but
it is a poor statistic for deciding whether an observed correlation is statistically significant,
and/or whether one observed correlation is significantly stronger than another. The reason
is that r is ignorant of the individual distributions of x and y, so there is no universal way
to compute its distribution in the case of the null hypothesis.

The STATISTICS\PEARSON command returns Pearson’s r in the scalar variable r. It also re-
turns scalar p, the significance level at which the null hypothesis of zero correlation is
disproved. A small value of p indicates a significant correlation.

p = I N−2
N−2+t2

(
N − 2

2
,
1
2

)

where I is the incomplete Beta function and t is defined by: t = r
√

N−2
1−r2

Examples

252

Commands

Suppose you have a vector X=[1.2;2.1;3.2;4.5;5;6;7]. Entering STATISTICS X produces the
following display:

Minimum = 1.2 | Maximum = 7

Index of minimum = [1] | Index of maximum = [7]

Mean = 4.142857 | Geometric mean = 4.13629

Median not requested | Variance = 4.36619

Standard deviation = 2.089543 | Average deviation = 1.693878

Skewness = -0.0696135 | Kurtosis = -1.708838

If you want to use the values for the maximum, minimum and mean of X, enter:

STATISTICS X XMEAN\MEAN XMIN\MIN XMAX\MAX

and you will have the scalars: XMAX=7, XMIN=1.2, and XMEAN=4.142857

If you also want the index values for the maximum and the minimum of X, enter:

STATISTICS X XMEAN\MEAN XMIN\MIN XMAX\MAX IMX\IMAX IMN\IMIN

and you will also have scalars: IMX=7 and IMN=1.

STATUS
Syntax STATUS

The STATUS command displays on the terminal screen most of the internal PHYSICA flags
and settings. Example output from the STATUS command, is shown below.

253

Commands

PHYSICA version number: 2.10

version date: January 16, 1998

Echoing disabled | Confirm enabled

Prompting enabled | Recall shell enabled

Border enabled | Replot enabled

X replay enabled | Autoscale X and Y axes

History recording enabled |

Journaling enabled, file= PHYSICA.JOURNAL

macro journaling disabled

Stack disabled

Macro file extension default: pcm

Graphics hardcopy device: (bitmap) HPLASERJET 150 dpi

Colour: WHITE (1)

World units type: CM

Window 0 coordinates: 0.00 0.00 100.00 100.00 percentages

0.00 0.00 27.94 21.59 centimeters

Window 0 coordinates: 0.00 0.00 100.00 100.00 percentages

0.00 0.00 27.94 21.59 centimeters

SURFACE
Syntax SURFACE m { xangle { zangle { vsf { psf }}}}
Qualifiers \COLOUR, \NORMAL, \HISTOGRAM, \XZLINES, \XLINES, \ZLINES
Defaults \NOCOLOUR, \NORMAL, \XZLINES

xangl = −45◦, zangl = −45◦, vsf = 1, psf = 0

Examples SURFACE M

SURFACE\COLOUR M

SURFACE\HIST M -30 -60

SURFACE\NORMAL\ZLINES M -45 -45 2

The SURFACE command displays a matrix in the form of a 3-dimensional figure which can
be rotated in space. Figure 2.26 shows the coordinate system used in this command. The
appearance of the figure is controlled by optional qualifiers and parameters.

Note: Unlike most other commands, once one of the optional parameters has been changed
to a new value, that value becomes the default.

The qualifiers that control the appearance of the figure are:

254

Commands

Figure 2.26: Surface coordinate system

qualifier results

\NORMAL a normal surface plot (default)
\HISTOGRAM a histogram surface

\XZLINES lines are drawn parallel to the x- and the z-axis (default)
\XLINES lines are drawn parallel to the x-axis only
\ZLINES lines are drawn parallel to the z-axis only

The parameters that control the appearance of the figure are:

parameter results

xangl rotation angle about the x-axis (default −45◦)
zangl rotation angle about the z-axis (default −45◦)
vsf vertical scale factor (default 1)
psf pedestal size scale factor (default 0)

Colour

If the \COLOUR qualifier is used, the height of the surface will be divided into seven (7) regions

255

Commands

and a different colour associated with each region. This allows the user to quickly identify
areas of similar height.

Examples

The following script produced Figure 2.27.

R=MOD([0:143],4)+1

SORT\UP R

T=MOD([0:143],36)*10

GRID R*COSD(T) R*SIND(T) EXP(-R/2)*COSD(180*(R-1)) M

SURFACE M -15 -45 1 1.5

Figure 2.27: A SURFACE example

TERMINAL
Syntax TERMINAL { ‘string’ }
Default ‘string’ = ‘type <RETURN> to continue’

Examples TERMINAL

TERMINAL ‘display this message’

If the TERMINAL command is encountered in a script file that is being executed, control is
passed back to the terminal keyboard. Commands can then be entered interactively. To
continue execution of the script file, type the <RETURN> key without entering anything. The
script file will then continue execution with the command immediately following the TERMINAL

command.

By default, the message ‘type <RETURN> to continue’ will be displayed. You can specify the
message by entering a string with the command.

256

Commands

TEXT
Syntax TEXT { ‘string’ }
Qualifiers \GRAPH, \ERASE, \CONFIRM
Defaults \CONFIRM, \NOGRAPH, \NOERASE
Examples TEXT\NOCONFIRM ‘This is a text string’

TEXT ‘The value of A is ’//RCHAR(A)//‘ and B = ’//RCHAR(B)

TEXT ‘<alpha,^>2<_,gamma>=<Phi>’

TEXT TIME//‘ ’//DATE

TEXT\ERASE\NOCONFIRM

By default, the TEXT command draws strings. The ‘string’ defaults to the last string that
was entered with the TEXT command. Use the SET FONT command to set the font. The default
font is TSAN.

Confirmation

If the TEXT command is entered interactively, the default is to request confirmation as to
whether the text is acceptable as drawn. If you answer NO, the text will not appear on any
hardcopies, or in an EDGR file. The text will not be entered into the hardcopy plot file, or
into an open EDGR file, unless confirmed.

If the DISABLE CONFIRM command is entered before the TEXT command, the default will be
that no such confirmation will be requested. The initial default is for CONFIRM to be enabled.

If the \CONFIRM qualifier is used, the default, confirmation will be forced. If the \NOCONFIRM
qualifier is used, confirmation will be suppressed.

If the TEXT command is encountered in a script file, no confirmation is requested, even if
ENABLE CONFIRM has been entered and the \CONFIRM qualifier is used.

Stack files

If a stack file is open, via the STACK command, page 247, then the (x, y) coordinates of the
text location will be written to the stack file, even if they are chosen by the graphics cursor.
When the stack file is executed, using the EXECUTE command, page 76, the graphics cursor
will not be used.

If confirmation is requested and the figure is not acceptable, then the command will not be
written to the stack file.

Text characteristics

257

Commands

The font can be changed with the SET FONT command, page 228. The default font is TSAN.

The text height can be controlled with the keywords TXTHIT or %TXTHIT, using the SET com-
mand. The default is %TXTHIT = 3.

The text angle can be controlled with the keyword TXTANG, , using the SET command. The
default is TXTANG = 0.

Justification and location

The justification of the text is controlled by the keyword CURSOR. See Table 2.64 and Ta-
ble 2.65. The origin of the text is always the lower left corner of the string. The justification
determines where this origin is placed with respect to a reference point, see Figure 2.28.
The default value of CURSOR is +1.

Figure 2.28: Text extent rectangle with two-character justification codes

If CURSOR ≤ 0, XLOC and YLOC will be used to determine the reference point for the text, and
the justification is determined by the value of CURSOR.

If CURSOR > 0, the reference point is determined with the graphics cursor. A menu is available
by typing key M, see Table 2.65. The justification of the text may be selected by typing key
J and then selecting a justification, CC, LU, etc., or by simply typing one of the special
justification keys, R, L, C, U, D, or V. No carriage return is needed after these special keys.

The value of CURSOR will be updated to the value corresponding to the justification that was
chosen. For example, if CURSOR is currently 5 and the user chooses the justification code CV,
then the value of CURSOR is changed to 6. The values of %XLOC and %YLOC will also be updated
to the graphics cursor position that was chosen.

Text Formats

258

Commands

Justification
(x0, y0) = origin point of string (lower left corner)

(xref , yref) = reference point (xref = XLOC, yref = YLOC)
CURSOR h = maximum height of string (default = TXTHIT)

l = length of string in world coordinates
a = angle of string in degrees (default = TXTANG)

> 0.0 See the following table
0.0 or −1.0 LL x0 = xref y0 = yref
−2.0 LC x0 = xref + l/2 y0 = yref
−3.0 LR x0 = xref + l y0 = yref
−4.0 LU x0 = xref y0 = yref a = 90◦

−5.0 LD x0 = xref y0 = yref a = 270◦

−6.0 CV x0 = xref + l/2 y0 = yref a = 90◦

−7.0 CL x0 = xref y0 = yref + h/2
−8.0 UL x0 = xref y0 = yref + h

−9.0 CC x0 = xref + l/2 y0 = yref + h/2
−10.0 UC x0 = xref + l/2 y0 = yref + h

−11.0 CR x0 = xref + l y0 = yref + h/2
−12.0 UR x0 = xref + l y0 = yref + h

Table 2.64: Text justification interaction with CURSOR

259

Commands

key justification with respect to reference point at crosshair location
typed when CURSOR > 0.0

M display the menu
Q quit, do not draw any text
/ clear the alpha-numeric terminal screen, but not the graphics
J a menu of justifications will be displayed. To draw the text string, choose

one of the following two-character codes and type the RETURN key

Two character code Justification chosen
LL lower left (CURSOR set to 1)
CL centre left (CURSOR set to 7)
UL upper left (CURSOR set to 8)
LC lower centre (CURSOR set to 2)
CC center centre (CURSOR set to 9)
UC upper centre (CURSOR set to 10)
LR lower right (CURSOR set to 3)
CR centre right (CURSOR set to 11)
UR upper right (CURSOR set to 12)
LU lower left at 90◦ (CURSOR set to 4)
LD lower left at 270◦ (CURSOR set to 5)
CV lower centre at 90◦ (CURSOR set to 6)

L lower left (LL)
C lower centre (LC)
R lower right (LR)
U lower left with an angle of 90◦ (LU)
D lower left with an angle of 270◦ (LD)
V lower centre with an angle of 90◦ (CV)
X lower left (LL); using the y location selected by the crosshair

and the x location that is stored in XLOC

Y lower left (LL); using the x location selected by the crosshair
and the y location that is stored in YLOC

other use current value of CURSOR for justification
use the crosshair position for the reference point

Table 2.65: Text menu and justification

260

Commands

The string may contain format commands and special characters which are included inside
the string, and must be bracketed by the command delimiters, < and >. The special charac-
ters include all of the greek letters as well as some math symbols and other symbols. The
names for the special characters can be seen by entering the DISPLAY SPECIAL command,
page 58. See Figure 2.6 on page 61. The format commands are listed in Table 2.66.

bolding <Bn>

colour <Cn>

font <Ffontname>

height <Hnn.n> or <Hnn.n%>

sub-scripts < >

super-scripts <∧>

emphasis

hexadecimal input <X>

vertical spacing <Vnn.n> or <Vnn.n%>

horizontal spacing <Znn.n> or <Znn.n%>

Table 2.66: TEXT command text formatting commands

When <NOD> is included in a string, the bolding, colour, font, emphasis and hexadecimal
mode will be left in their current state. This is a way of changing the defaults for these
characteristics.

When <DEF> is included in a string, at the end of processing that string, bolding will be
turned off, the colour will be reset to the colour chosen by the COLOUR command, the font
will be reset to the font chosen by the SET FONT command, slant mode will be turned off,
and hexadecimal mode will be turned off. This is the default action, so it is not necessary
to include <DEF> in a string. It has been included for completeness.

Refer to Appendix A for explanations of CURSOR, XLOC, YLOC, TXTHIT, TXTANG.

Replotting text

When text strings are added to a graph, they will be replotted, along with any data curves,
with the REPLOT command, page 208. The default is to store the text locations in world
coordinates, that is, centimeters or inches.

If you want the text locations to be recorded in graph units, use the \GRAPH qualifier. In this
case, the text will be replotted in the same location in terms of the graph, so that if you label
a curve, the label will follow the curve on the new graph scales. However, the height of the
text will be increased or decreased proportionally. To restore the text height after a REPLOT,
you can get, using the GET command, the value of %TXTHIT before REPLOT and re-set %TXTHIT

261

Commands

after the REPLOT, using the SET command.

Drawing the Date and Time

The DATE function returns the current date as a string. The TIME function returns the current
time as a string. For example:

=DATE

‘16-APR-1993’

=TIME

‘11:58:16’

So the current date and time could be drawn with: TEXT TIME//‘ ’//DATE

Erasing text

Text can only be erased from the monitor screen and from a bitmap. Erasing will not work
with plotter files and it will not work with EDGR. Erasing of rectangular regions is possible
with PostScript graphics using the ERASEWINDOW command, page 76.

If the \ERASE qualifier is used, the last text drawn will be erased. If the TEXT\ERASE command
is issued again, the next to last text drawn will be erased. And so on.

If the \NOCONFIRM qualifier is used, no confirmation will be requested. If the \CONFIRM qualifier
is used, the string to be erased will be displayed on the screen, and you will be asked if this
is the string to be erased. If the answer is NO, then the next string in reverse order of
drawing is displayed, and so on. The default is \CONFIRM.

Example

The following script produced Figure 2.29.

262

Commands

SET

%XLOC 50 ! x reference location

%YLOC 80 ! y reference location

CURSOR -2 ! lower centre justify at (x,y) reference location

! preceding blank line is necessary

TEXT ‘This is a simple text string’

SET %YLOC 65

TEXT ‘<h10%,fscript.2>He<h8%>igh<h5%>t, font <alpha,beta,aleph>’

SET %YLOC 50

TEXT ‘<B22,froman.serif,h5%>DOT FILLED CHARACTERS’

SET %YLOC 35

TEXT ‘<INTEGRL>xdx = x<^>2<_>/2’

Figure 2.29: An example using the TEXT command

TILE
Syntax TILE file

The TILE command draws complicated bar graphs. The numbers which define the rectan-
gular bars are read from the file. Strings may also be drawn. Comment lines are ignored,
where a comment line is any line that begins with a !.

Bar definitions

A bar is defined by the following values:

263

Commands

parameter result

xlower the x coordinate of the left edge of the bar, in graph units
xupper the x coordinate of the right edge of the bar, in graph units
ymid the y coordinate of the middle of the bar, in graph units
nh the dot or hatch pattern with which to fill the bar

|nh|≥ 11 then fill with grey scale dot pattern
1 ≤|nh|≤ 10 then fill with hatch pattern
|nh|= 0 then no filling
nh < 0 then the outline of the bar is not drawn,

but hatch pattern |nh| is drawn
height the height of the bar, in graph units
colour the colour of the bar outline and fill pattern

Hatch patterns

A hatch pattern is composed of an angle and one to ten spacings. These spacings are simply
cycled through as the region is being filled, that is, a line is drawn inside the region at the
specified angle, then a parallel line is drawn at the first spacing, then another parallel line
is drawn at the second spacing, and so on for the number of spacings in that pattern. This
process is repeated until the region is filled. The hatch patterns can be redefined with the
SET HATCH command and displayed with the DISPLAY FILL command. There are ten hatch
patterns available.

Dot fill patterns

A dot pattern is of the form: uv, where the digit u is the increment number of dots to light up
horizontally, 1 ≤ u ≤ 9, and the digit v is the increment number of dots to light up vertically,
1 ≤ v ≤ 9. For example, a dot pattern of 34 means to light up every third dot horizontally
and every fourth dot vertically. If uv is negative, then the dots are erased instead of turned
on.

PostScript output

For PostScript output, set the POSTRES keyword to the appropriate resolution for your hard-
copy device, using the SET command. Use a combination of line thickness and resolution
for a quicker resulting picture. For example, the Lexmark inkjet printer has a resolution of
360 dpi. A “good” picture can be obtained with POSTRES = 180 and LINTHK = 2.

String definitions

A string is defined by the following values:

264

Commands

parameter result

xlower the x coordinate of the lower left corner of the string, in graph units
just the justification to use for positioning the text,

L → left, C → centre, R → right
ymid the y coordinate of the middle of the text
font the name of the font to use for drawing the text
height the height of the text, in graph units
colour the colour of the text (1 – 8),

see the COLOUR command for an explanation of the colour code
‘text’ the text itself, enclosed in quotes

Example

Suppose you have a file, TILE.DAT, as below:

!

!xlo xup ymid nfill height colour

!

0 4 1 2 .8 1

5 10 1 33 .8 2

0 3 2 44 .8 3

4 6.5 2 55 .8 4

7 9 2 10 .8 5

0 2 3 6 .8 2

3 5 3 8 .8 3

6 8 3 66 .8 5

8.5 10 3 77 .8 1

!

!xlo just ymid font height colour text

!

-2 R 2 TSAN .3 1 ‘Second label’

-2 R 1 TRIUMF.2 .3 1 ‘First label’

-2 R 3 ROMAN.SERIF .3 1 ‘Third label’

The following script produced Figure 2.30.

265

Commands

SCALES -10 12 11 0 4 4 ! manually set axes scales

TILE TILE.DAT ! draw the tiles

SET

BOX 0 ! turn off axis box

YAXIS 0 ! turn off y-axis

NSXINC 2 ! number of small x increments = 2

GRAPH\AXES ! draw axes only

SET

XAXIS 0 ! turn off x-axis

YAXIS 1 ! turn on y-axis

YITICA -90 ! draw numbers on right side of y-axis

YTICA -90 ! draw tics on right side of y-axis

%XLAXIS 95 ! draw y-axis at right end of x-axis

GRAPH\AXES ! draw axes only

Figure 2.30: An example using the TILE command

TLEN
Syntax TLEN txt lenout

The TLEN command returns a scalar, lenout, which is the number of string elements of the
array string variable, txt.

Example

266

Commands

Suppose that: T[1]=‘string 1’; T[2]=‘string 2’; T[3]=‘string 3’

then TLEN T L would return the scalar L = 3.

TRANSFORM
Syntax TRANSFORM x p f(x,p) y

Example TRANSFORM X P EXP(-P*X^2) XT

The TRANSFORM command performs integral transforms of the function f(x,p). The function
is integrated over the entire range of definition, as defined by the independent variable,
vector x. The integral is evaluated for each value of the parameter vector p, with the result
stored in the vector y.

yi =
∫

f(x, pi)dx

The function f(x,p), which forms the integrand of the transform integral, may contain
other scalars, or other vectors dimensioned identically to x. Such vectors are considered,
and integrated, as functions of the independent variable x. Vectors of mismatched size will
generate an error.

This command can be used to perform standard transforms such as Laplace or Hankel
transforms. Fourier transforms should be done using the FFT function, as this is much
faster.

Example

The following script integrates the expression e−px
2

over x = [1 : 20] for each p = [1 : 3], and
stores the results in output vector F.

X=[1:20]

P=[1:3]

TRANSFORM X P EXP(-P*X^2) F

after which: F=[0.1601404;0.05141661;0.01877862]

A check on this result is the following:

FI[1]=(INTEGRAL(X,EXP(-P[1]*X^2)))[LEN(X)]

FI[2]=(INTEGRAL(X,EXP(-P[2]*X^2)))[LEN(X)]

FI[3]=(INTEGRAL(X,EXP(-P[3]*X^2)))[LEN(X)]

after which: FI=[0.1601404;0.05141661;0.01877862]

267

Commands

UNIQUE
Syntax UNIQUE x y xout yout

UNIQUE\INDICES x y idx { (index_expression) }

Qualifiers \MESSAGES, \INDICES
Defaults \MESSAGES, \NOINDICES

The UNIQUE command eliminates adjacent duplicate points in the vectors x and y. A duplicate
point means that x[i] = x[i+1] and y[i] = y[i+1].

The vectors xout and yout are created, and will contain no adjacent duplicate points. If none
are found, xout = x and yout = y.

To disable informational messages from the UNIQUE command, use the \NOMESSAGES qualifier.

Indices

Syntax UNIQUE\INDICES x y idx { (index_expression) }

The UNIQUE\INDICES command finds adjacent duplicate points in the vectors x and y. A du-
plicate point means that x[i] = x[i+1] and y[i] = y[i+1]. The vector idx is created,
and will contain the indices of x and y where there are no adjacent duplicate points. If none
are found, idx will not be made.

If you wish to search a subset of x and y, use the optional parameter (index_expression).
Enclosing the index_expression in parenthesis allows you to have blanks within the expres-
sion. The index_expression can be a simple range, for example, [1:10], or a mathematical
expression, for example, where(z=n). The index_expression can be used directly on the in-
put vectors x and y, but then the output idx index vector will contain indices relative to
[1:len(x[index_expression])].

Examples

Suppose that:

X=[1;2;2;3;4;5;5;7;8;9;9;10]

Y=[-6;-5;-4;-3;-2;-1;-1;1;2;3;3;4]

After the command: UNIQUE X Y XO YO

268

Commands

X= [1; 2; 2; 3; 4; 5; 5;7;8;9;9;10]

Y= [-6;-5;-4;-3;-2;-1;-1;1;2;3;3; 4]

XO=[1; 2; 2; 3; 4; 5; 7;8;9; 10]

YO=[-6;-5;-4;-3;-2;-1; 1;2;3; 4]

After the command: UNIQUE\INDICES X Y IXY

X= [1; 2; 2; 3; 4; 5; 5;7;8; 9;9;10]

Y= [-6;-5;-4;-3;-2;-1;-1;1;2; 3;3; 4]

IXY=[1; 2; 3; 4; 5; 6; 8;9;10; 12]

Suppose that:

X = [1; 2; 3; 3; 5; 6; 7; 8; 9;10; 1; 2; 3; 4; 5; 5; 7; 8; 9;10]

Y = [-1;-2;-3;-3;-5;-6;-7;-8;-9;-1;-1;-2;-3;-4;-5;-5;-7;-8;-9;-1]

Z = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2]

After the command: UNIQUE\INDICES X Y IDX

IDX = [1;2;3;5;6;7;8;9;10;11;12;13;14;15;17;18;19;20]

After the command: UNIQUE\INDICES X[WHERE(Z=2)] Y[WHERE(Z=2)] IDX

IDX = [1;2;3;4;5;7;8;9;10]

After the command: UNIQUE\INDICES X Y IDX WHERE(Z=2)

IDX = [11;12;13;14;15;17;18;19;20]

USE
Syntax USE filename

The USE command causes program input to come from a file, instead of from the keyboard.
When the end of file is reached, input will again be expected to be entered from the keyboard.
Nesting is not allowed. Within USE files, labels, GOTO statements, IF statements and blocks,
and DO loops are not allowed.

This command should be useful for entering blocks of commands when the TERMINAL com-
mand has been encountered while executing a macro script file, since another script cannot
be executed from that mode.

269

Commands

The default file extension is .PCM If the filename is a text variable, it is first replaced by its
value.

VMS: If filename is a logical name, it is replaced by its translation.
If filename does not contain a file name extension, the default file name
extension is appended to filename.
If filename doesn’t exist in the current directory, and if the logical name
PHYSICA$LIB has been defined, that location is checked.

UNIX: If filename is an environment variable, it is replaced by its translation.
If filename cannot be found in the current location, filename with the de-
fault file extension appended is checked. If this file cannot be found,
and if the environment variable PHYSICA_LIB has been defined, then
PHYSICA_LIB/filename is tried.
If this file cannot be found, then PHYSICA_LIB/filename with the default
file name extension appended is tried.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE mystuff

physica

use $FILE

The environment variable can be just the first part of the filename, for example,
setenv FILE my

physica

use $FILEstuff

VECTOR
Syntax VECTOR x1 { x2 . . . } n

The VECTOR command creates new vectors or changes the lengths of existing vectors.

If x1 is already a vector, it will be either trimmed down to the specified length or zero filled to
expand it. If x1 exists but is not a vector, it will be destroyed first. If x1 does not exist, it will
be created as a zero filled vector with length n. Other variable names, xI, may be entered.
They will be treated just like x1.

270

Commands

VOLUME
Syntax VOLUME x y z { volm }

VOLUME\MATRIX { x y } m { volm }
Qualifiers \MATRIX, \POLAR
Defaults \NOPOLAR, x=[1;2;...], y=[1;2;...]

By default, the VOLUME command calculates the volume under the scattered points given by
vectors x, y and z=f(x,y). The output is an optional scalar, volm. If volm is not entered,
the value is simply displayed. The region given by x and y is first triangulated, using a
Thiessen triangulation, then the integral is approximated by integrating the piecewise linear
interpolants of the data values.

If the \POLAR qualifier is used, the data is assumed to be in polar coordinates with x the
radial components and y the angular components, in degrees.

Volume under a matrix

Syntax VOLUME\MATRIX { x y } m { volm }
Defaults x=[1;2;...], y=[1;2;...]

If the \MATRIX qualifier is used, a matrix is expected. The grid region is triangulated. The
volume is approximated by summing the averages of the matrix values at the triangle ver-
tices multiplied by the area of each triangle. If x and y are not entered then x defaults to
[1;2;...;ncol] and y defaults to [1;2;...;nrow], where ncol is the number of columns of
the matrix m and nrow is the number of rows. The \POLAR qualifier is not allowed with matrix
data.

WAIT
Syntax WAIT n

The WAIT command causes a delay of n seconds. This is intended for use when EXECUTing a
command script file.

Suppose some message is to be displayed on the terminal screen, via the DISPLAY command,
and the user is expected to interactively enter some information. One could ring the bell,
using the BELL command, display the message, and then cause a wait of a few seconds before
clearing the screen. The user would then have a better opportunity to read the message and
then act on it.

271

Commands

Window
Syntax WINDOW { n { lowx lowy { upx upy }}}

WINDOW\TILE nx ny nstart

Qualifiers \TILE, \MESSAGES
Defaults \NOMESSAGES, nstart = 1

The WINDOW command chooses a subset of the graphics page. The default window is the
entire current graphics page, that is, window number zero (0).

If the WINDOW command is entered with no parameters, a listing of the currently defined
windows will be displayed, along with their corner coordinates.

Use the \NOMESSAGES qualifier to turn off the display of informational messages to the termi-
nal screen.

What are windows

Windows are an easy way to subdivide the graphics output page into rectangular regions,
allowing multiple graphs and/or multiple figures and/or multiple text regions. A window
is a subset of the page. A window, other than the default zero level window, has a smaller
plotting unit range than the full page.

Commensurateness is never lost in a sub-window. Windows are transparent to EDGR.

Boundaries

There is usually at least one rectangle drawn on the monitor screen. The largest rectangle
represents the world boundary, that is, the maximum extent of the hardcopy page. A
smaller, inner, rectangle, drawn with a dashed line, represents a sub-window within the
page. These rectangles are for the user’s reference only and will not appear on a hardcopy.
These boundary rectangles can be turned off with the DISABLE BORDER command, page 55.

Plotting units

Sub-windows have different plotting unit ranges than the full page. Thus, when a sub-
window has been selected, it is possible that not all subsequent graphics will be contained
within this window. However, commensurateness is always preserved within a sub-window.
For example, circles, which appear as circles when drawn into the full page, will still be
circular when drawn into any sub-window.

Defining a new window

272

Commands

Syntax WINDOW n { lowx lowy { upx upy }}

Window zero, the full page or world, cannot be redefined.

A new window can be defined by including the optional final four parameters with the
command. The lower left corner will be (lowx,lowy) and the upper right corner will be
(upx,upy). These four parameters should be expressed as percentages of the full page, for
example, lowx = 50, lowy = 50 represents the centre of the world, while lowx = 100, lowy

= 100 represents the upper right hand corner.

If a window number, n, is entered but not the final four parameters, and that window
number is undefined, then the graphics cursor will be used to choose the lower left and
upper right corners of the new window.

Pre-defined windows

The initial pre-defined windows are displayed in Table 2.67. See also Figure 2.31.

Figure 2.31: The initial pre-defined windows in PORTRAIT orientation

Windows and GPLOT

Choosing a window with the WINDOW command, which has its lower left corner at (lowx,lowy)
and its upper right corner at (upx,upy), is equivalent to choosing the GPLOT window with
the SET command. That is, the following command:

273

Commands

percentages centimeters
window number lowx lowy upx upy lowx lowy upx upy

0 0 0 100 100 0.00 0.00 25.00 19.00
1 0 0 50 100 0.00 0.00 12.50 19.00
2 50 0 100 100 12.50 0.00 25.00 19.00
3 0 50 100 100 0.00 9.50 25.00 19.00
4 0 0 100 50 0.00 0.00 25.00 9.50
5 0 50 50 100 0.00 9.50 12.50 19.00
6 0 0 50 50 0.00 0.00 12.50 9.50
7 50 50 100 100 12.50 9.50 25.00 19.00
8 50 0 100 50 12.50 0.00 25.00 9.50
9 10 10 90 90 2.50 1.90 22.50 17.10
10 25 50 75 100 6.25 9.50 18.75 19.00
11 25 0 75 50 6.25 0.00 18.75 9.50
15 0 75 50 100 0.00 14.25 12.50 19.00
16 50 75 100 100 12.50 14.25 25.00 19.00
17 0 50 50 75 0.00 9.50 12.50 14.20
18 50 50 100 75 12.50 9.50 25.00 14.20

Table 2.67: The initial pre-defined windows

WINDOW n lowx lowy upx upy

is equivalent to the following:

SET

%XLWIND lowx

%YLWIND lowy

%XUWIND upx

%YUWIND upy

Using the SET command to define a window is not recommended. When the CLEAR command
is entered, the window chosen with the last WINDOW command is set up, and the values of
XLWIND, XUWIND, YLWIND, and YUWIND are changed. Thus, if their values had been re-defined
with the SET command, these values would be lost when the CLEAR command is entered.

Multiple window creation

Syntax WINDOW\TILE nx ny { nstart }
Default nstart = 1

274

Commands

The WINDOW\TILE command divides the graphics page up into nx horizontal by ny vertical
windows, giving the first window the number nstart, which must be > 0. The total number
of windows just defined will be nx*ny. The window numbered nstart will be in the upper
left corner of the page, while the window numbered nx*ny-nstart+1 will be in the lower right
corner.

WORLD
Syntax WORLD vxin vyin { vxout vyout }
Qualifiers \PERCENT
Defaults absolute coordinates returned

The WORLD command converts graph coordinates into world coordinates, or into percentages
if the \PERCENT qualifier is used.

The world coordinates are either centimeters or inches depending on the units chosen with
the SET UNITS command. The default units are centimeters.

The variables vxin and vyin may be scalars or vectors, but they must both be the same
type. The resultant values are displayed on the terminal screen. If output variables vxout

and vyout are present, the values are stored there. The type of variable created depends on
the variable type of vxin and vyin.

WRITE
Syntax WRITE file { (format) } x1 { x2 . . . }

WRITE\SCALAR file s1 { s2 . . . }
WRITE\MATRIX file matrix

WRITE\TEXT file txtvar

Qualifiers \SCALAR, \MATRIX, \TEXT, \FORMAT, \APPEND
Examples WRITE FILE.DAT X Y Z

WRITE\FORMAT FILE.DAT (’X=’,F10.3,’ Y=’,F7.1,’ Z=’,F9.2) X Y Z

WRITE\APPEND FILE.DAT X Y Z

WRITE\SCALAR FILE.DAT X[2] Y[3] M[2,4]

WRITE\SCALAR\FORMAT FILE.DAT (’String ’,3(F10.3)) A Y[3] C

WRITE\MATRIX\APPEND FILE.DAT M[1:100,1:10]

WRITE\MATRIX\FORMAT FILE.DAT (7F10.3,2X) M[1:100,1:10]

WRITE\TEXT FILE.DAT ‘String’

WRITE\TEXT FILE.DAT T3

WRITE\TEXT\APPEND FILE.DAT ‘A = ’//RCHAR(A,‘F10.3’)

275

Commands

WRITE is a general purpose command for writing vectors, scalars, a matrix, or a string. The
variable type that will be written is determined by command qualifier. The parameters that
are expected also depend on this qualifier. By default, the WRITE command writes vectors to
a file.

Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the
environment variable is preceeded by a $. For example,
setenv FILE dum.dat

physica

write $FILE x y z

The environment variable can be just the first part of the filename, for example,
setenv FILE dum

physica

write $FILE.dat x y z

Appending to a file

By default, a new file is opened to receive the output data. If the \APPEND qualifier is used,
and if the output file already exists, the data will be appended onto the end of the file.

Formats

Syntax WRITE\FORMAT file (format) x1 { x2 . . . }
WRITE\SCALAR\FORMAT file (format) s1 { s2 . . . }
WRITE\MATRIX\FORMAT file (format) matrix

By default, free format is used to write the data to the file. You must use the \FORMAT
qualifier to indicate a format is present. The format must be enclosed in parentheses, (and
). Any standard FORTRAN format is valid, but only REAL variables can be written. Do not
use INTEGER, LOGICAL or CHARACTER formats.

You may use the PHYSICA defined format BINARY, minimum abbreviation B, to write binary
unformatted files containing 8 byte numbers.

Vectors

The default is to write vectors. The WRITE command writes the vectors xI to a file. The
minimum of the lengths of the vectors will be used. A maximum of twenty-nine (29) vectors
can be written with one WRITE command.

276

Commands

If the same vector name is entered more than once, consecutive elements of that vector will
be written to the same record. For example, if you enter:

WRITE FILE.DAT X X X

the following data will be written to the file:

X[1] X[2] X[3]

X[4] X[5] X[6]

...

or, if you enter: WRITE FILE.DAT X Y X Y X Y

the following data will be written to the file:

X[1] Y[1] X[2] Y[2] X[3] Y[3]

X[4] Y[4] X[5] Y[5] X[6] Y[6]

...

Examples

To write the vectors X, Y and Z to the file DUM.DAT using free format, that is, there will be
three columns of numbers in the file, enter:

WRITE DUM.DAT X Y Z

To write the vectors X, Y and Z to DUM.DAT using a specified format, enter:

WRITE\FORMAT DUM.DAT (’ X=’,F6.2,’ Y=’,F6.2,’ Z=’,F6.2) X Y Z

and DUM.DAT will look like:

X=123.45 Y=-23.45 Z= 23.45

X=124.45 Y=-24.45 Z= 24.45

X=125.45 Y=-25.45 Z= 25.45

X=126.45 Y=-26.45 Z= 26.45

...

Scalars

The WRITE\SCALAR command writes scalars to a file. One line will be written to the file. A

277

Commands

maximum of twenty-nine (29) scalars can be written with one WRITE command.

Examples

To write scalars A and B to file FILE.DAT using some format, and then to append to the file
the vectors X, Y and Z, enter:

WRITE\SCALAR\FORMAT FILE.DAT (’A = ’,F10.3,’ B = ’,F10.3) A B

WRITE\APPEND FILE.DAT X Y Z

Matrix

The WRITE\MATRIX command writes a matrix to a file. Only one matrix can be written with
each WRITE\MATRIX command.

String

The WRITE\TEXT command writes a string variable, or literal string, to a file. Only one text
string can be written with each WRITE\TEXT command and only one record will be written.

Examples

Suppose you want to write a header line to a file and then write some data stored in vectors
to that file. For example:

WRITE\TEXT FILE.DAT ‘This is a header line’

WRITE\APPEND FILE.DAT X Y Z

Suppose X is a vector, X=[1.1;2.2;3.3;4.4], and you want to write the values of X to a file,
with some text. For example:

DO J = [1:LEN(X)]

WRITE\TEXT\APPEND FILE.DAT ‘X[’//RCHAR(J)//‘] = ’//RCHAR(X[J],‘F4.1’)

ENDDO

ZEROLINES
Syntax ZEROLINES

Qualifiers \HORIZONTAL, \VERTICAL
Defaults both horizontal and vertical lines drawn

278

Commands

The ZEROLINES command draws horizontal and/or vertical lines on a graph through (0, 0)
depending on the qualifier that is used. The line(s) will have the current line type, as set
with the SET LINTYP command.

qualifier result

\HORIZONTAL a line is drawn through (0, 0), parallel to the x-axis, and from the left edge,
XMIN, to the right edge, XMAX

\VERTICAL a line is drawn through (0, 0), parallel to the y-axis, and from the bottom
edge, YMIN to the top edge, YMAX

none both horizontal and vertical lines are drawn

Example

The following script produces Figure 2.32.

WINDOW 5 ! choose pre-defined window

SCALES -5 5 2 -5 5 2 ! set graph scales

GRAPH\AXESONLY ! just draw axes

ZEROLINES ! overlay horiz. and vert. lines

WINDOW 6

GRAPH\AXESONLY

ZEROLINES\HORIZONTAL ! overlay horizontal line

WINDOW 12 50 0 75 50 ! define a window

GRAPH\AXESONLY

ZEROLINES\VERTICAL ! overlay vertical line

279

Commands

Figure 2.32: An example illustrating the ZEROLINES command

280

Operators

3 OPERATORS
Table 3.68 lists the Boolean operators that are recognized in PHYSICA expressions. Ta-
ble 3.69 lists the other operators. Operators requiring some explanation are described
individually in following sections.

string form symbolic form description

"OR" | or
"XOR" || exclusive or
"AND" & and
"NOT" ~ not
"LT" < less than
"GT" > greater than
"EQ" < equal
"LE" <= or ~> less than or equal
"GE" >= or ~< greater than or equal
"NE" ~= not equal

Table 3.68: Boolean operators

operator description operator description

() parentheses ^ or ** exponentiation
* multiplication / division
+ addition - subtraction
>< outer product <> inner product
<- matrix transpose >- matrix reflect
/| vector union /& vector intersection
// append

Table 3.69: Other operators

Boolean operators

The Boolean operators, listed in Table 3.68, all come in two forms, symbolic and string. The
double quotes, " ", are required with the string form. Boolean operators return a value of
zero (0) when false and a value of one (1) when true.

The Boolean operators can operate on scalars, vectors, or matrices, but both operands
must be the same size and shape. The result of the operation is a variable with this size
and shape.

281

Operators

All of the Boolean operators are binary, except for the not operator, "NOT" or ~, which is
unary.

Examples

Suppose you have two vectors: X = [1;2;3;4;5;6;7] Y = [-2;-1;0;1;2;3;4] Then:

X"OR"Y = X|Y = [1;1;1;1;1;1;1]

X"XOR"Y = X||Y = [0;0;1;0;0;0;0]

X"AND"Y = X&Y = [1;1;0;1;1;1;1]

X"EQ"Y = X=Y = [0;0;0;0;0;0;0]

X"NE"Y = X~=Y = [1;1;1;1;1;1;1]

X"GT"Y = X>Y = [1;1;1;1;1;1;1]

X"LT"Y = X<Y = [0;0;0;0;0;0;0]

X"GE"Y = X>=Y = [1;1;1;1;1;1;1]

X"LE"Y = X<=Y = [0;0;0;0;0;0;0]

"NOT"(X"OR"Y) = ~(X|Y) = [0;0;0;0;0;0;0]

Transpose

The transpose operator, <-, is a unary operator that produces the transpose of a matrix,
that is, the rows and columns are interchanged. Suppose the matrix m has nr rows and nc
columns. m[i, j]←→ m[j, i] for i = 1, 2, . . . , nr and j = 1, 2, . . . , nc.

Example

M =


1 2 3
4 5 6
7 8 9

10 11 12

 <-M =

 1 4 7 10
2 5 8 11
3 6 9 12



Reflect

The reflect operator, >-, is a unary operator that interchanges the columns of a matrix.
Suppose the matrix m has nc columns and nr rows. Column nc is interchanged with column
1, that is, m[1 : nr, 1] ←→ m[1 : nr, nc]; column nc − 1 is interchanged with column 2, that is,
m[1 : nr, 2]←→ m[1 : nr, nc − 1]; and so on.

Examples

282

Operators

M =


1 10 −1
2 20 −2
3 30 −3
4 40 −4

 >-M =


−1 10 1
−2 20 2
−3 30 3
−4 40 4


You can reflect the rows of a matrix, by using the reflect operator and the transpose operator.

M =


1 10 −1
2 20 −2
3 30 −3
4 40 −4

 <-(>-(<-M)) =


−4 40 4
−3 30 3
−2 20 2
−1 10 1


Union

The union operator, /|, is a binary operatore that only accepts vectors as operands, and
returns a vector which contains the union of the elements of these two vectors.

All vectors have an order property. Vectors are either in ascending order, descending order,
or un-ordered. The type is displayed in the SHOW command, where +O means ascending order,
-O means descending order, and no symbol means un-ordered. For now, being ordered only
has an affect on the vector union, /|, and the vector intersection, /&. These operations are
much faster if the vector operands are ordered. The WHERE function produces an ascending
order vector, as does the SORT\UP command. The SORT\DOWN command produces a descending
order vector. This new vector property will be utilised more in the future to enhance speed
and efficiency.

Example

To illustrate vector union, suppose you have two vectors:

X = [1;2;3;4;5;6;7] Y = [-2;-1;0;1;2]

Then: X/|Y = [-2;-1;0;1;2;3;4;5;6;7]

Intersection

The intersection operator, /&, is a binary operatore that only accepts vectors as operands,
and returns a vector which contains the intersection of the elements of these two vectors.

All vectors have an order property. Vectors are either in ascending order, descending order,
or un-ordered. The type is displayed in the SHOW command, where +O means ascending order,
-O means descending order, and no symbol means un-ordered. For now, being ordered only

283

Operators

has an affect on the vector union, /|, and the vector intersection, /&. These operations are
much faster if the vector operands are ordered. The WHERE function produces an ascending
order vector, as does the SORT\UP command. The SORT\DOWN command produces a descending
order vector. This new vector property will be utilised more in the future to enhance speed
and efficiency.

Example

To illustrate vector intersection, suppose you have two vectors:

X = [1;2;3;4;5;6;7] Y = [-2;-1;0;1;2]

Then: X/&Y = [1;2]

Append

The meaning of the append operator, //, depends on its operands. If the operands are both
vectors, the second vector is appended to the first. If the operands are strings, the second
string is appended to the first.

Examples

To illustrate appending vectors, suppose you have two vectors:

X = [3;5;7] Y = [-2;-4;-5]

Then: X//Y = [3;5;7;-2;-4;-5]

To illustrate appending strings, suppose you have a scalar string variable:

T = ‘this is a string’

Then: T//‘ and another’ = ‘this is a string and another’

Outer product

The outer product operator, ><, operates on two vectors and produces a matrix composed of
all possible combinations of products of elements of the vectors.

If x = [x1; x2; . . . ; xm] and y = [y1; y2; . . . ; yn] then x><y =


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
...

xmy1 xmy2 . . . xmyn


284

Operators

Example

Suppose you have two vectors: X = [1;3;5] Y = [2;4]

Then: X><Y =

 2 4
6 12

10 20


Inner product

The inner product, <>, operating on two vectors produces a scalar; operating on a vector
and a matrix produces a vector, operating on two matrices produces a matrix.

Operating on two vectors

The inner product operating on two vectors produces a scalar, whose value is equal to the
sum of the products of the vectors’ elements. The two vectors must be the same length.

If x = [x1; x2; . . . ; xn] and y = [y1; y2; . . . ; yn] then x<>y =
n∑
i=1

xiyi

Example

Suppose you have two vectors: X = [1;3;5] Y = [2;4;6]

Then: X<>Y = 44

Operating on a vector and a matrix

The inner product operating on a vector and a matrix produces a vector. If the vector is the
first operand, its length must be equal to the number of rows of the matrix. The resultant
vector length will be the number of columns of the second operand matrix.

If x = [x1; x2; . . . ; xm] and a =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

am,1 am,2 . . . am,n



then (x<>a)i =
m∑
j=1

xjaj,i for i = 1, 2, . . . , n

Examples

285

Operators

The inner product of a vector and a matrix:

X = [1;3;5] M =

 1 4
2 5
3 6


Then: X<>M = [22; 49]

Operating on a matrix and a vector

The inner product operating on a matrix and a vector produces a vector. If the vector is the
second operand, its length must be equal to the number of columns of the matrix, and the
resultant vector length will be the number of rows of the first operand matrix.

If a =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

am,1 am,2 . . . am,n

 and x = [x1; x2; . . . ; xn]

then (a<>x)i =
n∑
j=1

ai,jxj for i = 1, 2, . . . ,m

Examples

The inner product of a matrix and a vector:

X = [1;3;5]

M =

(
1 3 5
2 4 6

)

Then: M<>X = [35; 44]

Operating on two matrices

The inner product operating on two matrices produces a matrix. The number of columns of
the first operand matrix must be equal to the number of rows of the second operand matrix.
The resultant matrix will be a square matrix with the number of rows and the number of

286

Operators

columns equal to the number of rows of the first operand.

If a =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

am,1 am,2 . . . am,n

 and b =


b1,1 b1,2 . . . b1,m

b2,1 b2,2 . . . b2,m

...
...

bn,1 bn,2 . . . bn,m



then (a<>b)i,j =
n∑
k=1

ai,kbk,j for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m

Example

The inner product of two matrices:

A =

 11 12 13
21 22 23
31 32 33

 and B =

 1 2 3
2 4 6
3 6 9

 Then: A<>B =

 74 148 222
134 268 402
194 388 582



287

Functions

4 FUNCTIONS
PHYSICA supports many types of functions, both numeric and string. The basic numeric
type of function operates on scalars, vectors, or matrices, but one number at a time. In
other words, it performs its calculations on an element by element basis. These include
the trigonometric functions, and the basic arithmetic functions such as the exponential
and logarithmic functions. The resultant variable type of one of these element by element
functions will be the same as the variable type of its argument.

PHYSICA also supports array functions, which operate on variables in their entirety, such
as derivative, integral and smoothing functions. Some of these functions have a different
resultant variable type than their arguments. There are also functions that operate on
strings, such as case changing functions, and functions that have numeric arguments but
result in strings.

A special type of the array functions are called looping functions, such as the sum and
product functions. The looping functions all require a previously declared scalar dummy
variable as second argument. The looping functions mimic standard mathematical notation,
for example, the sum:

SUM(f(j), j, 1 : N) ≡
N∑
j=1

f(j)

Where j is the dummy variable. A dummy variable is different from other scalar variables
in that its value is only defined while inside the looping function. The first argument of
a looping function would normally be some function of the dummy variable, but it is not
necessary that the dummy variable appear in the first argument.

Element by element functions

Table 4.70 on page 289 lists the trigonometric functions, while Table 4.71 on page 290 lists
other basic numeric functions that are intrinsic to the program. These functions all expect
numeric arguments, and operate on an element by element basis.

The trigonometric and basic single argument functions will always have a resultant type
which will be the same as the type of its argument, that is, a scalar argument results in
a scalar, a vector argument results in a vector with the same length as the argument, and
a matrix argument results in a matrix with the same size and shape as the argument.
Some of these element by element functions, such as MAX, DIM and ELTIME, do require some
explanation, but the definitions of most are assumed to be obvious to the reader.

288

Functions

function description function description

SIN(x) Sine (radians) SINH(x) Hyperbolic Sine
SIND(x) Sine (degrees)
COS(x) Cosine (radians) COSH(x) Hyperbolic Cosine
COSD(x) Cosine (degrees)
TAN(x) Tangent (radians) TANH(x) Hyperbolic Tangent
TAND(x) Tangent (degrees)
COT(x) Cotangent (radians) COTH(x) Hyperbolic Cotangent
SEC(x) Secant (radians) SECH(x) Hyperbolic Secant
CSC(x) Cosecant (radians) CSCH(x) Hyperbolic Cosecant
ASIN(x) Arc Sine (radians) ASINH(x) Hyperbolic Arc Sine
ASIND(x) Arc Sine (degrees)
ACOS(x) Arc Cosine (radians) ACOSH(x) Hyperbolic Arc Cosine
ACOSD(x) Arc Cosine (degrees)
ATAN(x) Arc Tangent (radians) ATANH(x) Hyperbolic Arc Tangent
ATAND(x) Arc Tangent (degrees)
ATAN2(y,x) Arc Tangent of y / x (radians)
ATAN2D(y,x) Arc Tangent of y / x (degrees)
ACOT(x) Arc Cotangent (radians) ACOTH(x) Hyperbolic Arc Cotangent
ASEC(x) Arc Secant (radians) ASECH(x) Hyperbolic Arc Secant
ACSC(x) Arc Cosecant (radians) ACSCH(x) Hyperbolic Arc Cosecant

Table 4.70: Trigonometric functions

289

Functions

function description

ABS(x) absolute value |x|
EXP(x) exponential ex

FACTORIAL(x) factorial x!
INT(x) integer portion of x

NINT(x) nearest integer (x + 0.5× SIGN(1, x))
LOG(x) base e logarithm
LN(x) base e logarithm
LOG10(x) base 10 logarithm
RAN(x) random number
SQRT(x) square root

√
x

ELTIME(x) elapsed time in seconds
DIM(x,y) positive difference function
MOD(x,y) modulus function
SIGN(x,y) transfer of sign
MAX(x1,x2,...) maximum of argument list
MIN(x1,x2,...) minimum of argument list

Table 4.71: Basic element by element numeric functions

ATAN2
Syntax vout = ATAN2(v1, v2)

The ATAN2(v1,v2) function returns the Arc Tangent of v1/v2, with −π < ATAN2(v1,v2) ≤ π.

• If v1 > 0, the result is positive.

• If v1 = 0, the result is zero if v2 > 0 and π if v2 < 0.

• If v1 < 0, the result is negative. If the value of the second argument is zero, the absolute
value of the result is π/2.

Both arguments must not have the value zero.

ATAN2D
Syntax vout = ATAN2D(v1, v2)

The ATAN2D(v1,v2) function returns the Arc Tangent of v1/v2 in degrees, with −180◦ <

ATAN2(v1,v2) ≤ 180◦.

290

Functions

• If v1 > 0, the result is positive.

• If v1 = 0, the result is zero if v2 > 0 and 180◦ if v2 < 0.

• If v1 < 0, the result is negative. If the value of the second argument is zero, the absolute
value of the result is 90◦.

Both arguments must not have the value zero.

RAN
Syntax vout = RAN(v)

The RAN function is an element by element function that requires one (1) argument. The
argument can be a scalar, vector or matrix. A scalar argument results in a scalar. A vector
argument results in a vector with the same length as the argument, and a matrix argument
results in a matrix with the same dimensions as the argument.

RAN uses the current value of the seed to generate the next random number, 0 ≤ RAN(v) < 1.
The initial value for the random number seed is 12345. Every time a random number is
requested, either from the GENERATE\RANDOM command or from the RAN function, the seed is
updated. You can change the seed value with the SET SEED command.

ELTIME
Syntax sout = ELTIME(s)

The ELTIME function is an element by element function that requires one (1) argument. The
argument can be a scalar, vector or matrix, but it is intended to have a scalar argument.
ELTIME returns the elapsed time in seconds. Initialize the time by calling ELTIME(0), which
return 0, and then subsequent calls of ELTIME(s), with s > 0, will give the elapsed time
since initialization. If not initialized, ELTIME(s), with s > 0, returns the elapsed time since
midnight. ELTIME(s), with s < 0, always returns the elapsed time since midnight. For
example:

call result

ELTIME(0) returns 0 (initialization)
ELTIME(1) returns elapsed time since initialization, or

if not initialized, returns elapsed time since midnight
ELTIME(-1) returns elapsed time since midnight

291

Functions

DIM
Syntax v = DIM(v1, v2)

The DIM function is an element by element function that requires two (2) arguments. The
arguments can be scalars, vectors or matrices, but vectors and matrices cannot be mixed,
and all arrays must be the same size. Scalar arguments result in a scalar. A vector argument
result in a vector with the same length as the argument, and matrix arguments result in a
matrix with the same dimensions as the arguments.

argument 1 argument 2 result

scalar scalar scalar DIM(a, b) = max(0, a-b)

vector vector vector DIM(x, y)[j] = max(0, x[j]-y[j])

scalar vector vector DIM(a, x)[j] = max(0, a-x[j])

vector scalar vector DIM(x, a)[j] = max(0, x[j]-a)

matrix matrix matrix DIM(m1, m2)[i,j] = max(0, m1[i,j]-m2[i,j])

scalar matrix matrix DIM(a, m)[i,j] = max(0, a-m[i,j])

matrix scalar matrix DIM(m, a)[i,j] = max(0, m[i,j]-a)

MOD
Syntax v = MOD(v1, v2)

The MOD function is an element by element function that requires two (2) arguments. The
arguments can be scalars, vectors or matrices, but vectors and matrices cannot be mixed,
and all arrays must be the same size. Scalar arguments result in a scalar. A vector argument
result in a vector with the same length as the argument, and matrix arguments result in a
matrix with the same dimensions as the arguments.

argument 1 argument 2 result

scalar scalar scalar MOD(a, b) = a-b*INT(a/b)

vector vector vector MOD(x, y)[j] = x[j]-y[j]*INT(x[j]/y[j])

scalar vector vector MOD(a, x)[j] = a-x[j]*INT(a/x[j])

vector scalar vector MOD(x, a)[j] = x[j]-a*INT(x[j]/a)

matrix matrix matrix MOD(m1, m2)[i,j] = m1[i,j]-m2[i,j]*INT(m1[i,j]/m2[i,j])

scalar matrix matrix MOD(a, m)[i,j] = a-m[i,j]*INT(a/m[i,j])

matrix scalar matrix MOD(m, a)[i,j] = m[i,j]-a*INT(m[i,j]/a)

SIGN
Syntax v = SIGN(v1, v2)

292

Functions

The SIGN function is an element by element function that requires two (2) arguments. The
arguments can be scalars, vectors or matrices, but vectors and matrices cannot be mixed,
and all arrays must be the same size. Scalar arguments result in a scalar. A vector argument
result in a vector with the same length as the argument, and matrix arguments result in a
matrix with the same dimensions as the arguments.

argument 1 argument 2 result

scalar scalar scalar SIGN(a, b) = |a|(sign of b)

vector vector vector SIGN(x, y)[j] = |x[j]|(sign of y[j])

scalar vector vector SIGN(a, x)[j] = |a|(sign of x[j])

vector scalar vector SIGN(x, a)[j] = |x[j]|(sign of a)

matrix matrix matrix SIGN(m1, m2)[i,j] = |m1[i,j]|(sign of m2[i,j])

scalar matrix matrix SIGN(a, m)[i,j] = |a|(sign of m[i,j])

matrix scalar matrix SIGN(m, a)[i,j] = |m[i,j]|(sign of a)

MIN
Syntax v = MIN(v1,{v2,...})

The MIN function is an element by element function that accepts from one (1) to a maximum
of twenty (20) arguments. If only one argument is supplied, the minimum element of that
argument is returned. If two or more arguments are supplied, the arguments are compared
element by element, and the minimum values are returned. The arguments can be scalars,
vectors or matrices, but cannot be mixed, and all arrays must be the same size. Scalar
arguments result in a scalar. Vector arguments result in a vector with the same length as
the arguments, and matrix arguments result in a matrix with the same dimensions as the
arguments.

arguments result

one vector scalar MIN(x) = minimum(x[1],x[2],...,x[#])

one matrix scalar MIN(m) = minimum(m[1,1],...,m[#,#])

scalars scalar MIN(a,b,...) = minimum(a,b,...)

vector vector MIN(x,y,...)[j] = minimum(x[j],y[j],...)

matrix matrix MIN(m1,m2,...)[i,j] = minimum(m1[i,j],m2[i,j],...)

MAX
Syntax v = MAX(v1,{v2,...})

The MAX function is an element by element function that accepts from one (1) to a maximum
of twenty (20) arguments. If only one argument is supplied, the maximum element of that
argument is returned. If two or more arguments are supplied, the arguments are compared

293

Functions

element by element, and the maximum values are returned. The arguments can be scalars,
vectors or matrices, but cannot be mixed, and all arrays must be the same size. Scalar
arguments result in a scalar. Vector arguments result in a vector with the same length as
the arguments, and matrix arguments result in a matrix with the same dimensions as the
arguments.

arguments result

one vector scalar MAX(x) = maximum(x[1],x[2],...,x[#])

one matrix scalar MAX(m) = maximum(m[1,1],...,m[#,#])

scalars scalar MAX(a,b,...) = maximum(a,b,...)

vector vector MAX(x,y,...)[j] = maximum(x[j],y[j],...)

matrix matrix MAX(m1,m2,...)[i,j] = maximum(m1[i,j],m2[i,j],...)

Special mathematical functions

Airy’s functions

The Airy functions Ai and Bi occur in electromagnetic theory and in quantum mechanics.

Airy’s functions of the first kind, AIRY, and second kind, BIRY are

AIRY(x) = Ai(x) = c1f(x)− c2g(x)

BIRY(x) = Bi(x) =
√

3 [c1f(x) + c2g(x)]

where c1 =
3−2/3

Γ(2
3)

c2 =
3−1/3

Γ(1
3)

f(x) = 1 +
1
3!

x3 +
1 · 4
6!

x6 +
1 · 4 · 7

9!
x9 + · · ·

g(x) = x +
2
4!

x4 +
2 · 5
7!

x7 +
2 · 5 · 8

10!
x10 + . . .

Beta functions

Complete beta function

BETA(a, b) = β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt =

Γ(a)Γ(b)
Γ(a + b)

294

Functions

Where a and b are both real and positive.

Incomplete beta function

BETAIN(x, a, b) = Ix(a, b) =

∫ x
0 ta−1(1− t)b−1dt∫ 1
0 ta−1(1− t)b−1dt

=

∫ x
0 ta−1(1− t)b−1dt

β(a, b)

Bessel functions

First and second kinds

The Bessel functions of the first and second kinds, Jn and Yn, are linearly independent
solutions to the differential equation

x2 d2

dx2
y + x

d

dx
y + (x2 − n2)y = 0

Bessel functions arise in solving differential equations for systems with cylindrical symme-
try.

BESJ0(x) = J0(x) =
1
π

∫ π

0
cos(x sin t)dt =

∞∑
k=0

(−x2

4)k

k!k!

BESJ1(x) = J1(x) =
1
π

∫ π

0
cos(x sin t− t)dt =

x

2

∞∑
k=0

(−x2

4)k

k!(k + 1)!

BESY0(x) = Y0(x) =
4
π2

∫ π
2

0
cos(x cos t)[γ + ln(2x sin2(t)]dt

=
2
π

[−1
x

+ ln(
x

2
+ γ)J0(x)−

∞∑
k=1

(
k∑
j=1

1
j

)
(−x2

4)k

k!k!
]

=
2
π

[J0(x) ln(
γx

2
) +

∞∑
k=1

(x
2

4)k

k!k!
(
k∑
j=1

1
j

)]

BESY1(x) = Y1(x) =
2
π

[−1
x

+ ln(
x

2
)J1(x)− x

4

∞∑
k=0

[ψ(k + 1) + ψ(k + 2)]
(−x2

4)k

k!(k + 1)!

where ψ is the digamma function, and where γ is Euler’s constant

γ = lim
m→∞

[
m∑
k=1

1
k
− ln(m)] = 0.5772156649 . . .

295

Functions

Modified Bessel functions

The modified Bessel functions of the first and second kinds, In and Kn, are solutions to the
differential equation

x2 d2

dx2
y + x

d

dx
y − (x2 + n2)y = 0

BESI0(x) = I0(x) =
∞∑
k=0

(x2)2k

k!k!

BESI1(x) = I1(x) =
x

2

∞∑
k=0

(x2)2k

k!(k + 1)!

BESK0(x) = K0(x) = −[ln(
x

2
+ γ]I0(x)−

∞∑
k=1

k∑
j=1

1
j

(x2)2k

k!k!

BESK1(x) = K1(x) =
1
x

+ ln(
x

2
)I1(x)− x

4

∞∑
k=0

[ψ(k + 1) + ψ(k + 2)]
(x2)2k

k!(k + 1)!

where ψ is the digamma function, where γ is Euler’s constant

γ = lim
m→∞

[
m∑
k=1

1
k
− ln(m)] = 0.5772156649 . . .

Binomial coefficient

BINOM(n,m) =

(
n

m

)
=

n!
(n−m)!m!

Chebyshev polynomials

Series of Chebyshev polynomials are used in making numerical approximations to func-
tions.

CHEBY(n, x) = Tn(x) = cos(n cos−1 x)

296

Functions

Probability functions

Bivariate normal probability function

BIVARNOR(h, k, r) = Probability(x > h, y > k)

=
∫ +∞

h

∫ +∞

k

exp(−[x
2−2rxy+y2

2(1−r2)])

2π
√

1− r2
dxdy

Chi-square probability function

CHISQ(x, n) = χ2(x|n) = [2
n
2 Γ(

n

2
)]−1

∫ +∞

x
t
n
2
−1e−

t
2 dt where 0 ≤ x <∞, n ≥ 1

Inverse Chi-square

Given y = χ2(x|n) and n, then x is found: CHISQINV(y, n) = x

Probability integral of Chi-square distribution

PROB(χ2, n) =
1

2n/2Γ(n/2)

∫ ∞
χ2

t
n
2
−1e−t/2dt

where n is the number of degrees of freedom, n ≥ 1. For more information, please refer to:

Handbook of Mathematical Functions
by Abramowitz and Stegun, 1964, pages 978ff.

Gaussian or normal probability function

The Gaussian probability function is also known as the normal probability function.

GAUSS(x) = FREQ(x) = P (x) =
1√
2π

∫ x

−∞
e−t

2/2dt

Normalized Gaussian distribution

297

Functions

NORMAL(x,a,b) =
1

b
√

2π
e−

(x−a)2

2b2

Inverse Gaussian

Given y = GAUSS(x), then x is found: GAUSSIN(y) = x

Cosine integral

COSINT(x) = Ci(x) = −
∫ ∞
x

cos(t)
t

dt = γ + ln |x|+
∫ x

0

cos(t)− 1
t

dt

where γ is Euler’s constant

γ = lim
m→∞

[
m∑
k=1

1
k
− ln(m)] = 0.5772156649 . . .

Sine integral

SININT(x) = Si(x) =
∫ x

0

sin(t)
t

dt

Dawson’s integral

DAWSON(x) = e−x
2
∫ x

0
et

2
dt

Digamma Psi function

DIGAMMA(x) = ψ(x) =
d

dx
[ln Γ(x)] =

Γ′(x)
Γ(x)

Note that ψ(1) = −γ, ψ(n) = −γ +
n−1∑
k=1

k−1

298

Functions

where γ is Euler’s constant

γ = lim
m→∞

[
m∑
k=1

1
k
− ln(m)] = 0.5772156649 . . .

Dilogarithm

The dilogarithm, Li2, occurs in Feynman diagram integrals in particle physics.

DILOG(x) = Li2(x) = −
∫ x

0

ln |1− t|
t

dt =
∞∑
k=1

xk

k2

Li2(1− x) is sometimes known as Spence’s integral.

Elliptic integrals

Elliptic integrals have the form
∫
F(x, y)dx where F is a rational function of x and y, and y2

is a cubic or quartic polynomial in x. Any elliptic integral can be expressed in terms of the
three canonical forms. The elliptic integrals are said to be ”complete” when the amplitude
is π

2 .

First kind

For |x| ≤ 1 and |p| ≤ π/2

FINELLIC(x, p) = F (p, x) =
∫ p

0

dt√
1− x2 sin2 t

=
∫ y

0

dy√
(1− y2)(1− k2y2)

For |x| < 1, ELLICK(x) = F (π/2, x)

Second kind

For |x| ≤ 1 and |p| ≤ π/2

EINELLIC(x, p) = E(p, x) =
∫ p

0

√
1− x2 sin2 tdt =

∫ y

0

√
1− x2y2√
1− y2

dy

where y = sin(p). For |x| ≤ 1 ELLICE(x) = E(π/2, x)

Error function

For more information, please refer to:

299

Functions

Algorithm 610, A Portable FORTRAN Subroutine for Derivatives of the Psi Function, D.E. Amos,
ACM Transactions on Mathematical Software, December 1983, Vol. 9, No. 4, pages 494–
502.

Handbook of Mathematical Functions, M. Abramowitz, I.A. Stegun, New York, Dover Publi-
cations Inc., 1965.

The error function, ERF(x), is the integral of the Gaussian distribution.

ERF(x) =
2√
π

∫ x

0
e−t

2
dt

Inverse

Given y = ERF(x), then x is found: AERF(y) = x

Complementary error function

ERFC(x) =
2√
π

∫ ∞
x

e−t
2
dt

= 1− ERF(x)

Inverse

Given y = ERFC(x), then x is found: AERFC(y) = x

Exponential integrals

EXPINT(x) =
∫ ∞
x

e−t

t
dt

EI(x) =
∫ x

−∞

e−t

t
dt = −EXPINT(−x)

Exponential integrals of order n

EXPN(x, n) =
∫ ∞

1

e−xt

tn
dt where n = 0, 1, 2, . . . and x > 0

300

Functions

EXPN(x, n) is related to EXPINT(x) via EXPN(1, 1) = EXPINT(1).

Fermi-Dirac function

FERDIRAC(x, p) =
∫ ∞

0

tp

et−x + 1
dt only for p = −1

2
,

1
2
,

3
2

Fisher’s F -distribution function

Fisher’s F -distribution function is also known as the variance-ratio distribution function.

FISHER(m,n, x) =
Γ(m+n

2)
Γ(m2)Γ(n2)

∫ m
n
x

0

t
m
2
−1

(t + 1)
m+n

2

dt =
m

m
2 n

n
2

β(m2 , n2)

∫ x

0
t
m−2

2 (n + mt)−
m+n

2 dt

where x ≥ 0 and β is the complete β function.

Fresnel integrals

Fresnel and associated Fresnel integrals are related to the error function and occur in
diffraction theory.

FREC1(x) = C(x) =
∫ x

0
cos(

π

2
t2)dt

FRES1(x) = S(x) =
∫ x

0
sin(

π

2
t2)dt

FREC2(x) =
1√
2π

∫ x

0

cos(t)√
t

dt = FREC1(

√
2x

π
)

FRES2(x) =
1√
2π

∫ x

0

sin(t)√
t

dt = FRES1(

√
2x

π
)

Gamma function

GAMMA(x) = Γ(x) =
∫ ∞

0
tx−1e−tdt

Natural logarithm of the Gamma function

301

Functions

GAMMLN(x) = LOGAM(x) = ln Γ(x)

Incomplete Gamma functions

GAMMACIN(x, a) = Γ(x, a) =
∫ ∞
a

tx−1e−tdt

GAMMAIN(x, a) = γ(x, a) =
∫ a

0
tx−1e−tdt

GAMMATIN(x, a) = γ∗(x, a) =
a−xγ(x, a)

Γ(x)

GAMMQ(x, a) =
1

Γ(x)

∫ ∞
a

tx−1e−tdt

Hermite polynomials

Hermite polynomials arise as the quantum mechanical wave functions for a harmonic os-
cillator.

HERMITE(n, x) = Hn(x) = (−1)nex
2 dn

dxn
(e−x

2
)

Hypergeometric function

The hypergeometric function is also called the Gauss series.

HYPGEO(a, b, c, x) = 2F1(a, b, c, x) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a + n)Γ(b + n)
Γ(c + n)

xn

n!

Logarithmic confluent hypergeometric function

CHLOGU(a, b, x) = U(a, b, x) = x−a 2F0(a, 1 + a− b; ;−1/x)

=
π

sin(πb)

[
M(a, b, x)

Γ(1 + a− b)Γ(b)
− x1−bM(1 + a− b, 2− b, x)

Γ(a)Γ(2− b)

]
302

Functions

Where M(a, b, x) is Kummer’s Function or the regular confluent hypergeometric function

M(a, b, x) = 1F1 = 1 +
a

b
x +

(a)2

(b)2

x2

2!
+ · · ·+ (a)n

(b)n
xn

n!
+ · · ·

where (p)n = p(p + 1)(p + 2) · · · (p + n− 1) = Γ(p + n) and (p)0 = 1

Note: This function fails when 1 + a− b is close to zero for small x.

Jacobi polynomials

Jacobi polynomials occur in studies of the rotation group, particularly in quantum mechan-
ics. Legendre and Chebyshev are special cases of Jacobi polynomials.

JACOBI(a, b, n, x) = P (a,b)
n (x) =

(−1)n

2nn!
(1− x)−a(1 + x)−b

dn

dxn
[(1− x)a+n(1 + x)b+n]

Kelvin functions

Kelvin functions occur in electrical engineering.

Kelvin functions of the first kind

The Kelvin functions of the first kind, order 0

BER(x) = ber0x BEI(x) = bei0x

where ber0x + i bei0x = J0(xe3πi/4)

and where J0 is Bessel’s function of the first kind, order 0.

Kelvin functions of the second kind

Kelvin functions of the second kind, order 0, for non-negative x.

KER(x) = ker0x KEI(x) = kei0x

where ker0x + i kei0x = e−
νπi
2 |ν=0 Kν(xeiπ/4)|ν=0 = K0(xeiπ/4)

and K0 is the modified Bessel function of the second kind, of order 0.

Laguerre polynomials

303

Functions

Laguerre polynomials are related to hydrogen atom wave functions in quantum mechanics.

LAGUERRE(n, x) = ex
dn

dxn
[xne−x]

Legendre functions and polynomials

The most elementary of the Legendre functions, the Legendre polynomials, Pn(x) can be
defined by the generating function:

(1− 2xr + r2)−
1
2 =

∞∑
n=0

Pn(x)rn

More explicit representations are:

LEGENDRE(n, x) = Pn(x) ≡ P 0
n(x) =

1
2nn!

dn

dxn
(x2 − 1)n = 2F1(−n, n + 1, 1, (1 − x)/2)

where 2F1 is the hypergeometric function.

Unnormalized associated Legendre functions of degree n

PLMU(n,m, x) = Pm
n (x)

= (1− x2)m/2
dm

dxm
Pn(x) for m ≥ 0

=
(n + m)!
(n−m)!

P−mn (x) for m < 0

Normalized associated Legendre functions

PLM(n,m, x) = PLMN(n,m, x) = Pm
n (x) =

√
2n + 1

2
(n−m)!
(n + m)!

Pm
n (x)

where −1 < x < 1, n is a non-negative integer and m = −n, . . . ,−1, 0, 1, . . . , n satisfy the
differential equation:

(1− x2)
d2y

dx2
− 2x

dy

dx
+ [n(n + 1)− m2

1− x2
]y = 0

Note: PLMU(n, 0, x) = LEGENDRE(n, x).

Poisson-Charlier polynomial

304

Functions

POICA(a, n, x) = ραη (x) = an/2(n!)−1/2
n∑
k=0

(−1)n−k
(

n

k

)
k!a−k

(
x

k

)

Rademacher function

RADMAC(k, x) = Υk(x) = sign[sin(2k+1πx)]

Alternatively, find m such that m ≤ 2k+1x < (m + 1); where m = 0, ±1, ±2, . . .

then Υk(x) =

{
+1 if m=even
−1 if m=odd

Struve functions

First order

STRUVE0(x) =
2
π

[x− x3

(1 · 3)2
+

x5

(1 · 3 · 5)2
− · · ·]

Second order

STRUVE1(x) =
2
π

[
x2

12 · 3 −
x4

(1 · 3)2 · 5 +
x6

(1 · 3 · 5)2 · 7 − · · ·]

Student’s t-distribution

STUDENT(t, n) = P (
t

n
) = [β(

1
2
,
n

2
)
√

n]−1

∫ t

−∞
(1 +

x2

n
)−(n+1)/2dx

where β is the complete β function. Since Γ(1
2) =

√
π

STUDENT(t, n) =
Γ(n+1

2)
Γ(n2)

√
nπ

∫ t

−∞
(1 +

x2

n
)−(n+1)/2dx

305

Functions

Inverse

Given y = P (tn) and n, then t is found: STUDENTI(y, n) = t.

Normalized tina resolution

TINA(x, a, b, c) =
1

2ceb
2/4c2

e
x−a
c (1− ERF(

x− a

b
)

=
1

2ceb
2/4c2

e
(1− 2√

π
)(x−a)/c

∫ (x−a)/b

0
e−t

2
dt

If (x − a)/b > 80 or (x − a)/c > 80 then TINA(x, a, b, c) is returned as zero (0). This is done to
circumvent floating overflow problems for large x.

Vector coupling coefficients

Clebsch-Gordan coefficients, Wigner’s 3j, 6j, and 9j symbols, Jahn’s U-function, and Racah
coefficients are the vector coupling coefficients in the theory of angular momentum in quan-
tum mechanics. For more information, please refer to:

Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
by Eugene P. Wigner, Academic Press, 1959

Elementary Theory of Angular Momentum
by M.E. Rose, John Wiley & Sons, Inc., 1957

Angular Momentum in Quantum Mechanics
by A.R. Edmonds, Princeton University Press, 1960

The Clebsch-Gordan vector-addition coefficient, (j1j2m1m2|jm) is defined as:

(j1j2m1m2|jm) = δ(m,m1 + m2)

√
(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!(2j + 1)

(j + j1 + j2 + 1)!

×
∑
k

(−1)k
√

(j1 + m1)!(j1 −m1)!(j2 + m2)!(j2 −m2)!(j + m)!(j −m)!
k!(j1 + j2 − j − k)!(j1 −m1 − k)!(j2 + m2 − k)!(j − j2 + m1 + k)!(j − j1 −m2 + k)!

where δ(i, k) =

{
1, i = k

0, i 6= k

306

Functions

and with the following restrictions:

j1, j2, j = +n or +
n

2
(n = integer)

j1 + j2 + j = n

+j1 + j2 − j

+j1 − j2 + j

−j1 + j2 + j

 ≥ 0

m1,m2,m = ±n or ± n

2

|m1| ≤ j1, |m2| ≤ j2, |m| ≤ j

(j1j2m1m2|j1j2jm) = 0 for m1 + m2 6= m

Clebsch-Gordan coefficient function

CLEBSG(j1, j2, j,m1,m2,m) = (j1j2m1m2|jm)

and

CLEBSG(j1, j2, j) = (j1j200|j0)

Note: (j1j200|j0) = 0 when j1 + j2 + j = 2n + 1.

Wigner 3− j function

WIGN3J(j1, j2, j,m1,m2,m) =

(
j1 j2 j

m1 m2 m

)
=

(−1)j1−j2−m√
2j + 1

(j1j2m1m2|j −m)

and

WIGN3J(j1, j2, j) =

(
j1 j2 j

0 0 0

)
=

(−1)j1−j2√
2j + 1

(j1j200|j0)

Racah coefficients

307

Functions

To define the Racah coefficients we first define the ”triangle” coefficient:

∆(abc) =

√
(a + b− c)!(a− b + c)!(−a + b + c)!

(a + b + c + 1)!

Racah’s W -function is defined as:

RACAHC(a, b, c, d, e, f) = W (abcd; ef) =

∆(abe)∆(cde)∆(acf)∆(bdf)

×
∑
k

(−1)k+a+b+c+d(k + 1)!
(k − a− b− e)!(k − c− d− e)!(k − a− c− f)!(k − b− d− f)!

× 1
(a + b + c + d− k)!(a + d + e + f − k)!(b + c + e + f − k)!

Wigner’s 6− j function

WIGN6J(j1, j2, j,m1,m2,m) =

{
j1 j2 j

m1 m2 m

}
= (−1)j1+j2+m1+m2W (j1j2m2m1; jm)

Wigner’s 9− j function

WIGN9J(j1, j2, j,m1,m2,m, n1, n2, n) =


j1 j2 j

m1 m2 m

n1 n2 n


please refer to: Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
by Eugene P. Wigner, Academic Press, 1959

Jahn’s U function

JAHNUF(j1, j2,m2,m1, j,m) = U(j1j2m2m1; jm)

= (−1)j1+j2+m1+m2
√

(2j + 1)(2m + 1)

{
j1 j2 j

m1 m2 m

}

Walsh functions

308

Functions

The Walsh functions form a complete set of orthogonal, normalized, rectangular periodic
functions with a period of one.

Let m be found so that k can be written as a binary number:

k =
m∑
i=0

ai2i; where ai = 0 or 1 then WALSH(k, x) =
m∏
i=0

Υai
i (x)

where Υi is the Rademacher function. WALSH can assume the values of 1 or −1 only.

Voigt profile

The Voigt profile function is the convolution integral of a Gaussian and a Lorentzian func-
tion. We wish to evaluate

G(E) =
∫ ∞
−∞

f(E −E′)g(E′ −E1)dE′

where f(E) is the Gaussian function

f(E) = e−E
2/2σ2

and g(E) is the Lorentzian

g(E) =
1

E2 + Γ2

Putting

x = (E′ −E)/
√

2σ

a = (E1 −E)/
√

2σ

b = |Γ/
√

2σ

we obtain

G =
1√
2σ

∫ ∞
−∞

e−x
2

b2 + (a− x)2
dx

This integral has been evaluated for b > 0 in terms of the complex error function ω(z).

G =
1√
2σ

π

b
<[ω(a + ib)]

=
1√
2σ
−<[eb+iaerfc(b− ia)]

The Voigt function implemented here is: VOIGT(E,E1, Γ/2, σ) = G

Functions that return a string

309

Functions

DATE
Syntax string = DATE

The DATE function has no arguments. It returns a string which contains the current date
with the format dd-mmm-yyyy.

Example

function result
DATE ‘ 6-MAY-1993’

TIME
Syntax string = TIME

The TIME function has no arguments. It returns a string which contains the current time
with the format hh:mm:ss.

Example

function result
TIME ‘10:36:25’

UCASE
Syntax string = UCASE(string)

The UCASE function converts a string into upper case.

Example

function result
UCASE(‘this is a string’) ‘THIS IS A STRING’

LCASE
Syntax string = LCASE(string)

The LCASE function converts a string into lower case.

Example

310

Functions

function result
LCASE(‘THIS IS A STRING’) ‘this is a string’

TCASE
Syntax string = TCASE(string)

The TCASE function toggles the case for each character of a string.

Example

function result
TCASE(‘ThIs iS A StRiNg’) ‘tHiS Is a sTrInG’

CHAR
Syntax string = CHAR(scalar)

string = CHAR(vector)

The CHAR function accepts either a numeric vector or a numeric scalar as argument. It con-
verts these ASCII decimal codes to the equivalent characters and returns these characters
as a string. The inverse of this function is the ICHAR function.

EXPAND
Syntax string = EXPAND(string)

The EXPAND function accepts a string as argument. The result is also a character string. It
parses the argument, expanding any expression variables it finds. If an expression variable,
contained in the argument, also contains expression variables then they are also expanded,
and so on until all such expression variables have been expanded. Syntax checking is done
during the expansion.

The maximum length of a completely expanded expression is two thousand five hundred
(2500) characters.

Example

311

Functions

A=2 ! define a scalar A

B=3 ! define a scalar B

FC1=‘(A+B)/A’ ! define a string variable FC1

FC2=‘SQRT(A/B)’ ! define a string variable FC2

FC3=‘FC1*FC2’ ! define a string variable FC3

FC4=‘FC3+4*FC2’ ! define a string variable FC4

=FC4 ! displays ‘FC3+4*FC2’

=EXPAND(FC4) ! displays ‘(((A+B)/A)*(SQRT(A/B)))+4*(SQRT(A/B))’

=EVAL(FC4) ! displays 5.307228

VARNAME
Syntax string = VARNAME(variable)

The VARNAME function accepts a variable, either string or numeric, as its argument, and
converts that variable name into a string. This function can be useful in scripts where a
variable is passed to the script as one of the generalized ? parameter. You could then convert
the name to a string for display or manipulation.

Examples

The following script shows one way in which the VARNAME function could be used.

t1=varname(?1) ! 1st variable name passed to the script converted to a string

t2=varname(?2) ! 2nd variable name passed to the script converted to a string

graph ?1 ?2 ! plot graph of 2nd variable versus 1st variable

text ‘graph of ’//t1//‘ vs ’//t2 ! lable the plot with the command

VARTYPE
Syntax string = VARTYPE(name)

The VARTYPE function returns the type of the argument as a character string. If the argument
is undefined, VARTYPE returns the string unknown. For example, if S is a scalar, X is a vector,
M is a matrix, T is a string variable, and TA is a string array variable, then:

312

Functions

returned string
VARTYPE(1.0) ‘number’

VARTYPE(S) ‘scalar’

VARTYPE(X) ‘vector’

VARTYPE(M) ‘matrix’

VARTYPE(T) ‘string’

VARTYPE(TA) ‘string array’

VARTYPE(‘abc’) ‘literal string’

STRING
Syntax quote_string = STRING(some_string)

The STRING function is useful in command scripts, where you want to pass a string to the
script as a parameter, without enclosing it in quotes. For example, @script test where
script.pcm is as follows:

x = string(?1)//‘ is a quote string’

display x

would display

test is a quote string

The key element here is that the user does not have to supply the quotes around the pa-
rameter test.

Examples

STRING(test case) produces ‘test case’

STRING(test) produces ‘test’

STRING(‘test’) produces ‘test’

RCHAR
Syntax string = RCHAR(scalar)

string = RCHAR(scalar,string)

The RCHAR function accepts a numeric scalar as first argument and returns a string. It
converts the numeric value to a string using PHYSICA’s own format. You can specify your
own format string by including it as the optional second argument, a string.

313

Functions

Examples

function result
RCHAR(-1.234) ‘-1.234’

RCHAR(PI) ‘3.141593’

RCHAR(2*PI,‘E10.4’) ‘0.6283E+01’

Strings may be appended together using the append operator, //. Scalar values can also be
appended to strings using the RCHAR function. For example, suppose A = -1.234, and T is a
string variable with T = ‘ units’.

function result
‘The value of A is ’//RCHAR(A)//T ‘The value of A is -1.234 units’

The value of A is ’//RCHAR(A,‘F4.1’)//T ‘The value of A is -1.2 units’

TRANSLATE
Syntax out_string = TRANSLATE(in_string)

The TRANSLATE function accepts a string as argument, and returns a string which is:

VMS: the translation of the logical name ‘in_string’

UNIX: the translation of the environment variable ‘in_string’

If ‘in_string’ has no translation, TRANSLATE simply returns it unchanged.

Examples

The following shows one way in which the TRANSLATE function could be used.

read translate(‘data_dir’)//‘file.dat’ x y z ! pre-define data_dir

Numeric functions with string arguments

CLEN
Syntax scalar = CLEN(string)

The CLEN function accepts only a string as argument. It returns the number of characters in
the string. The string can be a literal quote string or a string variable. It cannot be a string

314

Functions

array variable.

ICHAR
Syntax vector = ICHAR(string)

The ICHAR function accepts a string as argument. The string cannot be a complete array
string variable, but it can be an element of an array string variable. It returns a numeric
vector whose elements are the equivalent ASCII decimal codes for the characters. If the
string is only one character, the resultant vector will be of length one. The inverse of this
function is the CHAR function.

EQS
Syntax scalar = EQS(string1,string2)

The EQS function accepts two strings as arguments. If the two strings are exactly equal it
returns one (1), otherwise it returns zero (0).

NES
Syntax scalar = NES(string1,string2)

The NES function accepts two strings as arguments. If the two strings are exactly equal it
returns zero (0), otherwise it returns one (1).

SUB
Syntax scalar = SUB(string1,string2)

The SUB function accepts two strings as arguments. If string1 is a subset of string2 it
returns one (1), otherwise it returns zero (0).

SUP
Syntax scalar = SUP(string1,string2)

The SUP function accepts two strings as arguments. If string2 is a subset of string1 it
returns one (1), otherwise it returns zero (0).

INDEX
Syntax scalar = INDEX(string1,string2)

The INDEX function accepts two strings as arguments and returns a scalar value. If string2

315

Functions

is a subset of string1 it returns the substring’s starting position. If string2 occurs more
than once in string1, the starting position of the first (leftmost) occurrence is returned. If
string2 does not occur in string1, the value zero (0) is returned.

Example

function result
INDEX(‘abc’,‘abc’) 1
INDEX(‘abcd’,‘abc’) 1
INDEX(‘abc’,‘abcd’) 0
INDEX(‘xxabcabc’,‘abc’) 3

EVAL
Syntax numeric = EVAL(string)

string variables can be used in numeric expressions, as so called expression variables,
to shorten or to simplify an expression. Parentheses around the expression variable are
assumed during numeric evaluation. For example:

T=‘A+B’

Y=X*T ! this is equivalent to Y=X*(A+B)

A string variable will be numerically evaluated if it is a numeric operand or the argument of
a numeric function. Otherwise, a string variable is treated as a string. Use the EVAL function
to force numeric evaluation. The type of result, that is, scalar, vector, or matrix, depends
on the evaluated expression.

Example

Suppose that string variable T=‘3+2’.

input result
=T the string ‘3+2’
=EVAL(T) the numeric value 5

Numeric analysis functions

AREA
Syntax scalar = AREA(vector1,vector2)

The AREA function calculates the area enclosed in the polygon specified by the vertex coor-

316

Functions

dinates given in the vector arguments. Both vector arguments must be of the same length.
The polygon need not be closed, that is, the last point will be assumed to connect to the first
point.

DERIV
Syntax vector = DERIV(vector1,vector2)

vector = DERIV(vector1,vector2,‘keyword’)

Keywords SMOOTH, INTERP, FC, LAGRANGEn (n=3,5,7,9)

Default SMOOTH

The DERIV function evaluates the first derivatives of the vector y, the dependent variable,
with respect to the vector x, the independent variable, at the x locations. The vector x must
be strictly monotonically increasing. The result of this function is a vector with the same
length as the vectors x and y. The algorithm that is employed depends on the keyword that
is used. By default, the derivatives are calculated using smoothing cubic splines.

Smoothing splines

Syntax vector = DERIV(vector1,vector2)

vector = DERIV(vector1,vector2,‘SMOOTH’)

By default, or if the SMOOTH keyword is used, then smoothing cubic splines, which may not
pass through the data points, are used. The spline tension will be the current value of
TENSION, which may be changed with the SET command. A tension of zero gives the loosest
splines, while a large tension gives linear interpolation. The default tension is 1.

Interpolating splines

Syntax vector = DERIV(vector1,vector2,‘INTERP’)

Cubic splines, which always pass through the data points, are used. The spline tension will
be the current value of TENSION, which may be changed with the SET command. A tension
of zero gives the loosest splines, while a large tension gives linear interpolation. The default
tension is 1.

Lagrange polynomials

Syntax vector = DERIV(vector1,vector2,‘LAGRANGE3’)

vector = DERIV(vector1,vector2,‘LAGRANGE5’)

vector = DERIV(vector1,vector2,‘LAGRANGE7’)

vector = DERIV(vector1,vector2,‘LAGRANGE9’)

317

Functions

If the LAGRANGEn keyword is used, where n can be 3, 5, 7, or 9, the derivatives are calculated
using the method of Lagrange interpolating polynomials.

Monotone piecewise cubic interpolation

Syntax vector = DERIV(vector1,vector2,‘FC’)

If the FC keyword is used, the derivatives are calculated using the Fritsch and Carlson
method of monotone piecewise cubic interpolation. This algorithm produces a visually
pleasing interpolant, that is, the interpolating curve has no extraneous ”bumps” or ”wig-
gles”. For an explanation of this method, see:
SIAM Journal of Numerical Analysis, volume 17, number 2, April 1980.

Example

Suppose that you want to see the derivatives, from 0 to π, of cos(x)3 + sin(x)4. The following
commands produce Figure 4.33.

LEGEND ON

LEGEND TRANSPARENCY OFF

LEGEND\GRAPH FRAME .25 -2.25 2 -1

SET PCHAR 1

X=[0:PI:.1]

GRAPH ‘cos(x)<^>3<_>+sin(x)<^>4<_>’ X COS(X)^3+SIN(X)^4

SET PCHAR 2

GRAPH\NOAXES ‘derivative’ X DERIV(X,COS(X)^3+SIN(X)^4,‘LAGRANGE5’)

REPLOT

INTEGRAL
Syntax vector = INTEGRAL(vector1,vector2)

vector = INTEGRAL(vector1,vector2,‘keyword’)

Keywords SMOOTH

Default SMOOTH

The INTEGRAL function integrates the vector, vector2, the dependent variable, with respect to
vector vector1, the independent variable. vector1 must be strictly monotonically increasing.
The output of this function is a vector with the same length as vector1 and vector2. The
last element of the output vector is the integral over the full range of vector1. The method
used depends on the keyword. Currently, there is only one type of integration available.

318

Functions

Figure 4.33: An example illustrating the DERIV function

Smoothing splines

Syntax vector = INTEGRAL(vector1,vector2)

vector = INTEGRAL(vector1,vector2,‘SMOOTH’)

By default, the integration method utilizes an interpolating spline under tension. The spline
tension used is the current value of TENSION, which may be changed with the SET com-
mand. The nature of the interpolating curve varies continuously from pure cubic splines,
for TENSION = 0, to a piecewise linear curve, that is, points joined by straight line segments,
for large TENSION.

Example

Suppose you need to see the integral values, from 0 to π, of cos(x)3 + sin(x)4. The following
sequence of commands could be used. See Figure 4.34

319

Functions

LEGEND ON

LEGEND TRANSPARENCY OFF

LEGEND\GRAPH FRAME .25 -.75 2 .25

SET PCHAR 1

X=[0:PI:.1]

GRAPH ‘cos(x)<^>3<_>+sin(x)<^>4<_>’ X COS(X)^3+SIN(X)^4

SET PCHAR 2

GRAPH\NOAXES ‘integral’ X INTEGRAL(X,COS(X)^3+SIN(X)^4)

REPLOT

Figure 4.34: An example illustrating the INTEGRAL function

GAUSSJ
Syntax vector = GAUSSJ(matrix,vector)

The GAUSSJ function solves the system of equations m<>x = b, where m is a square matrix and
b is a vector, and returns x, the vector of solutions. This function uses the Gauss-Jordan
method of elimination with full pivoting. The matrix must be square. The length of the input
vector must be the same as the row dimension of the matrix. The function returns a vector
with the same length.

Example 1

To solve the following three equations for the three unknowns x1, x2, and x3:

320

Functions

3x1 + 4x2 + 15x3 = 26

10x1 + 2x2 + 3x3 = 14

5x1 − 4x2 + 3x3 = 22

You could use the script: m=[[3;1;5];[4;2;4];[5;3;3]]

b=[26;14;22]

soln=gaussj(m,b)

The answer: soln=[1.238095;-2.365079;2.116402] can be checked by using the outer
product operator: m<>soln

and comparing this result with the original b vector.

Example 2

The following script, INVERSE.PCM, will find the inverse of a square matrix. If you have a
square matrix M, you could find it’s inverse, INV_M, with the command: @INVERSE M

if (vlen(?1)[1] "NE" vlen(?1)[2]) then

display ‘input matrix must be square’

return

endif

n = vlen(?1)[1]

! identity(n) is the identity matrix of order n

do k = [1:n]

inv_m[1:n,k] = gaussj(?1,identity(n)[1:n,k])

enddo

INVERSE
Syntax matrix = INVERSE(matrix)

The function INVERSE(m) returns the inverse of the matrix m, which must be a square matrix.
The output is a matrix with the same shape as the argument. The answer can be checked
by using the inner product operator, for example:

invm=INVERSE(m) ! find the inverse of m

=m<>invm ! this should be close to the identity matrix

Method

321

Functions

Suppose that the matrix A has n rows and n columns. Let X represent the inverse of A, and
let I be the identity matrix:

Ii,j =

{
1 if i = j

0 otherwise

The LU decomposition method2 is used for finding the inverse matrix X. Write A as the
product of two matrices: A = L<>U where L is lower triangular and U is upper triangular.
A lower triangular matrix has elements only on the diagonal and below, while an upper
triangular matrix has elements only on the diagonal and above. This decomposition is used
to solve n sets of n linear equations. The matrix subscript ∗, j represents the entire jth
column of that matrix.

A<>X∗,j = (L<>U)<>X∗,j = L<>(U<>X∗,j) = I∗,j for each j = 1, 2, . . . , n

Solve for the y vectors, there will be n of them, such that L<>y = I∗,j and then solve for the
jth column of X: U<>X∗,j = y for each j = 1, 2, . . . , n

Since L and U are triangular

y1 = I1,j/L1,1

yi =
[
Ii,j −

∑i−1
k=1 Li,kyk

]
/Li,i for i = 2, 3, . . . , n

and

Xn,j = yn/Un,n
Xi,j =

[
yi,j −

∑n
k=i+1 Ui,kXk,j

]
/Ui,i for i = n− 1, n− 2, . . . , 1

DET
Syntax scalar = DET(matrix)

The function DET(m) returns the determinant of the matrix m, which must be a square matrix.
The output is a scalar.

Beware: The determinant of a reasonably sized matrix can get very large, or very small,
leading to over/underflows.

The method used to find the determinant uses the LU decomposition of the matrix argu-
ment. Please refer to the discussion on LU decomposition of a matrix in the INVERSE function
section, page 321.

2The definitions used here are taken from “Numerical Recipes – The Art of Scientific Computing” by W.H.
Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Cambridge University Press, 1986.

322

Functions

IDENTITY
Syntax matrix = IDENTITY(scalar)

The function IDENTITY(n) returns the identity matrix of order n. That is, the n × n matrix
with 1’s on the diagonal and zeros elsewhere. For example:

IDENTITY(4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


EIGEN

Syntax matrix = EIGEN(matrix)

If matrix m is an n×n symmetric matrix, then EIGEN(m) returns a matrix with n rows and n+1
columns. Column n + 1 contains the eigenvalues, while columns 1 to n are the eigenvectors
of the symmetric matrix m. The eigenvector x and the eigenvalue s of matrix m satisfy the
equation: m<>x = s*x.

One way to check a result is with the following script:

e=EIGEN(m)

n=vlen(m)[1]

DO j = [1:n]

! these should be all zero (or close to zero)

=m<>e[*,j]-e[j,n+1]*e[*,j]

ENDDO

Example

The following script:

m=[[2;-1;0;0];[-1;2;-1;0];[0;-1;2;-1];[0;0;-1;2]]

e=eigen(m)

display ‘matrix m’

write\matrix\format sys$output (4f9.5) m

display ‘matrix e’

write\matrix\format sys$output (5f9.5) e

produces:

323

Functions

matrix m

2.00000 -1.00000 0.00000 0.00000

-1.00000 2.00000 -1.00000 0.00000

0.00000 -1.00000 2.00000 -1.00000

0.00000 0.00000 -1.00000 2.00000

matrix e

0.37175 0.60150 0.60150 -0.37175 0.38197

0.60150 0.37175 -0.37175 0.60150 1.38197

0.60150 -0.37175 -0.37175 -0.60150 2.61803

0.37175 -0.60150 0.60150 0.37175 3.61803

The eigenvalues are e[*,5] = [0.38197;1.38197;2.61803;3.61803]

The eigenvectors are e[*,j] for j = [1:4]

PFACTORS
Syntax vector = PFACTORS(scalar)

The PFACTORS(n) function returns a vector containing the prime factors of the scalar n. For
example, if you enter X=PFACTORS(420) then X=[2;2;3;5;7].

This function can be usefull in determining a good length for the input vector for the FFT

function.

FFT
Syntax matrix = FFT(vector)

matrix = FFT(vector,‘keyword’)

Keywords AMP&PHASE, COS&SIN

Default AMP&PHASE

The FFT function calculates the discrete fast Fourier transform of the input variable, vector.
By default, FFT returns the amplitudes and the phases, where the phases are in degrees. If
the COS&SIN keyword is used, FFT returns the Fourier coefficients.

Note: The reason that the amplitudes and phases are returned by default is historical.
Actually, the Fourier coefficients, that is, the cosine and sine coefficients, are calculated
and the amplitudes and phases are just derived from them, as described below. It is a
simple matter for the user to request the cosine and sine coefficients, and then to calculate
the amplitudes and phases him/herself.

324

Functions

Suppose that the length of the input vector is 2N . The output of this function is a matrix
with N + 1 rows and 2 columns. The first column contains the amplitudes (or the cosine
coefficients), and the second column contains the phases (or the sine coefficients).

The IFFT function calculates the inverse fast Fourier transform.

Fourier coefficients

Syntax matrix = FFT(vector,‘COS&SIN’)

If the COS&SIN keyword is used, then the FFT function returns the actual Fourier coefficients.
Let that the cosine coefficients be called H’s and the sine coefficients be called G’s. H0/2 is
the mean value of the input data.

As shown in the example subsection below, these coefficients can be used for smooth in-
terpolation. Suppose xi is the interpolation location, and 2N is the number of original data
points.

yi =
H0

2
+

N∑
k=1

(Hk cos(kxi) + Gk sin(kxi))

Discrete Fourier series

Given 2N samples of real data yj (where j = 0, 1, 2, . . . , 2N − 1) taken at equally spaced
intervals ∆t = T/(2N), where T is the period, the corresponding Fourier series is:

y(t) =
H0

2
+

N∑
k=1

[Hk cos(2πkt/T) + Gk sin(2πkt/T)]

where G0 = GN = 0 and H0/2 is the mean value of y.

From the original 2N data points, we have exactly 2N calculated coefficients, that is, we
have (N + 1) H’s and (N − 1) G’s with ”real” information.

If t = 0 at y0, then for each yj we have t = jT/N , for j = 0, 1, . . . , 2N − 1, and so

yj =
H0

2
+

N∑
k=1

[Hk cos(jkπ/N) + Gk sin(jkπ/N)]

The amplitude, A, and the phase, P , are calculated as follows:

A0 = H0 AN = HN

325

Functions

Aj =
√
H2
j + G2

j for j = 1, 2, . . . ,N − 1

P0 = PN = 0

Pj =
180
π

arctan(Gj/Hj) for j = 1, 2, . . . ,N − 1 and if P < 0◦ then P = P + 360◦

Restrictions

The input vector y is assumed to be periodic with an even number of points, that is,

LEN(y) = 2N > 2, and y0 = y2N = · · ·

Prime factors

Suppose that LEN(y) = 2N . The largest prime factor of 2N must be ≤ 23, and there must be
no more than 11 distinct prime factors. The product of the square-free prime factors of 2N

must be ≤ 210. The calculation speed is enhanced by using a value of 2N with small prime
factors, particularly powers of 2. For reference, the prime numbers less than 1000 are listed
below.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79

83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193

197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317

331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457

461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601

607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743

751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887

907 911 919 929 937 941 947 953 967 971 977 983 991 997

For example, 2N = 202 = 2× 101 is not allowed, and 2N = 402 = 2× 3× 67 is also not allowed.
If 2N does not satisfy the above restrictions, the input vector can be padded out, usually
with zeroes, to an even length whose prime factors do not exceed 23. The PFACTORS function,
page 324, returns the prime factors of a constant or scalar.

Example

The following script demonstrates how you can use the FFT function to smooth data. Note
that when all the Fourier coefficients are used, the smoothed curve must pass through the
original data points. See Figure 4.35.

326

Functions

N = 16 ! even number of points

X = [0:N-1]*2*PI/N ! generate some "data"

Y = SIN(X)+5*RAN(X) !

M = FFT(Y,‘COS&SIN’) ! calculate Fourier coefficients

H = M[*,1] ! extract column 1 as a vector

G = M[*,2] ! extract column 2 as a vector

Z = [0:2*PI:.05] !

SCALAR\DUMMY K ! define K to be dummy variable for SUM function

SCALE 0 6 0 -2 7 0 ! set axis scales

SET %XLABSZ 5 ! increase the size of the x-axis label

DO J = [3:N/2+1:2]

WINDOW (J-3)/2+15 ! choose a graphics window

SET PCHAR -1 ! choose plotting symbol

LABEL\XAXIS ‘Number of harmonics used = ’//RCHAR(J)

GRAPH X Y ! plot original data

SET PCHAR 0 ! choose no plotting symbol

GRAPH\NOAXES Z H[1]/2+SUM(H[K]*COS((K-1)*Z)+G[K]*SIN((K-1)*Z),K,2:J)

ENDDO

GRAPH\NOAXES [0;2*PI] [H[1]/2;H[1]/2] ! overlay the mean value

Figure 4.35: An FFT example showing data smoothing

327

Functions

IFFT
Syntax vector = IFFT(matrix)

vector = IFFT(matrix,‘keyword’)

Keywords AMP&PHASE, COS&SIN

Default AMP&PHASE

The IFFT function calculates the inverse discrete Fourier transform of the two column in-
put matrix. This matrix is usually calculated by the FFT function, thus reconstructing the
original data.

By default, IFFT expects amplitudes and phases, where the phases are in degrees. The first
column of the matrix should contain the amplitudes and the second column the phases.
If the COS&SIN keyword is used, IFFT expects the Fourier coefficients, that is, the cosine
coefficients in the first column and the sine coefficients in the second column. If the input
matrix has N rows, the function returns a vector with length 2(N − 1).

The principle usage of the IFFT function is to modify some of the amplitudes returned from
the FFT function and note their effect on the original data. A typical application would be
one of data smoothing, in which the user would zero out the amplitudes of the higher order
harmonics.

CONVOL
Syntax vector = CONVOL(vector1,vector2,scalar)

The CONVOL function accepts vectors as the first two arguments. It convolutes or deconvo-
lutes the input vector, vector1, with the specified blurring vector, vector2. The result is a
vector the same length as vector1. The third argument should be a scalar, and indicates
which operation is to be performed.

Convolution of an odd number of points

Syntax vector = CONVOL(x,b,0)

The blurring vector, b, must contain an odd number of points. Suppose that N is the length
of b and M is the length of x. The convolution of x with b is:

yi =
N∑
j=1

xi−N
2

+j−1 · bN−j+1

= xi−N
2
bN + xi−N

2
+1bN−1 + · · ·+ xi+N

2
−1b2 + xi+N

2
b1

for i = 1, 2, 3, . . . ,M . References to subscripts out of the range of x are not summed. The

328

Functions

blurring vector is normalized to 1 to insure that the integrals of the y and x are identical.
This normalization is internal, the blurring vector is returned unchanged. To ensure proper
convolution, x should be padded at it’s upper and lower ends with zeros so it’s length is at
least the minimum of:

the non-zero length of b; and 1
2 the length of b

Note: The lengths of b and x can differ. To avoid centroid shifts in the output, centre the
blurring vector properly. For example, suppose that b has 2N − 1 elements containing a
gaussian, then it’s peak should be at N .

Convolution of an even number of points

Syntax vector = CONVOL(x,b,1)

The blurring vector, b, should contain an even number of points. The preferred lengths
are powers of 2. The convolution is done using fast Fourier transforms. The following
restrictions apply:

• x must be padded at it’s lower end with zeros with the number of elements which are
non-zero in b, for example, if x and b are of length 128, and b is zero in the range 30 –
128, then x must contain zeros in locations 1 – 29

• x and b must have the same length

• the end points of b must not be equal. A difference of less than 0.0001 produces oscilla-
tions in the deconvoluted result. The usual way is to shift b to the left so that the first
point has a non-zero value. Together with the first restriction, this ensures that the
right point has the value zero, leaving the ends unequal.

Noise in b produces a change in the output, which, due to averaging, has a small effect.
Noise effects depend on the shape of the deconvoluted peak.

Convolution noise effects

The narrower this peak, the more effect the noise in b has. This occurs because each noisy
point becomes a greater percentage of the total number in the convoluting or deconvoluting
function, thus reducing the average effect. In many applications, the noise in the measured
data is statistical in nature and so, to reduce the sensitivity to this noise on the deconvolu-
tion, apply smoothing filters on the measured data before deconvolution.

Deconvolution of an even number of points

329

Functions

Syntax vector = CONVOL(x,b,-1)

The blurring vector, b, should contain an even number of points. The preferred lengths
are powers of 2. The deconvolution is done using fast Fourier transforms. The following
restrictions apply:

1. x must be padded at it’s lower end with zeros with the number of elements which are
non-zero in b, for example, if x and b are of length 128, and b is zero in the range 30 –
128, then x must contain zeros in locations 1 – 29

2. x and b must have the same length

3. the end points of b must not be equal. A difference of less than 0.0001 produces oscilla-
tions in the deconvoluted result. The usual way is to shift b to the left so that the first
point has a non-zero value. Together with the first restriction, this ensures that the
right point has the value zero, leaving the ends unequal.

Noise in b produces a change in the output, which, due to averaging, has a small effect.
Noise effects depend on the shape of the deconvoluted peak. The narrower this peak, the
more effect the noise in b has. This occurs because each noisy point becomes a greater
percentage of the total number in the convoluting or deconvoluting function, thus reducing
the average effect. In many applications, the noise in the measured data is statistical in
nature and so, to reduce the sensitivity to this noise on the deconvolution, apply smoothing
filters on the measured data before deconvolution.

INTERP
Syntax vector = INTERP(vector1,vector2,vector3)

vector = INTERP(vector1,vector2,vector3,‘keyword’)

Keywords SPLINE, LINEAR, FC, LAGRANGE

Default SPLINE

The INTERP function interpolates the data contained in vector1, the independent variable,
and vector2, the dependent variable. vector1 must be strictly monotonically increasing. The
interpolant locations are given in vector3. The INTERP function will return the interpolated
values as a vector with the same length as vector3. The algorithm that is employed depends
on the keyword that is used. The default is use interpolating splines.

An interpolated curve will always pass through the original data points. If it is not important
that the curve pass through the original data, use the SMOOTH function. If your independent
variable is not monotonically increasing, use the SPLINTERP function.

330

Functions

Spline interpolation

Syntax vector = INTERP(x,y,xi)

vector = INTERP(x,y,xi,‘SPLINE’)

By default, or if the SPLINE keyword is used, the interpolant is calculated by the method of
cubic splines under tension. The tension factor corresponds to the ”curviness”, and must
be greater than zero. If it is close to zero, each interpolated function is almost a cubic spline
and the resulting curve is quite ”loose”. If the tension is large, then the resultant is almost
linear. The tension used is the current value of TENSION, which may be changed with the SET

command.

Linear interpolation

Syntax vector = INTERP(x,y,xi,‘LINEAR’)

If the LINEAR keyword is used, the interpolating method used is linear interpolation.

Lagrange interpolation

Syntax vector = INTERP(x,y,xi,‘LAGRANGE’)

If the LAGRANGE keyword is used, the interpolating method used is general Lagrange inter-
polation. The degree of the interpolating polynomial depends on the number of input data
points. Suppose that N is the number of points, equal to the lengths of x and y. If N = 2,
then a simple straight line is used for interpolating. If N = 3 or N = 4, then a quadratic is
used. If N ≥ 5, then a polynomial of degree 4 is used for the interpolation.

Interpolation by monotone piecewise cubic polynomials

Syntax vector = INTERP(x,y,xi,‘FC’)

If the FC keyword is entered, the interpolant is calculated using the Fritsch and Carlson
method of monotone piecewise cubic interpolation. This algorithm produces a visually
pleasing interpolant, that is, the interpolating curve has no extraneous ”bumps” or ”wig-
gles”.

For an explanation of this method, see:
SIAM Journal of Numerical Analysis, volume 17, number 2, April 1980.

SPLINTERP
Syntax vector = SPLINTERP(vector1,vector2,scalar)

331

Functions

The SPLINTERP function interpolates the data contained in vector1, the independent variable,
and vector2, the dependent variable. vector1 need not be monotonically increasing. The
interpolated curve will always pass through the original data points. The number of output
interpolant locations is given in scalar. Suppose scalar = n. The output of this function is
a matrix with n rows and 2 columns. The first column will contain the output locations and
the second column the interpolated values.

The points are first parameterized in terms of normalized arc length. The normalized length
of x is the real length divided by the range of x, that is, the maximum value minus the min-
imum value. The arclength at a point is approximated by the sum of the lengths of straight
line segments connecting all points up to that point. A spline under tension is calculated for
vector1 versus arc length and vector2 versus arc length. The vector1 and vector2 values
are interpolated separately and then combined to form the output interpolant.

The tension factor corresponds to the ”curviness”, and must be greater than zero. If it is
close to zero, each interpolated function is almost a cubic spline and the resulting curve is
quite ”loose”. If the tension is large, then the resultant is almost linear. The tension used is
the current value of TENSION, which may be changed with the SET command.

For monotonically increasing data, use the INTERP function.

SMOOTH
Syntax vector = SMOOTH(vector1,vector2,vector3)

vector = SMOOTH(vector1,vector2,vector3,vector4)

The SMOOTH function calculates a smooth curve through the data contained in vector1, the
independent variable, and vector2, the dependent variable. vector1 must be strictly mono-
tonically increasing. The output locations are given in vector3, which must also be mono-
tonically increasing. This function returns the smoothed values as a vector with the same
length as vector3. The smooth curve is calculated by the method of cubic splines under
tension.

For another smoothing method, using Savitzky-Golay filters, use the SAVGOL function. De-
pending on the tension, a smoothed curve may not pass through the original data points.
If you want the curve to always pass through the original data, use the INTERP function. If
your data is not monotonically increasing, use the SPLSMOOTH function.

Weights

Syntax vector = SMOOTH(x,y,xout,w)

If no weights, w, are entered, the weight at each data point defaults to 1. The weights control

332

Functions

the amount of smoothing at each data point. As the weight at a point decreases, the spline
fits that data point more closely.

Spline tension

The tension factor corresponds to the ”curviness”, and must be greater than zero. The
tension used is the current value of TENSION, which may be changed with the SET command.

If the tension is set to zero, the result will be an interpolating cubic spline. If the tension is
large, the result will be the least-squares line through the data. As the tension decreases,
the amount of smoothing decreases and the data points are fit more exactly. As the tension
increases, the fit straightens and has less curvature at peaks, valleys and endpoints.

Suppose that N is the length of y and that the weights are the standard deviations of y.
Values of tension t in the range N −

√
2N ≤ t ≤ N +

√
2N give the most natural looking

results. To obtain the most suitable fit, the user may wish to do several runs with different
values of t. By observing the spline fits plotted on a graph, the fit with the most suitable
amount of smoothing can be selected.

Method

Given a set of abscissae: x1 < x− 2 < . . . < xN ,

a cubic spline function over the region (x1, xN) is composed of cubic parabolas

G(x) = ai + bi · (x− xi) + ci · (x− xi)2 + di · (x− xi)3

where xi ≤ x < xi+1, which join at the endpoints xi such that G, G′, and G′′ are continuous.

The smoothing function is constructed by minimizing
∫ xN
x1
G′′(x)2dx

subject to the constraint
∑N

i=1 ((G(xi − yi)/wi)
2 ≤ t

where wi > 0 are the weights and t ≥ 0 is the spline tension.

The solution proceeds by the standard methods of minimizing the functional∫ xN

x1

G′′(x)2dx + p ·
{

N∑
i=1

((G(xi)− yi)/wi)
2 + z2 − t

}
where z and p are auxiliary parameters. The functional is minimized with respect to z and p

by setting the partial derivatives with respect to z and p equal to zero.

SPLSMOOTH
Syntax matrix = SPLSMOOTH(vector1,vector2,scalar)

matrix = SPLSMOOTH(vector1,vector2,scalar,vector3)

333

Functions

The SPLSMOOTH function calculates a smooth curve through the data contained in vector1,
the independent variable, and vector2, the dependent variable. vector1 need not be mono-
tonically increasing. The number of output locations is given in scalar. Suppose scalar

= n. The output of this function is a matrix with n rows and 2 columns. The first column
will contain the output locations and the second column the smoothed values.

The points are first parameterized in terms of normalized arc length. The normalized length
of x is the real length divided by the range of x, that is, the maximum value minus the min-
imum value. The arclength at a point is approximated by the sum of the lengths of straight
line segments connecting all points up to that point. A spline under tension is calculated for
vector1 versus arc length and vector2 versus arc length. The vector1 and vector2 values
are interpolated separately and then combined to form the output interpolant.

The tension factor corresponds to the ”curviness”, and must be greater than zero. If it is
close to zero, each interpolated function is almost a cubic spline and the resulting curve is
quite ”loose”. If the tension is large, then the resultant is almost linear. The tension used is
the current value of TENSION, which may be changed with the SET command.

For monotonically increasing data, use the SMOOTH function.

Weights

Syntax matrix = SPLSMOOTH(x,y,n,w)

If m is the length of w, x and y, the goal is to achieve:
∑m

i=1((Gi − yi)/wi)2 = s

where Gi is the cubic spline function at xi and s is the spline tension. As wi decreases, the
spline fits the data point (xi, yi) more closely.

SAVGOL
Syntax vector = SAVGOL(scalar1,scalar2,vector)

The SAVGOL function calculates a smooth curve through the data contained in vector, the
dependent variable, using the Savitzky-Golay smoothing filter method. The order of the
filter is given in scalar1, and can be 2 or 4. The filter width is given in scalar2. These filters
preserve the area under the data, the zeroth moment, but also the higher moments.

There is no input independent variable, as the data is assumed to be equally spaced.

As a rough guideline, best results are obtained when the filter width, m, of the order 4
Savitzky-Golay filter is between one and two times the full width half maximum (FWHM) of
desired features in the data.

334

Functions

The Savitzky-Golay smoothing method

A nonrecursive filter is defined by the convolution formula: youti =
∑NU

j=−NL cjyi+j

The cj ’s are the coefficients of the filter, the y’s are the input data, and the yout’s are the
outputs. The set of points yi−NL to yi+NU define the moving window of the filter, where
NL = m/2 and NU = m−NL−1. The Savitzky-Golay smoothing method finds filter coefficients
that preserve the 0th, the 1st, the 2nd, and higher moments. The idea is to approximate the
underlying function within a moving filter window by a polynomial of order 2, or of order
4. For each data point, yi, least-squares fit a polynomial to all m points within the filter
window, and then set youti to be the value of that polynomial at position i. No use is made
of the value of that polynomial at any other point. For the next point, yi+1, a whole new
least-squares fit is done using the shifted window.

Since the process of least-squares fitting involves only a linear matrix inversion, the co-
efficients of a fitted polynomial are themselves linear in the values of the data. All the
least-squares fitting can be done in advance, for fictitious data consisting of all zeros except
for a single 1, and then the fits on the real data are done by taking linear combinations.
Thus, there are particular sets of filter coefficients, cj, for which the convolution formula
automatically accomplishes the process of polynomial least-squares fitting inside a moving
window.

The Savitzky-Golay filters provide smoothing without loss of resolution when the underlying
function can be locally well fitted by a polynomial. This is true for smooth line profiles
not too much narrower than the filter width. When this is not true, these filters have no
advantage over other smoothing methods.

If the data is irregularly sampled, that is, the y values are not equally spaced, one can
pretend that the data points are equally spaced. This amounts to virtually shifting, within
each moving window, the data points to equally spaced positions. Such a shift introduces
the equivalent of an additional source of noise into the function values. In those cases where
smoothing is useful, this noise will often be much smaller than the noise already present.
Specifically, if the location of the points is approximately random within the window, then
a rough criterion is this: If the change in y across the full width of the window, m, is less
than

√
m/2 times the measurement noise on a single point, then this implementation of the

Savitzky-Golay filter can be used.

For more information on Savitzky-Golay filters, see:
Computers in Physics, volume 4, number 6, November/December 1990, pages 669 – 672.

335

Functions

JOIN
Syntax scalar = JOIN(vector1,vector2)

The arguments of the JOIN function must both be vectors. JOIN produces a matrix with 3
columns. The first column is the intersection of vector1 and vector2, that is, if you enter
m=join(x,y) then m[*,1] is the same as x/&y. m[i,2] is the index of x from which m[i,1] was
taken, and m[i,3] is the index of y from which m[i,1] was taken. If the vector arguments
are ordered, the JOIN function will proceed much faster than if they are unordered.

Example

Suppose that you have two vectors:

X = [0;1;2;3;4;5;6;7;8;9;10], Y = [1;3;5;7;9]

then JOIN(X,Y) =


1 2 1
3 4 2
5 6 3
7 8 4
9 10 5


Functions that return a variable’s characteristics

EXIST
Syntax scalar = EXIST(string)

The EXIST function accepts one string as its argument and returns a one (1) if the string is
an existing variable name, and zero (0) is it is not.

Example

If you enter X2=3, the function EXIST(‘X2’) would have the value 1.

You can even enter: N=2 and T=‘X’//RCHAR(N) and the function EXIST(T) would have the
value 1.

LEN
Syntax scalar = LEN(vector)

The LEN function only accepts a vector as argument. It returns the length of the vector as a
scalar.

336

Functions

VLEN
Syntax vector = VLEN(vector)

vector = VLEN(matrix)

The VLEN function accepts either a vector or a matrix as argument. It returns the length of
each dimension of the argument. If the argument is a vector, the result is a vector of length
one. If the argument is a matrix, the result is a vector of length two, with the first element
being the number of rows and the second the number of columns.

FIRST
Syntax scalar = FIRST(vector)

The FIRST function returns the starting index for vector. The result of the FIRST function is
a scalar. The length of vector x is LAST(x)-FIRST(x)+1, which is equal to LEN(x).

LAST
Syntax scalar = LAST(vector)

The LAST function returns the final index for vector. The result of the LAST function is a
scalar. The length of vector x is LAST(x)-FIRST(x)+1, which is equal to LEN(x).

ICLOSE
Syntax scalar = ICLOSE(vector,scalar)

The ICLOSE function returns the index of vector which corresponds to where vector is closest
to the value of scalar, that is, ICLOSE returns the first j where |vector[j] - scalar| is a
minimum.

IEQUAL
Syntax scalar = IEQUAL(vector,scalar)

The IEQUAL function returns the index of vector which corresponds to where vector is equal
to the value of scalar, that is, IEQUAL returns the first j where |vector[j] = scalar|. If
scalar is not in the vector, IEQUAL returns zero (0).

WHERE
Syntax vector = WHERE(vector)

The WHERE function only accepts a vector as its argument. It returns the indices where this
vector is not equal to zero.

337

Functions

Examples

function result
WHERE([-5:5]>0) [7;8;9;10;11]

WHERE([-5:5]<=0) [1;2;3;4;5;6]

Suppose you have two vectors X and Y and you want to graph only those points that lie
within the unit circle, that is, that satisfy SQRT(X^2+Y^2)<=1

IDX=WHERE(SQRT(X^2+Y^2)<=1)

GRAPH X(IDX) Y(IDX)

Shape changing functions

FOLD
Syntax matrix = FOLD(vector,scalar)

The FOLD function has two arguments. The first must be a vector, and the second a scalar.
The result is a matrix formed by folding the data in the vector into the columns of a matrix.
Suppose that vector x has m elements. FOLD(x, n)i,j = xi+(j−1)m for i = 1, 2, . . . , n and
j = 1, 2, . . . ,m/n. Note that m must be divisible by n.

Example

function result

FOLD([1:12],3)

 1 4 7 10
2 5 8 11
3 6 9 12



FOLD([1:12],4)


1 5 9
2 6 10
3 7 11
4 8 12


UNFOLD

Syntax vector = UNFOLD(matrix)

The UNFOLD function has one argument, which must be a matrix. The result is a vector
formed by unfolding the data in the rows of matrix. Suppose that matrix m has nc columns
and nr rows. Then UNFOLD(m)j+(i−1)nc = mi,j for i = 1, 2, . . . , nr; and j = 1, 2, . . . , nc.

338

Functions

Example

Suppose that matrix M =

 1 2 3 4
5 6 7 8
9 10 11 12


function result
UNFOLD(M) [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12]

ROLL
Syntax vector = ROLL(vector,scalar)

matrix = ROLL(matrix,scalar)

The ROLL function accepts either a vector or a matrix as its first argument. It shifts the
elements of a vector or the rows of a matrix by the specified step size, scalar.

• If scalar = n > 0, the last n elements of the vector or the last n rows of the matrix are
rolled around to the beginning.

• If scalar = n = 0, the vector or matrix is returned unchanged.

• If scalar = n < 0, the first n elements of the vector or the first n rows of the matrix are
rolled around to the end.

If scalar is non-integral, then linear interpolation is used to generate new values.

Examples

function result
ROLL([1:10],2) [9;10;1;2;3;4;5;6;7;8]

ROLL([1:10],-2) [3;4;5;6;7;8;9;10;1;2]

ROLL([1:10],1.7) [9.3;7.3;1.3;2.3;3.3;4.3;5.3;6.3;7.3;8.3]

Suppose matrix M =

 1 2 3 4
5 6 7 8
9 10 11 12



339

Functions

function result

ROLL(M,2)

 5 6 7 8
9 10 11 12
1 2 3 4


ROLL(M,-1)

 9 10 11 12
1 2 3 4
5 6 7 8


ROLL(M,1.5)

 7 8 9 10
5 6 7 8
3 4 5 6


STEP

Syntax vector = STEP(vector,scalar)

matrix = STEP(matrix,scalar)

The STEP function accepts either a vector or a matrix as its first argument. It shifts the
elements of a vector or the rows of a matrix by the specified step size, scalar.

• If scalar = n > 0, the last n elements of the vector or the last n rows are lost.

• If scalar = n = 0, the vector or matrix is returned unchanged.

• If scalar = n < 0, the first n elements of the vector or the first n rows are lost.

If scalar is non-integral, then linear interpolation is used to generate new values.

Examples

function result
STEP([1:10],2) [1;1;1;2;3;4;5;6;7;8]

STEP([1:10],-2) [3;4;5;6;7;8;9;10;10;10]

STEP([1:10],1.7) [1;1;1.3;2.3;3.3;4.3;5.3;6.3;7.3;8.3]

Suppose matrix M =

 1 2 3 4
5 6 7 8
9 10 11 12



340

Functions

function result

STEP(M,2)

 1 2 3 4
1 2 3 4
1 2 3 4


STEP(M,-1)

 5 6 7 8
9 10 11 12
9 10 11 12


STEP(M,1.5)

 1 2 3 4
1 2 3 4
3 4 5 6


WRAP

Syntax matrix = WRAP(matrix,scalar)

The WRAP function accepts a matrix as its first argument. It wraps the column elements of a
matrix by the specified step size, scalar.

• If scalar = n > 0, the column elements of the matrix are shifted down. The first n

elements in the first column are zero filled, then the last n elements of each column
are brought into the next column. The last n elements in the last column are lost.

• If scalar = n = 0, the matrix is returned unchanged.

• If scalar = n < 0, the column elements of the matrix are shifted up. The first n elements
in the first column are lost. The first n elements of each column are brought into the
preceding column. The last n elements in the last column are zero filled.

If scalar is non-integral, it is truncated to an integer.

Examples

Suppose matrix M =

 1 2 3 4
5 6 7 8
9 10 11 12



341

Functions

function result

WRAP(M,2)

 0 5 6 7
0 9 10 11
1 2 3 4


WRAP(M,-2)

 9 10 11 12
2 3 4 0
6 7 8 0


Looping functions

Looping functions mimic standard mathematical notation, for example, the sum:

SUM(f(j), j, 1 : N) ≡
N∑
j=1

f(j)

Where j is the dummy variable.

The looping functions, SUM, PROD, RSUM, RPROD, and LOOP, require a previously declared scalar
dummy variable as second argument. A dummy variable is declared with the SCALAR\DUMMY

command. A dummy variable is different from other scalar variables in that its value is only
defined while inside the looping function. The third argument of a looping function is always
the range of this dummy variable, and must be a vector. The first argument of a looping
function would normally be some function of the dummy variable, but it is not necessary
that the dummy variable appear in the first argument.

SUM
Syntax scalar = SUM(scalar,dummy,scalar)

vector = SUM(vector,dummy,vector)

matrix = SUM(matrix,dummy,matrix)

The SUM function requires a previously declared scalar dummy variable as second argument.
A dummy variable is declared with the SCALAR\DUMMY command. The third argument is
always the range of this dummy variable, and must be a vector. The first argument would
normally be some function of the dummy variable, but it is not necessary that the dummy
variable appear in the first argument.

The SUM function accepts a scalar, a vector, or a matrix as its first argument. The SUM function
is equivalent to

∑
i∈RF where i is the dummy variable, R is the range of the dummy variable,

and F is some function of the dummy variable.

If F is a scalar, the result is a scalar. If F is a vector, the result is a vector. If F is a matrix,
the result is a matrix.

342

Functions

Examples

Suppose X=[1;2;3;4;5], Y=[2;3;4;5;6], M=

 1 2 3 4
5 6 7 8
9 10 11 12

 and I and J have been de-

clared to be dummy variables with SCALAR\DUMMY I J.

function result
SUM(X[I],I,1:5) 15

SUM(X,I,1:5) [5;10;15;20;25]

SUM((X^2+Y^2)[I],I,1:5) 145

SUM(SUM(M[I,J],I,1:3),J,1:4) 78

PROD
Syntax scalar = PROD(scalar,dummy,scalar)

vector = PROD(vector,dummy,vector)

matrix = PROD(matrix,dummy,matrix)

The PROD function requires a previously declared scalar dummy variable as second argu-
ment. A dummy variable is declared with the SCALAR\DUMMY command. The third argument
is always the range of this dummy variable, and must be a vector. The first argument would
normally be some function of the dummy variable, but it is not necessary that the dummy
variable appear in the first argument.

The PROD function accepts a scalar, a vector, or a matrix as its first argument. The PROD

function is equivalent to
∏
i∈RF where i is the dummy variable, R is the range of the dummy

variable, and F is some function of the dummy variable.

If F is a scalar, the result is a scalar. If F is a vector, the result is a vector. If F is a matrix,
the result is a matrix.

Examples

Suppose X=[1;2;3;4;5], Y=[2;3;4;5;6], M=

 1 2 3 4
5 6 7 8
9 10 11 12

 and I and J have been de-

clared to be dummy variables with SCALAR\DUMMY I J.

343

Functions

function result
PROD(X[I],I,1:5) 120

PROD(X,I,1:5) [1;32;243;1024;3125]

PROD((X^2+Y^2)[I],I,1:5) 4064125

PROD(PROD(M[I,J],I,1:3),J,1:4) 479001600

RSUM
Syntax vector = RSUM(scalar,dummy,vector)

matrix = RSUM(vector,dummy,matrix)

The RSUM function requires a previously declared scalar dummy variable as second argu-
ment. A dummy variable is declared with the SCALAR\DUMMY command. The third argument
is always the range of this dummy variable, and must be a vector. The first argument would
normally be some function of the dummy variable, but it is not necessary that the dummy
variable appear in the first argument.

The RSUM function accepts either a scalar or a vector as its first argument. The RSUM function
calculates the running sums. If the first argument is a scalar, the last element of the RSUM

output vector is the total sum. If the first argument is a vector, the last column of the RSUM

output matrix is the total sum.

Examples

Suppose X=[1;2;3;4;5], Y=[2;3;4;5;6], M=

 1 2 3 4
5 6 7 8
9 10 11 12

 and I and J have been de-

clared to be dummy variables with SCALAR\DUMMY I J.

function result
RSUM(X[I],I,1:5) [1;3;6;10;15]

RSUM(X,I,1:3)


1 2 3
2 4 6
3 6 9
4 8 12
5 10 15


RSUM((X^2+Y^2)[I],I,1:5) [5;18;43;84;145]

RSUM(RSUM(M[I,J],I,1:3),J,1:4)

 1 3 6 10
6 14 24 36

15 33 54 78



344

Functions

RPROD
Syntax vector = RPROD(scalar,dummy,vector)

matrix = RPROD(vector,dummy,matrix)

The RPROD function requires a previously declared scalar dummy variable as second argu-
ment. A dummy variable is declared with the SCALAR\DUMMY command. The third argument
is always the range of this dummy variable, and must be a vector. The first argument would
normally be some function of the dummy variable, but it is not necessary that the dummy
variable appear in the first argument.

The RPROD function accepts either a scalar or a vector as its first argument. The RPROD

function calculates the running products. If the first argument is a scalar, the last element
of the RPROD output vector is the total product. If the first argument is a vector, the last
column of the RPROD output matrix is the total product.

Examples

Suppose X=[1;2;3;4;5], Y=[2;3;4;5;6], M=

 1 2 3 4
5 6 7 8
9 10 11 12

 and I and J have been de-

clared to be dummy variables with SCALAR\DUMMY I J.

function result
RPROD(X[I],I,1:5) [1;2;6;24;120]

RPROD(X,I,1:3)


1 1 1
2 4 8
3 9 27
4 16 64
5 25 125


RPROD((X^2+Y^2)[I],I,1:5) [5;65;1625;66625;4064125]

RPROD(RPROD(M[I,J],I,1:3),J,1:4)

 1 2 6 24
5 60 1260 40320

45 5400 1247400 479001600


LOOP

Syntax vector = LOOP(scalar,dummy,vector)

matrix = LOOP(vector,dummy,matrix)

The LOOP function requires a previously declared scalar dummy variable as second argu-
ment. A dummy variable is declared with the SCALAR\DUMMY command. The third argument

345

Functions

is always the range of this dummy variable, and must be a vector. The first argument would
normally be some function of the dummy variable, but it is not necessary that the dummy
variable appear in the first argument.

The LOOP function accepts either a scalar or a vector as its first argument. The LOOP function
simply loops over the range of the dummy variable, filling the output with the appropriate
value from the first argument. The output of the LOOP function will always have one dimen-
sion more than the first argument. If the first argument is a scalar, the output will be the
elements of a vector. If the first argument is a vector, the output will be the columns of a
matrix.

Examples

Suppose X=[1;2;3;4;5], Y=[2;3;4;5;6], M=


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

 and I and J have been de-

clared to be dummy variables with SCALAR\DUMMY I J.

function result
LOOP(X[I]*Y[(6-I)],I,1:5) [6;10;12;12;10]

LOOP(X,I,1:3)


1 1 1
2 2 2
3 3 3
4 4 4
5 5 5


LOOP(M[I,I],I,1:4) [1;6;11;16]

LOOP(LOOP(M[I,J],I,1:J),J,1:4)


1 2 3 4
0 6 7 8
0 0 11 12
0 0 0 16



LOOP(LOOP(M[J,I],I,1:J),J,1:4)


1 5 9 13
0 6 10 14
0 0 11 15
0 0 0 16



Suppose M=

 11 12 13
21 22 23
31 32 33

 and J has been declared to be a dummy variable with SCALAR\DUMMY J.

To invert the matrix, that is, to flip the matrix upside down, use:

346

Functions

function result

<-LOOP(M[I,*],I,3:1:-1)

 31 32 33
21 22 23
11 12 13


You must use the transpose operator, since M[I,*] is a vector, and each time LOOP iterates
on I, it produces a column of the output matrix.

347

GPLOT Keywords

GPLOT KEYWORDS
This chapter contains detailed descriptions of the GPLOT graph and text plot characteristic
keywords, which are controlled by the SET and GET commands.

The values associated with every name are converted internally to floating point real, and
all angles are in degrees.

A.1 Summary

Following is a list of plot characteristic keywords, with very terse descriptions and default
values.

General

name description default value
PTYPE controls whether pixels are turned on, off, or complemented 0
LINTYP line type 1
LINTHK line thickness 1
COLOUR colour 1
NUMBLD fill number for the axis numbers 0
CLIP controls whether data curves are clipped at the box edge 1
HISTYP histogram type 0
CHARA plotting symbol angle horizontal
CHARSZ plotting symbol size 1 %

Text

name description default value
CURSOR text justification 1
TXTANG text angle 0
TXTHIT text height 3 %
XLOC horizontal reference location for text positioning 50 %
YLOC vertical reference location for text positioning 50 %

348

GPLOT Keywords

x-axis

name description default value
XAXIS controls whether or not to draw the x-axis 1
XLABSZ height of the x-axis text label 3 %
XLOG base of the x-axis numbers 0
NXGRID number of grid lines to draw parallel to the y-axis 0
XCROSS controls where the y-axis will cross the x-axis 0
XZERO controls whether zero is forced to appear on the x-axis 0
XTICTP type of tic marks to place on the x-axis 1
XTICA angle of the x-axis tic marks ‖ y-axis
NLXINC number of long x-axis tic marks 2
XTICL length of the long tic marks on the x-axis 2 %
NSXINC number of short x-axis tic marks 1
XTICS length of the short tic marks on the x-axis 1 %
XMAX maximum value for the x-axis 10
XVMAX virtual maximum for the x-axis 10
XMIN minimum value for the x-axis 0
XVMIN virtual minimum for the x-axis 0
XMOD base of the modulus for x-axis numbering 0
XOFF offset added to the numbers labeling the x-axis 0
XLEADZ controls whether x-axis leading zeros are displayed 0
XPAUTO controls the automatic x-axis scale factor 1
XPOW x-axis numbers scale factor 0
NXDIG number of digits to display in the x-axis numbers 5
NXDEC number of decimal places to display in the x-axis numbers −1
XNUMSZ height of the numbers labeling the x-axis 3 %
XNUMA angle of the numbers labeling the x-axis horizontal
XITICA angle at which to position the x-axis numbers ‖ y-axis
XITICL distance from the x-axis to the numbers labeling the x-axis 3 %

349

GPLOT Keywords

y-axis

name description default value
YAXIS controls whether or not to draw the y-axis 1
YLABSZ height of the y-axis text label 3 %
YLOG controls whether the y-axis is to be linear or logarithmic 0
NYGRID number of grid lines to draw parallel to the x-axis 0
YCROSS controls where the x-axis will cross the y-axis 0
YZERO controls whether zero is forced to appear on the y-axis 0
YTICTP type of tic marks to place on the y-axis 1
YTICA angle of the y-axis tic marks ‖ x-axis
NLYINC number of long y-axis tic marks 2
YTICL length of the long tic marks on the y-axis 2 %
NSYINC number of short y-axis tic marks 1
YTICS length of the short tic marks on the y-axis 1 %
YMAX maximum value for the y-axis 10
YVMAX virtual maximum for the y-axis 10
YMIN minimum value for the y-axis 0
YVMIN virtual minimum value for the y-axis 0
YMOD base of the modulus for the y-axis numbering 0
YOFF offset added to the numbers labeling the y-axis 0
YLEADZ controls whether y-axis leading zeros are displayed 0
YPAUTO controls the automatic y-axis scale factor 1
YPOW y-axis numbers scale factor 0
NYDIG number of digits to display in the y-axis numbers 5
NYDEC number of decimal places to display in the y-axis numbers −1
YNUMSZ height of the numbers labeling the y-axis 3 %
YNUMA angle of the numbers labeling the y-axis horizontal
YITICA angle at which to position the y-axis numbers ‖ y-axis
YITICL distance from the y-axis to the numbers labeling the y-axis 3 %

350

GPLOT Keywords

Axis Box

name description default value
XLWIND the left edge of the window 0 %
XUWIND the right edge of the window 100 %
YLWIND the bottom edge of the window 0 %
YUWIND the top edge of the window 100 %
BOX controls whether or not to draw an axis box around the graph 1
XLAXIS location of the lower end of the x-axis 15 %
XUAXIS location of the upper end of the x-axis 95 %
XAXISA angle of the x-axis 0
YLAXIS location of the bottom of the y-axis 15 %
YUAXIS location of the top of the y-axis 90 %
YAXISA angle of the y-axis 90
BOTNUM controls the height of the numbers on the bottom of the box 0
BOTTIC controls the length of the tic marks on the bottom of the box 1
RITNUM controls the height of the numbers on the right side of the box 0
RITTIC controls the length of the tic marks on the right side of the box −1
TOPNUM controls the height of the numbers on the top of the box 0
TOPTIC controls the length of the tic marks on the top of the box −1
LEFNUM controls the height of the numbers on the left side of the box 0
LEFTIC length of the tic marks on the left side of the box 1

351

GPLOT Keywords

A.2 General Characteristics

PTYPE

Default: PTYPE = 0

PTYPE controls whether graphics pixels are turned on, off, or toggled. This can be used
to selectively erase graphics, by drawing with PTYPE = 0 and redrawing with PTYPE = 1; or
by drawing and redrawing with PTYPE = 2. This only works on the monitor screen and on
bitmap hardcopy output. Values other than 0, 1, 2 are ignored.

0 pixels turned on (draw)
1 pixels turned off (erase)
2 pixels complemented

Complemented pixels means that a pixel is turned off if it is on, or turned off if it is on.

LINTYP

Default: LINTYP = 1

LINTYP controls the type of line to use when drawing a data curve. LINTYP should be between
1 and 10, inclusive. Table 2.8 on page 30 shows the specifications for the default line types.
The length of the dashes in the dashed line types, the default types 3 to 10, are constant
and do not depend on the separation between data points. The definition of a line type can
be changed via the SET LINE command.

LINTHK

Default: LINTHK = 1

LINTHK controls the line thickness for bitmap hardcopy output and for PostScript hardcopy
output. LINTHK has no affect on monitor screen output or on pen plotter hardcopy output.

COLOUR

Default: COLOUR = 1

COLOUR sets a colour code which is used to control the monitor screen colour and the hard-
copy colour. See Table 2.6 on page 20 for a list of the colour names and associated colour
numbers.

352

GPLOT Keywords

NUMBLD

Default: NUMBLD = 0

NUMBLD is the fill number for the axis numbers.

0 no filling
1 ≤ NUMBLD ≤ 10 use hatch pattern
11 ≤ NUMBLD ≤ 99 use dot fill pattern

CLIP

Default: CLIP = 1

CLIP controls whether or not data curves that are plotted are clipped at the boundaries of
the axis box.

0 do not clip
6= 0 clip at the boundaries of the axis box

HISTYP

Default: HISTYP = 0

HISTYP controls whether a normal line graph or a histogram is drawn. Histograms can have
tails or no tails and the profile can be along the x-axis or along the y-axis. See Figure 2.16
on page 123.

0 normal line graph, not a histogram
1 histogram with no tails and profile along the x-axis.

Can control the width and colour of each individual bar
2 histogram with tails to y = 0 and profile along the x-axis.

Can control the filling pattern, width and colour of each individual bar
3 histogram without tails and profile along the y-axis.

Can control the height and colour of each individual bar
4 histogram with tails to x = 0 and profile along the y-axis.

Can control the filling pattern, height and colour of each individual bar

No plotting symbol will be drawn at the data points when HISTYP > 0. The fill pattern, width
and colour of each histogram bar can be controlled by using the optional arrays in the SET

PCHAR command.

353

GPLOT Keywords

CHARA

Default: %CHARA = XAXISA

CHARA is the angle, in degrees, of the plotting symbols that are drawn at the data points,
measured counterclockwise between a horizontal line and a base line through the plotting
symbol. CHARA will not be used when plotting if the optional angle array is included with the
SET PCHAR command.

If CHARA is set as a percentage, the actual value to which %CHARA has been set is ignored and
the angle is set to XAXISA. This allows the user to change the angle of the x-axis and keep
the plotting symbols base line parallel to the x-axis. By default, CHARA is set as a percentage.

CHARSZ

Default: %CHARSZ = 1

CHARSZ is the size of the plotting symbols that are drawn at the data points. %CHARSZ is a
percentage of the height of the window, that is, CHARSZ = %CHARSZ× (YUWIND − YLWIND) ÷ 100
CHARSZ will be the base size of the plotting symbols if the optional size array is included in
the SET PCHAR command.

A.3 Text

CURSOR

Default: CURSOR = 1

CURSOR controls the justification of the text that is drawn when using TEXT command. The
origin of the text is always the lower left corner of the string. The justification determines
where this origin is placed with respect to a reference point. Refer to Figure 2.28 on page 258
and to Table 2.64 on page 259.

≤ 0 then XLOC and YLOC will be used to determine the reference point for the
text, and the justification will be determined by |CURSOR|.

> 0 the user selects a reference point with the graphics cursor. The jus-
tification of the text is selected interactively. Refer to Table 2.65 on
page 260.

The value of CURSOR will be updated to the value corresponding to the justification that was
chosen. The values of %XLOC and %YLOC will be updated to the new reference point location.

354

GPLOT Keywords

TXTANG

Default: TXTANG = 0

TXTANG controls the angle at which text will be drawn, when using the TEXT command. TXTANG
is the angle, in degrees, measured counterclockwise, between the base line of the text and
a horizontal line. The value of TXTANG will be ignored if |CURSOR| = 4, 5, or 6.

TXTHIT

Default: %TXTHIT = 3

TXTHIT is the height of text to be drawn, when using the TEXT command. %TXTHIT is a
percentage of the height of the window, that is, TXTHIT = %TXTHIT× (YUWIND− YLWIND)÷ 100

XLOC

Default: %XLOC = 50

XLOC is the horizontal reference position of a text drawn using the TEXT command. This
reference point is used for text justification. See the explanation of CURSOR for how XLOC

will be used. XLOC will be used if CURSOR < 0, or if the X key is typed when drawing text in
interactive mode. The value of %XLOC is updated after each string is drawn with the TEXT

command. %XLOC is a percentage of the width of the window, that is, XLOC = XLWIND+%XLOC×
(XUWIND− XLWIND)÷ 100

YLOC

Default: %YLOC = 50

YLOC controls the vertical reference position of a text string drawn with the TEXT command.
This reference point is used for text justification. See the explanation of CURSOR for how
YLOC will be used. YLOC will be used if CURSOR < 0, or if the Y key is typed when drawing
text in interactive mode. The value of %YLOC is updated after each string is drawn with
the TEXT command. %YLOC is a percentage of the height of the window, that is, YLOC =
YLWIND + %YLOC× (YUWIND− YLWIND)÷ 100

A.4 x-axis

Figure A.36 illustrates the definitions of some of the x-axis characteristics.

XAXIS

355

GPLOT Keywords

Figure A.36: Some x-axis characteristics

356

GPLOT Keywords

Default: XAXIS = 1

XAXIS controls whether or not the x-axis is drawn.

0 do not draw the x-axis
6= 0 draw the x-axis

If BOX 6= 0, then the bottom of the axis box will be drawn, even if XAXIS = 0.

XLABSZ

Default: %XLABSZ = 3

XLABSZ controls the height of the automatic text label for the x-axis, set by the LABEL\XAXIS

command. %XLABSZ is a percentage of the height of the window, that is, XLABSZ = %XLABSZ×
(YUWIND− YLWIND)÷ 100

XLOG

Default: XLOG = 0

XLOG determines whether the x-axis is to be linear or logarithmic. See Figure A.37 for
examples of various logarithmic axes.

> 1 the x-axis will have a logarithmic scale. The numbers labeling the x-
axis will be in exponent form, for example, 101 102 103 104.

−1 ≤ XLOG ≤ 1 the x-axis will have a linear scale
< −1 the x-axis will have a logarithmic scale. The numbers labeling the x-

axis will be in full digit form, for example, 10 100 1000 10000.

Suppose that |XLOG| > 1. The base will be the integer part of |XLOG|, except for the special
case: 1.05× e > XLOG > 0.95× e, where e is the base of the natural logarithms, e ≈ 2.718281828,
in which case the base will be e. XMIN and XMAX will be the exponents for the minimum and
maximum values on the x-axis. The maximum value displayed on the x-axis is |XLOG|XMAX
and the minimum value displayed on the x-axis is |XLOG|XMIN. Integer exponents are always
used for the axis numbering, so the x-axis may not begin and/or end on a large tic mark.

If |XLOG| = 10, the small tic marks on the x-axis can be specified exactly with NSXINC. If small
tic marks are desired at the locations jm×10n, where 2 ≤ jm ≤ 9, then set NSXINC = −j1 . . . jm.
For example, if you want small tic marks at 2 × 10n, 4 × 10n, 5 × 10n, and 8 × 10n, then set
NSXINC = −2458.

357

GPLOT Keywords

Figure A.37: Logarithmic x-axis examples

358

GPLOT Keywords

NXGRID

Default: NXGRID = 0

NXGRID controls the number of grid lines parallel to the y-axis. NXGRID specifies the number
of large x-axis tic marks between each grid line.

> 0 grid lines parallel to the y-axis at every NXGRID large tic mark,
starting with the first

0 suppress all grid lines parallel to the y-axis
−1 grid lines parallel to the y-axis at every x-axis tic mark, large and small.

This option applies only if the axes are orthogonal.

XCROSS

Default: XCROSS = 0

XCROSS controls where the y-axis is to cross the x-axis. The axes always cross at a large tic
mark.

0 the y-axis will cross the x-axis at XMIN
6= 0 the y-axis will cross the x-axis at the large tic mark closest to x = 0

XZERO

Default: XZERO = 0

XZERO controls whether or not to force zero to be displayed on the x-axis. XZERO is set to zero
after each graph is drawn.

6= 0 if XMIN ≥ 0 then set XMIN to zero, or, if XMAX ≤ 0 then set XMAX to zero
0 do not force zero to be displayed on the x-axis

XTICTP

Default: XTICTP = 1

XTICTP controls the type of tic marks to place on the x-axis.

359

GPLOT Keywords

2 tic marks on both sides of the x-axis
6= 2 tic marks on only one side of the x-axis.

XTICA controls the side on which the tic marks will appear

XTICA

Default: XTICA = YAXISA− XAXISA+ 180◦

XTICA is the angle, in degrees, measured counterclockwise, between a horizontal line and a
tic mark, both large and small, on the x-axis. See Figure A.36. By default, XTICA is set as a
percentage. If XTICA is set as a percentage, then XTICA is set to YAXISA− XAXISA + 180. The
actual value of %XTICA will be ignored. This allows the user to change the angle of the axes
and keep the x-axis tic marks parallel to the y-axis.

NLXINC

Default: NLXINC = 2

NLXINC controls the number of large tic marks to be displayed on the x-axis.

−1000 drop the first and the last numbers on the x-axis
and determine the number of large x-axis tic marks

< 0 drop the first and the last numbers on the x-axis.
The number of large tic marks on the x-axis will be |NLXINC|+ 1,
unless |XLOG| > 1, in which case the number of tic marks will be deter-
mined to avoid fractional powers

0 the number of large tic marks on the x-axis will be automatically deter-
mined

> 0 the number of large tic marks on the x-axis will be NLXINC + 1,
unless |XLOG| > 1, in which case NLXINC will be determined to avoid
fractional powers

XTICL

Default: %XTICL = 2

XTICL is the length of the long tic marks on the x-axis. See Figure A.36 on page 356. %XTICL
is a percentage of the height of the window, that is, XTICL = %XTICL× (YUWIND− YLWIND)÷ 100

NSXINC

Default: NSXINC = 1

360

GPLOT Keywords

NSXINC controls the number of small tic marks to be displayed on the x-axis. The small tic
marks appear between the large tic marks.

≤ 1 no small tic marks on the x-axis
≥ 2 the number of small tic marks, on the x-axis,

between each pair of large tic marks, will be NSXINC− 1

If |XLOG| = 10, the small tic marks on the x-axis can be specified exactly with NSXINC. If small
tic marks are desired at the locations jm×10n, where 2 ≤ jm ≤ 9, then set NSXINC = −j1 . . . jm.
For example, if you want small tic marks at 2 × 10n, 4 × 10n, 5 × 10n, and 8 × 10n, then set
NSXINC = −2458.

XTICS

Default: %XTICS = 1

XTICS controls the length of the short tic marks on the x-axis. See Figure A.36 on page 356.
%XTICS is a percentage of the height of the window, that is, XTICS = %XTICS × (YUWIND −
YLWIND)÷ 100

XMAX

Default: XMAX = 10

XMAX controls the maximum value for the x-axis.

If |XLOG| > 1, then XMAX is assumed to be the exponent for the maximum value on the x-axis.
The maximum value displayed on the x-axis is |XLOG|XMAX. Integer exponents are always
used for the axis numbering, so the x-axis may not end on a large tic mark.

If |XLOG| ≤ 1, then XMAX is the actual maximum value for the x-axis. If XVMAX is equal to XMAX

then the x-axis always ends on a large, labeled, tic mark. If XVMAX is not equal to XMAX then
the x-axis will not end at a large, labeled, tic mark.

When the value of XMAX is changed, the value of XVMAX is simultaneously changed to the
same value.

XVMAX

Default: XVMAX = 10

XVMAX controls the virtual maximum value for the x-axis. See Figure A.38 on page 363.

361

GPLOT Keywords

If |XLOG| > 1, the virtual maximum is ignored.

If |XLOG| ≤ 1, then XVMAX is the virtual maximum value of the labels for the x-axis. This value
will not be displayed if XVMAX is greater than XMAX, but it will be displayed if XVMAX is less than
or equal to XMAX. This virtual maximum is used to determine ”nice” numbers for labeling the
large tic marks on the x-axis. If XVMAX is not equal to XMAX then the x-axis will not end on a
large, labeled, tic mark.

The value of XVMAX is changed to the value of XMAX when the value of XMAX is changed. So, if
you want to make XVMAX different from XMAX, it must be changed after XMAX is changed.

If NLXINC is set to zero, then the x-axis will begin at XMIN and end at XMAX, but if these are not
‘nice’ numbers, the virtual minimum and maximum will be set to values outside the actual
minimum and maximum so that the large tic marks can be labeled with ”nice” numbers.

XMIN

Default: XMIN = 0

XMIN controls the minimum value for the x-axis.

If |XLOG| > 1, then XMIN is assumed to be the exponent for the minimum value on the x-axis.
The minimum value displayed on the x-axis is |XLOG|XMIN. Integer exponents are always be
used for the axis numbering, so the x-axis may not begin on a large tic mark.

If |XLOG| ≤ 1, XMIN is the actual minimum value for the x-axis. If XVMIN is equal to XMIN then
the x-axis always begins on a large, labeled, tic mark. If XVMIN is not equal to XMIN then the
x-axis will not begin at a large, labeled, tic mark.

When the value of XMIN is changed, the value of XVMIN is simultaneously changed to the
same value.

XVMIN

Default: XVMIN = 0

XVMIN controls the virtual minimum value for the x-axis. See Figure A.38 on page 363.

If |XLOG| > 1, the virtual minimum is ignored.

If |XLOG| ≤ 1, then XVMIN is the virtual minimum value of the labels for the x-axis. This value
will not be displayed if XVMIN is less than XMIN, but it will be displayed if XVMIN is greater than

362

GPLOT Keywords

or equal to XMIN. This virtual minimum is used to determine ”nice” numbers for labeling the
large tic marks on the x-axis. If XVMIN is not equal to XMIN then the x-axis will not begin on
a large, labeled, tic mark.

The value of XVMIN is changed to the value of XMIN when the value of XMIN is changed. So, if
you want to make XVMIN different from XMIN, it must be changed after XMIN is changed.

If NLXINC is set to zero, then the x-axis will begin at XMIN and end at XMAX, but if these are not
”nice” numbers, the virtual minimum and maximum will be set to values outside the actual
minimum and maximum so that the large tic marks can be labeled with ”nice” numbers.

Figure A.38: Virtual axes examples

XMOD

Default: XMOD = 0

XMOD is another control on the numbering for the x-axis.

363

GPLOT Keywords

> 1 the numbers displayed on the x-axis are modulo XMOD and positive.
If the number to be displayed on the axis is x then the number that is
actually displayed is |x− XMOD× (x/XMOD)|+ XOFF

−1 ≤ XMOD ≤ 1 the numbers will be displayed normally
< −1 the numbers will be modulo |XMOD| and may be negative

XOFF

Default: XOFF = 0

XOFF is another control on the numbering for the x-axis. If |XMOD| > 1, then XOFF is added to
the numbers to be displayed on the x-axis. If |XMOD| ≤ 1, then XOFF is ignored.

XLEADZ

Default: XLEADZ = 0

XLEADZ controls whether leading zeros are displayed on the x-axis numbers.

1 numbers will have leading zeros if they are between 0 and 1
0 numbers will not have leading zeros if they are between 0 and 1

The default is to not display these leading zeros. Numbers that are between −1 and 0 always
have the leading zero displayed.

XPAUTO

Default value: XPAUTO = 1

XPAUTO, along with XPOW, controls the x-axis scale factor that is appended to the x-axis text
label. This scale factor is needed when there are not enough digits allowed for the numbers
labeling the x-axis. XPOW is only appended to the text label if XPOW 6= 0.

2 determine XPOW, but do not append the scale factor to the text label
1 determine XPOW, and append the scale factor to the text label
0 use the present value of XPOW

If the user wishes to completely specify the appearance of the x-axis, XPAUTO must be set to
0, otherwise the number of digits and decimal places, NXDIG and NXDEC, may be changed.

364

GPLOT Keywords

XPOW

Default: XPOW = 0

XPOW controls the x-axis scale factor that is appended to the x-axis text label. This scale
factor is a power of ten, that is, 10XPOW, and the numbers labeling the x-axis should be
multiplied by this scale factor to get the correct graph units. XPOW is only appended to the
text label if XPOW 6= 0.

NXDIG

Default: NXDIG = 5

NXDIG controls the total number of digits to be displayed in each of the numbers labeling
the x-axis. If NXDIG is smaller than required to display the x-axis numbers, NXDIG will not
be increased, but a scale factor, (×10n), will be appended to the x-axis text label. If NXDIG
is larger than required, NXDIG will be reduced to the minimum value required. The value of
NXDIG is updated after each graph is drawn.

NXDEC

Default: NXDEC = −1

NXDEC controls the number of digits to be displayed in the fractional parts of the numbers
labeling the x-axis. The value of NXDEC is updated after each graph is drawn.

−1 display the numbers labeling the x-axis as integers, with no decimal
point

0 display the numbers labeling the x-axis with no fractional part, but
with a decimal point

> 0 display the numbers labeling the x-axis with NXDEC digits in the frac-
tional part

XNUMSZ

Default: %XNUMSZ = 3

XNUMSZ controls the size of the numbers labeling the x-axis. See Figure A.36. %XNUMSZ is a
percentage of the height of the window, that is, XNUMSZ = %XNUMSZ× (YUWIND− YLWIND)÷ 100

XNUMA

365

GPLOT Keywords

Default: XNUMA = −XAXISA

XNUMA controls the angle of the base line for the numbers labeling the x-axis. XNUMA is the
angle, in degrees, measured counterclockwise, between a line parallel to the x-axis and the
base line of a number. Refer to Figure A.36 on page 356. By default, XNUMA is set as a
percentage. If XNUMA is set as a percentage, then XNUMA is set to −XAXISA. The actual value of
%XNUMA will be ignored. This allows the user to change the angle of the x-axis and keep the
base line of the x-axis numbers horizontal.

XITICA

Default: XITICA = YAXISA− XAXISA + 180

XITICA, along with XITICL, controls the location of the numbers labeling the x-axis at the
large tic marks. XITICA is the angle, in degrees, measured counterclockwise, between the
x-axis and a line joining the base of each large tic mark on the x-axis to the centre of the
number labeling that tic mark. See Figure A.36. By default, XITICA is set as a percentage.
If XITICA is set as a percentage, then XITICA is set to YAXISA− XAXISA+ 180. The actual value
of %XITICA will be ignored. This allows the user to change the angle of the axes and keep the
relative locations of the x-axis numbers the same.

XITICL

Default: %XITICL = 3

XITICL, along with XITICA, controls the location of the numbers labeling the x-axis at the
large tic marks. XITICL is the distance from the base of each large tic mark on the x-axis, to
the centre of the number labeling that tic mark. See Figure A.36 on page 356. %XITICL is a
percentage of the height of the window, that is, XITICL = %XITICL× (YUWIND− YLWIND)÷ 100

A.5 y-axis

Figure A.39 illustrates the definitions of some of the y-axis characteristics.

YAXIS

Default: YAXIS = 1

YAXIS controls whether or not the y-axis is drawn.

6= 0 draw the y-axis
0 do not draw the y-axis

366

GPLOT Keywords

Figure A.39: Some y-axis characteristics

367

GPLOT Keywords

If BOX 6= 0, then the left side of the axis box will be drawn, even if YAXIS = 0.

YLABSZ

Default: %YLABSZ = 3

YLABSZ controls the size of the automatic text label for the y-axis, set by the LABEL\YAXIS

command. %YLABSZ is a percentage of the height of the window, that is, YLABSZ = %YLABSZ×
(YUWIND− YLWIND)÷ 100

YLOG

Default: YLOG = 0

YLOG determines whether the y-axis is to be linear or logarithmic. See Figure A.40 for exam-
ples of various logarithmic axes.

> 1 the y-axis will have a logarithmic scale. The numbers labeling the y-axis
will be in exponent form, for example, 101 102 103 104.

−1 ≤ YLOG ≤ 1 the y-axis will have a linear scale
< −1 the y-axis will have a logarithmic scale. The numbers labeling the y-axis

will be in full digit form, for example, 10 100 1000 10000.

Suppose that |YLOG| > 1. The base will be the integer part of |YLOG|, except for the special
case: 1.05× e > YLOG > 0.95× e, where e is the base of the natural logarithms, e ≈ 2.718281828,
in which case the base will be e. YMIN and YMAX will be the exponents for the minimum and
maximum values on the y-axis. The maximum value displayed on the y-axis is |YLOG|YMAX
and the minimum value displayed on the y-axis is |YLOG|YMIN. Integer exponents are always
used for the axis numbering, so the y-axis may not begin and/or end on a large tic mark.

If |YLOG| = 10, the small tic marks on the y-axis can be specified exactly with NSYINC. If small
tic marks are desired at the locations jm×10n, where 2 ≤ jm ≤ 9, then set NSYINC = −j1 . . . jm.
For example, if you want small tic marks at 2 × 10n, 4 × 10n, 5 × 10n, and 8 × 10n, then set
NSYINC = −2458.

NYGRID

Default: NYGRID = 0

NYGRID controls the number of grid lines parallel to the x-axis. NYGRID specifies the number
of large y-axis tic marks between each grid line.

368

GPLOT Keywords

Figure A.40: Logarithmic y-axis examples

369

GPLOT Keywords

> 0 draw a grid line parallel to the x-axis at every NYGRID large tic mark,
starting with the first

0 suppress all grid lines parallel to the x-axis
−1 draw a grid line parallel to the x-axis at every y-axis tic mark, large and

small. This option applies only if the axes are orthogonal.

YCROSS

Default: YCROSS = 0

YCROSS controls where the x-axis is to cross the y-axis. The axes always cross at a large tic
mark.

0 the x-axis will cross the y-axis at YMIN
6= 0 the x-axis will cross the y-axis at y = 0, or at the large tic mark closest to y = 0

YZERO

Default: YZERO = 0

YZERO controls whether or not to force zero to be displayed on the y-axis. YZERO is set to zero
after each graph is drawn.

6= 0 if YMIN ≥ 0 then set YMIN to zero, or, if YMAX ≤ 0 then set YMAX to zero
0 do not force zero to be displayed on the y-axis

YTICTP

Default: YTICTP = 1

YTICTP controls the type of tic marks to place on the y-axis.

6= 2 tic marks are drawn on only one side of the y-axis. YTICA controls the
side on which the tic marks will appear

2 tic marks are drawn on both sides of the y-axis

YTICA

Default: YTICA = XAXISA− YAXISA+ 180

370

GPLOT Keywords

YTICA controls the angle of the tic marks, both large and small, on the y-axis. YTICA is
the angle, in degrees, measured counterclockwise, between the y-axis and a tic mark. See
Figure A.39 on page 367. By default, YTICA is set as a percentage. If YTICA is set as a
percentage, for example, SET %YTICA 0, then YTICA is set to XAXISA − YAXISA + 180. The
actual value of %YTICA will be ignored. This allows the user to change the angle of the axes
and keep the y-axis tic marks parallel to the x-axis.

NLYINC

Default: NLYINC = 2

NLYINC controls the number of large tic marks to be displayed on the y-axis.

−1000 drop the first and the last numbers on the y-axis and determine the
number of large y-axis tic marks

< 0 drop the first and the last numbers on the y-axis. The number of large
tic marks on the y-axis will be |NLYINC| + 1, unless YLOG > 1, in which
case the number of tic marks will be determined to avoid fractional
powers

0 the number of large tic marks on the y-axis will be automatically deter-
mined

> 0 the number of large tic marks on the y-axis will be NLYINC+1, unless
YLOG > 1, in which case NLYINC will be determined to avoid fractional
powers

YTICL

Default: %YTICL = 2

YTICL is the length of the long tic marks on the y-axis. See Figure A.39 on page 367. %YTICL
is a percentage of the height of the window, that is, YTICL = %YTICL× (YUWIND− YLWIND)÷ 100

NSYINC

Default: NSYINC = 1

NSYINC controls the number of small tic marks to be displayed on the y-axis. The small tic
marks appear between the large tic marks. See Figure A.39 on page 367.

≤ 1 no small tic marks on the y-axis
≥ 2 the number of small tic marks, on the y-axis, between each pair of large

tic marks, will be NSYINC −1

371

GPLOT Keywords

If |YLOG| = 10, the small tic marks on the y-axis can be specified exactly with NSYINC. If small
tic marks are desired at the locations jm×10n, where 2 ≤ jm ≤ 9, then set NSYINC = −j1 . . . jm.
For example, if you want small tic marks at 2 × 10n, 4 × 10n, 5 × 10n, and 8 × 10n, then set
NSYINC = −2458.

YTICS

Default: %YTICS = 1

YTICS is the length of the short tic marks on the y-axis. See Figure A.39 on page 367. %YTICS
is a percentage of the height of the window, that is, YTICS = %YTICS× (YUWIND− YLWIND)÷ 100

YMAX

Default: YMAX = 10

YMAX controls the maximum value for the y-axis.

If |YLOG| > 1, then YMAX is assumed to be the exponent for the maximum value on the y-axis.
The maximum value displayed on the y-axis is |YLOG|YMAX. Integer exponents are always
used for the axis numbering, so the y-axis may not end on a large tic mark.

If |YLOG| ≤ 1, then YMAX is the actual maximum value for the y-axis. If YVMAX is equal to YMAX

then the y-axis always ends on a large, labeled, tic mark. If YVMAX is not equal to YMAX then
the y-axis will not end at a large, labeled, tic mark.

When the value of YMAX is changed, the value of YVMAX is simultaneously changed to the
same value.

YVMAX

Default: YVMAX = 10

YVMAX controls the virtual maximum value for the y-axis. See Figure A.38 on page 363.

If |YLOG| > 1, the virtual maximum is ignored.

If |YLOG| ≤ 1, then YVMAX is the virtual maximum value of the labels for the y-axis. This value
will not be displayed if YVMAX is greater than YMAX, but it will be displayed if YVMAX is less than
or equal to YMAX. This virtual maximum is used to determine ”nice” numbers for labeling the
large tic marks on the y-axis. If YVMAX is not equal to YMAX then the y-axis will not end on a
large, labeled, tic mark.

372

GPLOT Keywords

The value of YVMAX is changed to the value of YMAX when the value of YMAX is changed. So, if
you want to make YVMAX different from YMAX, it must be changed after YMAX is changed.

If NLYINC is set to zero, then the y-axis will begin at YMIN and end at YMAX, but if these are not
”nice” numbers, the virtual minimum and maximum will be set to values outside the actual
minimum and maximum so that the large tic marks can be labeled with ”nice” numbers.

YMIN

Default: YMIN = 0

YMIN controls the minimum value for the y-axis.

If |YLOG| > 1, then YMIN is assumed to be the exponent for the minimum value on the y-axis.
The minimum value displayed on the y-axis is |YLOG|YMIN. Integer exponents are always be
used for the axis numbering, so the y-axis may not begin on a large tic mark.

If |YLOG| ≤ 1, YMIN is the actual minimum value for the y-axis. If YVMIN is equal to YMIN then
the y-axis always begins on a large, labeled, tic mark. If YVMIN is not equal to YMIN then the
y-axis will not begin at a large, labeled, tic mark.

When the value of YMIN is changed, the value of YVMIN is simultaneously changed to the
same value.

YVMIN

Default: YVMIN = 0

YVMIN controls the virtual minimum value for the y-axis. See Figure A.38 on page 363.

If |YLOG| > 1, the virtual minimum is ignored.

If |YLOG| ≤ 1, then YVMIN is the virtual minimum value of the labels for the y-axis. This value
will not be displayed if YVMIN is less than YMIN, but it will be displayed if YVMIN is greater than
or equal to YMIN. This virtual minimum is used to determine ”nice” numbers for labeling the
large tic marks on the y-axis. If YVMIN is not equal to YMIN then the y-axis will not begin on
a large, labeled, tic mark.

The value of YVMIN is changed to the value of YMIN when the value of YMIN is changed. So, if
you want to make YVMIN different from YMIN, it must be changed after YMIN is changed.

If NLYINC is set to zero, then the y-axis will begin at YMIN and end at YMAX, but if these are not

373

GPLOT Keywords

”nice” numbers, the virtual minimum and maximum will be set to values outside the actual
minimum and maximum so that the large tic marks can be labeled with ”nice” numbers.

YMOD

Default: YMOD = 0

YMOD is another control on the numbering for the y-axis.

> 1 the numbers displayed on the y-axis will be modulo YMOD and positive.
If the number to be displayed on the axis is x then the number that is
actually displayed is |x− YMOD× (x/YMOD)|+ YOFF

−1 ≤ YMOD ≤ 1 the numbers will be displayed normally
< −1 the numbers will be modulo |YMOD| and may be negative

YOFF

Default: YOFF = 0

YOFF is another control on the numbering for the y-axis. If |YMOD| > 1, then YOFF is added to
the numbers to be displayed on the y-axis. If |YMOD| ≤ 1, then YOFF is ignored.

YLEADZ

Default: YLEADZ = 0

YLEADZ controls whether leading zeros are displayed on the y-axis numbering.

6= 0 the numbers displayed on the will have leading zeros if they are between
0 and 1

0 the numbers displayed on the will not have leading zeros if they are
between 0 and 1

The default is to not display these leading zeros. Numbers that are between −1 and 0 always
have the leading zero displayed.

YPAUTO

Default value: YPAUTO = 1

YPAUTO, along with YPOW, controls the y-axis scale factor that is appended to the y-axis text

374

GPLOT Keywords

label. This scale factor is needed when there are not enough digits allowed for the numbers
labeling the y-axis.

2 determine YPOW, but do not append the scale factor to the text label even
if it is needed

1 determine YPOW, and append the scale factor to the text label
0 use the present value of YPOW and if YPOW 6= 0 append the scale factor to

the text label

If the user wishes to completely specify the appearance of the y-axis, YPAUTO must be set to
0, otherwise the number of digits and decimal places, NYDIG and NYDEC, may be changed.

YPOW

Default: YPOW = 0

YPOW controls the y-axis scale factor that is appended to the y-axis text label. This scale
factor is a power of ten, that is, 10YPOW, and the numbers labeling the y-axis should be
multiplied by this scale factor to get the correct graph units.

NYDIG

Default: NYDIG = 5

NYDIG controls the total number of digits to be displayed in each of the numbers labeling
the y-axis. If NYDIG is smaller than required to display the y-axis numbers, NYDIG will not
be increased but a scale factor, (×10n), will be appended to the y-axis text label. If NYDIG
is larger than required, NYDIG will be reduced to the minimum value required. The value of
NYDIG is updated after each graph is drawn.

NYDEC

Default: NYDEC = −1

NYDEC controls the number of digits to be displayed in the fractional parts of the numbers
labeling the y-axis. The value of NYDEC is updated after each graph is drawn.

375

GPLOT Keywords

−1 display the numbers labeling the y-axis as integers, with no decimal
point

0 display the numbers labeling the y-axis with no fractional part, but with
a decimal point

> 0 display the numbers labeling the y-axis with NYDEC digits in the frac-
tional part

YNUMSZ

Default: %YNUMSZ = 3

YNUMSZ controls the size of the numbers labeling the y-axis. See Figure A.39 on page 367.
%YNUMSZ is a percentage of the height of the window, that is, YNUMSZ = %YNUMSZ× (YUWIND−
YLWIND)÷ 100

YNUMA

Default: YNUMA = −YAXISA

YNUMA controls the angle of the base line for the numbers labeling the y-axis. YNUMA is the
angle, in degrees, measured counterclockwise, between a line parallel to the y-axis and the
base line of a number. See Figure A.39 on page 367. By default, YNUMA is set as a percentage.
If YNUMA is set as a percentage, for example, SET %YNUMA 0, then YNUMA is set to −YAXISA. The
actual value of %YNUMA will be ignored. This allows the user to change the angle of the y-axis
and keep the base line of the y-axis numbers horizontal.

YITICA

Default: YITICA = XAXISA− YAXISA + 180

YITICA, along with YITICL, controls the location of the numbers labeling the y-axis at the
large tic marks. YITICA is the angle, in degrees, measured counterclockwise, between the
y-axis and a line joining the base of each large tic mark on the y-axis to the center of the
number labeling that tic mark. See Figure A.39 on page 367. By default, YITICA is set as a
percentage. If YITICA is set as a percentage, then YITICA is set to XAXISA− YAXISA + 180. The
actual value of %YITICA will be ignored. This allows the user to change the angle of the axes
and keep the relative location of the y-axis numbers the same.

YITICL

Default: %YITICL = 3

376

GPLOT Keywords

YITICL, along with YITICA, controls the location of the numbers labeling the y-axis at the
large tic marks. YITICL is the distance from the base of each large tic mark on the y-axis
to the lower left hand corner of the number labeling that tic mark. See Figure A.39 on
page 367. %YITICL is a percentage of the height of the window, that is, YITICL = %YITICL×
(YUWIND− YLWIND)÷ 100

A.6 Axis Box Characteristics

Figure A.41 shows the relation of the world coordinate system to the window and to the
graph axis corner locations.

Figure A.41: The window and axis locations

XLWIND

Default: %XLWIND = 0

XLWIND is the left edge of the window box. See Figure A.41 on page 377. %XLWIND is a

377

GPLOT Keywords

percentage of the entire width of the world coordinate system.

XUWIND

Default: %XUWIND = 0

XUWIND is the right edge of the window box. See Figure A.41 on page 377. %XUWIND is a
percentage of the entire width of the world coordinate system.

YLWIND

Default: %YLWIND = 0

YLWIND is the bottom edge of the window box. See Figure A.41 on page 377. %YLWIND is a
percentage of the entire height of the world coordinate system.

YUWIND

Default: %YUWIND = 0

YUWIND is the top edge of the window box. See Figure A.41 on page 377. %YUWIND is a
percentage of the entire height of the world coordinate system.

BOX

Default: BOX = 1

BOX controls whether or not an axis box is placed around the graph.

0 do not draw an axis box
6= 0 draw an axis box

XLAXIS

Default: %XLAXIS = 15

XLAXIS controls the position of the left, or lower, end of the x-axis, see Figure A.41 on
page 377. This is also the horizontal coordinate of the lower left hand corner of the graph
box, if BOX = 1. %XLAXIS is a percentage of the width of the window, that is, XLAXIS =
XLWIND + %XLAXIS× (XUWIND− XLWIND)÷ 100

XUAXIS

378

GPLOT Keywords

Default: %XUAXIS = 95

XUAXIS controls the position of the right, or upper, end of the x-axis, see Figure A.41 on
page 377. This is also the horizontal coordinate of the upper right hand corner of the
graph box, if BOX = 1. %XUAXIS is a percentage of the width of the window, that is, XUAXIS

= XLWIND + %XUAXIS× (XUWIND− XLWIND)÷ 100

XAXISA

Default: XAXISA = 0

XAXISA is the angle, in degrees, measured counterclockwise, between a horizontal line and
the x-axis. See Figure A.36 on page 356.

YLAXIS

Default: %YLAXIS = 15

YLAXIS is the position of the bottom, or lower, end of the y-axis, see Figure A.41 on page 377.
This is also the vertical coordinate of the lower left hand corner of the graph box, if BOX = 1.
%YLAXIS is a percentage of the height of the window, that is, YLAXIS = %YLAXIS× (YUWIND−
YLWIND)÷ 100

YUAXIS

Default: %YUAXIS = 90

YUAXIS is the position of the upper end of the y-axis, see Figure A.41 on page 377. This is also
the vertical coordinate of the upper right hand corner of the graph box, if BOX = 1. %YUAXIS is
a percentage of the height of the window, that is, YUAXIS = %YUAXIS× (YUWIND− YLWIND)÷ 100

YAXISA

Default: YAXISA = 90

YAXISA is the angle, in degrees, measured counterclockwise, between a horizontal line and
the y-axis. See Figure A.39 on page 367.

BOTNUM

Default: BOTNUM = 0

379

GPLOT Keywords

BOTNUM controls the height of the numbers on the bottom edge of the box. |BOTNUM| is the
ratio of the height of the numbers on the bottom edge of the box to XNUMSZ, the height of the
numbers on the x-axis. The height of these numbers will be |BOTNUM|×XNUMSZ.

BOTNUM is ignored if BOX = 0 or if the bottom edge of the axis box overlaps the x-axis.

0 no numbers on the bottom edge of the box
> 0 numbers on bottom edge of the box on same side as x-axis numbers
< 0 numbers on bottom edge of the box on opposite side as x-axis numbers

BOTTIC

Default: BOTTIC = 1

BOTTIC controls the lengths of the large and short tic marks on the bottom edge of the box.
|BOTTIC| is the ratio of the lengths of the tic marks on the bottom edge of the box to the
lengths of the tic marks on the x-axis, where XTICL is the length of the large x-axis tic
marks and XTICS is the length of the short x-axis tic marks. The large tic marks on the
bottom of the box will have a length of |BOTTIC|×XTICL and the short tic mark length will be
|BOTTIC|×XTICS.

BOTTIC is ignored if BOX = 0 or if the bottom edge of the axis box overlaps the x-axis.

0 no tic marks on the bottom edge of the box
> 0 tic marks on bottom edge of the box on the same side as the x-axis tic

marks
< 0 tic marks on bottom edge of the box on the opposite side as the x-axis

tic marks

RITNUM

Default: RITNUM = 0

RITNUM controls the height of the numbers on the right edge of the box. |RITNUM| is the ratio of
the height of the numbers on the right edge of the box to YNUMSZ, the height of the numbers
on the y-axis. This number height will be |RITNUM|×YNUMSZ.

RITNUM is ignored if BOX = 0 or if the right edge of the axis box overlaps the y-axis.

380

GPLOT Keywords

0 no numbers on the right edge of the box
> 0 numbers on right edge of the box on the same side as y-axis numbers
< 0 numbers on right edge of the box on the opposite side as y-axis num-

bers

RITTIC

Default: RITTIC = −1

RITTIC controls the lengths of the large and short tic marks on the right edge of the box.
|RITTIC| is the ratio of the lengths of the tic marks on the right edge of the box to the lengths
of the tic marks on the y-axis. YTICL is the length of the large y-axis tic marks and YTICS is
the length of the short y-axis tic marks. The large tic marks on the right edge of the box will
have a length of |RITTIC|×YTICL and the short tic mark length will be |RITTIC|×YTICS.

RITTIC is ignored if BOX = 0 or if the right edge of the axis box overlaps the y-axis.

0 no tic marks on the right edge of the box
> 0 tic marks on right edge of the box on the same side as y-axis tic marks
< 0 tic marks on right edge of the box on the opposite side as y-axis large

tic marks

TOPNUM

Default: TOPNUM = 0

TOPNUM controls the height of the numbers on the top edge of the box. |TOPNUM| is the ratio of
the height of the numbers on the top edge of the box to XNUMSZ, the height of the numbers
on the x-axis. The height of these numbers will be |TOPNUM|×XNUMSZ.

TOPNUM is ignored if BOX = 0 or if the top edge of the axis box overlaps the x-axis.

0 no numbers on the top edge of the box
> 0 numbers on top edge of the box on the same side as x-axis numbers
< 0 numbers on top edge of the box on the opposite side as x-axis numbers

TOPTIC

Default: TOPTIC = −1

381

GPLOT Keywords

TOPTIC controls the lengths of the large and short tic marks on the top edge of the box.
|TOPTIC| is the ratio of the lengths of the tic marks on the top edge of the box to the lengths
of the tic marks on the x-axis, where XTICL is the length of the large x-axis tic marks and
XTICS is the length of the short x-axis tic marks. The large tic marks on the top edge of the
box will have a length of |TOPTIC|×XTICL and the short tic mark length will be |TOPTIC|×XTICS.

TOPTIC is ignored if BOX = 0 or if the top edge of the axis box overlaps the x-axis.

0 no tic marks on the top edge of the box
> 0 tic marks on top edge of the box on the same side as x-axis large tic

marks
< 0 tic marks on top edge of the box on the opposite side as x-axis large tic

marks

LEFNUM

Default: LEFNUM = 0

LEFNUM controls the height of the numbers on the left edge of the box. |LEFNUM| is the ratio of
the height of the numbers on the left edge of the box to YNUMSZ, the height of the numbers
on the y-axis. The height of these numbers will be |LEFNUM|×YNUMSZ.

LEFNUM is ignored if BOX = 0 or if the left edge of the axis box overlaps the y-axis.

0 no numbers on the left edge of the box
> 0 numbers on left edge of the box on the same side as y-axis numbers
< 0 numbers on left edge of the box on the opposite side as y-axis numbers

LEFTIC

Default: LEFTIC = 1

LEFTIC controls the lengths of the large and short tic marks on the bottom edge of the box.
|LEFTIC| is the ratio of the lengths of the tic marks on the left edge of the box to the lengths
of the tic marks on the y-axis, where YTICL is the length of the large y-axis tic marks and
YTICS is the length of the short y-axis tic marks. The large tic marks on the left edge of the
box will have a length of |LEFTIC|×YTICL and the short tic mark length will be |LEFTIC|×YTICS.

LEFTIC is ignored if BOX = 0 or if the left edge of the axis box overlaps the y-axis.

382

GPLOT Keywords

0 no tic marks on the left edge of the box
> 0 tic marks on left edge of the box on the same side as y-axis tic marks
< 0 tic marks on left edge of the box on the opposite side as y-axis tic marks

383

VAX/VMS Shareable Image Command Procedure

VAX/VMS COMMAND PROCEDURE
This command procedure must be executed before you invoke PHYSICA. This command
procedure can be found in:

PHYSICA$DIR:PHYSICA USER FUNCTIONS.COM

If the define command:

$ define PHYSICA_USER_FUNCTIONS your_source_file

is placed in your LOGIN.COM file, this command procedure need not be executed more than
once. The shareable image created with this procedure will automatically be found when
you run PHYSICA.

$SET VERIFY

$! This command procedure creates a shareable image for the 8 PHYSICA

$! user functions AND subroutines. Normally you need not do this again

$! since the shareable image should still be around from the last use.

$!

$! The FORTRAN sources should be installed in your own directory in a file,

$! named, for example: disk:[directory]TEST.FOR

$! If this is not present then the defaults installed in

$! PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.FOR will be used.

$!

$! The following DEFINE command should have been set by your system manager

$! define PHYSICA_USER_FUNCTIONS PHYSICA$DIR:PHYSICA_USER_FUNCTIONS

$!

$! If PHYSICA_USER_FUNCTIONS is not defined, the image activator cannot find

$! the shareable image. To activate your own set of functions and subroutines,

$! the following DEFINE command should be in effect. If this is not defined

$! the image activator will then find the default shareable image.

$!

$ define PHYSICA_USER_FUNCTIONS disk:[directory]TEST

$!

$ fortran PHYSICA_USER_FUNCTIONS

$!

$! The following scripts are needed since transfer vectors may only be

$! created in VAX MACRO.

$!

$macro/object=xfruser1 sys$input

.title xfruser1 - Transfer vector for USER1

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

384

VAX/VMS Shareable Image Command Procedure

.transfer user1

.mask user1

jmp l^user1+2

.end

$eod

$macro/object=xfruser2 sys$input

.title xfruser2 - Transfer vector for USER2

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer user2

.mask user2

jmp l^user2+2

.end

$eod

$macro/object=xfruser3 sys$input

.title xfruser3 - Transfer vector for USER3

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer user3

.mask user3

jmp l^user3+2

.end

$eod

$macro/object=xfruser4 sys$input

.title xfruser4 - Transfer vector for USER4

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer user4

.mask user4

jmp l^user4+2

.end

$eod

$macro/object=xfruser5 sys$input

.title xfruser5 - Transfer vector for USER5

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer user5

.mask user5

jmp l^user5+2

.end

$eod

$macro/object=xfruser6 sys$input

.title xfruser6 - Transfer vector for USER6

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer user6

385

VAX/VMS Shareable Image Command Procedure

.mask user6

jmp l^user6+2

.end

$eod

$macro/object=xfruser7 sys$input

.title xfruser7 - Transfer vector for USER7

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer user7

.mask user7

jmp l^user7+2

.end

$eod

$macro/object=xfruser8 sys$input

.title xfruser8 - Transfer vector for USER8

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer user8

.mask user8

jmp l^user8+2

.end

$eod

$macro/object=xfrsub1 sys$input

.title xfrsub1 - Transfer vector for SUB1

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub1

.mask sub1

jmp l^sub1+2

.end

$eod

$macro/object=xfrsub2 sys$input

.title xfrsub2 - Transfer vector for SUB2

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub2

.mask sub2

jmp l^sub2+2

.end

$eod

$macro/object=xfrsub3 sys$input

.title xfrsub3 - Transfer vector for SUB3

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub3

.mask sub3

386

VAX/VMS Shareable Image Command Procedure

jmp l^sub3+2

.end

$eod

$macro/object=xfrsub4 sys$input

.title xfrsub4 - Transfer vector for SUB4

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub4

.mask sub4

jmp l^sub4+2

.end

$eod

$macro/object=xfrsub5 sys$input

.title xfrsub5 - Transfer vector for SUB5

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub5

.mask sub5

jmp l^sub5+2

.end

$eod

$macro/object=xfrsub6 sys$input

.title xfrsub6 - Transfer vector for SUB6

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub6

.mask sub6

jmp l^sub6+2

.end

$eod

$macro/object=xfrsub7 sys$input

.title xfrsub7 - Transfer vector for SUB7

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub7

.mask sub7

jmp l^sub7+2

.end

$eod

$macro/object=xfrsub8 sys$input

.title xfrsub8 - Transfer vector for SUB8

.ident /v01-001/

.psect $$xfrvectors,exe,nowrt

.transfer sub8

.mask sub8

jmp l^sub8+2

387

VAX/VMS Shareable Image Command Procedure

.end

$eod

$!

$! Link these 8 user functions and 8 subroutines as a shareable image,

$! disk:[directory]test.exe

$! The names usern_vector and subn_vector are dummy but must be unique.

$!

$link/share PHYSICA_USER_FUNCTIONS,sys$input/opt

gsmatch=lequal,1,0

cluster=user1_vector,,,xfruser1

cluster=user2_vector,,,xfruser2

cluster=user3_vector,,,xfruser3

cluster=user4_vector,,,xfruser4

cluster=user5_vector,,,xfruser5

cluster=user6_vector,,,xfruser6

cluster=user7_vector,,,xfruser7

cluster=user8_vector,,,xfruser8

cluster=sub1_vector,,,xfrsub1

cluster=sub2_vector,,,xfrsub2

cluster=sub3_vector,,,xfrsub3

cluster=sub4_vector,,,xfrsub4

cluster=sub5_vector,,,xfrsub5

cluster=sub6_vector,,,xfrsub6

cluster=sub7_vector,,,xfrsub7

cluster=sub8_vector,,,xfrsub8

$eod

$delete/NOconfirm xfruser*.obj;*,xfrsub*.obj;*

$set noverify

388

AlphaVMS Shareable Image Command Procedure

AlphaVMS COMMAND PROCEDURE
This command procedure must be executed before you invoke PHYSICA. This command
procedure can be found in:

PHYSICA$DIR:PHYSICA USER FUNCTIONS.COM

If the define command:

$ define PHYSICA_USER_FUNCTIONS your_source_file

is placed in your LOGIN.COM file, this command procedure need not be executed more than
once. The shareable image created with this procedure will automatically be found when
you run PHYSICA.

$SET VERIFY

$! This command procedure creates a shareable image for the 8 user functions

$! and 8 subroutines. The FORTRAN sources should be installed in your own

$! directory in a file, named, for example: disk:[directory]TEST.FOR

$! If this is not present then the defaults installed in

$! PHYSICA$DIR:PHYSICA_USER_FUNCTIONS.FOR will be used.

$!

$! Your system manager should have created the default logical name:

$! DEFINE PHYSICA_USER_FUNCTIONS PHYSICA$DIR:PHYSICA_USER_FUNCTIONS

$! If PHYSICA_USER_FUNCTIONS is not defined, the image activator cannot find

$! the shareable image. To activate your own set of functions and subroutines,

$! the following DEFINE command should be in effect. If this is not defined

$! the image activator will find the default shareable image.

$!

$! define PHYSICA_USER_FUNCTIONS disk:[directory]test

$!

$! The logical name PHYSICA_USER_FUNCTIONS will need to be re-defined in each

$! new process where you want to make use of your own routines.

$!

$ fortran PHYSICA_USER_FUNCTIONS.for

$!

$! Link these 8 user functions and 8 subroutines as a sharerable image,

$! disk:[directory]test.exe

$! The names usern_vector and subn_vector are dummy but must be unique.

$!

$link/shareable PHYSICA_USER_FUNCTIONS.obj, sys$input/opt

GSMATCH=lequal,1,1000

SYMBOL_VECTOR=(user1=PROCEDURE,-

user2=PROCEDURE,-

389

AlphaVMS Shareable Image Command Procedure

user3=PROCEDURE,-

user4=PROCEDURE,-

user5=PROCEDURE,-

user6=PROCEDURE,-

user7=PROCEDURE,-

user8=PROCEDURE,-

sub1=PROCEDURE,-

sub2=PROCEDURE,-

sub3=PROCEDURE,-

sub4=PROCEDURE,-

sub5=PROCEDURE,-

sub6=PROCEDURE,-

sub7=PROCEDURE,-

sub8=PROCEDURE)

$EOD

$set noverify

390

User Routine Source Code

USER ROUTINE SOURCE CODE
VMS: Following is the default source code for the eight functions and the eight

subroutines that are linked to PHYSICA via the shareable image. This
source code can be found in:

PHYSICA$DIR:PHYSICA USER FUNCTIONS.FOR

UNIX: Following is the source code for the eight user defined functions and the
eight user defined subroutines that are linked into PHYSICA by default.
This source code can be found in:

phys user.f

The process to change the user defined routines in physica follows:

1) edit the file phys user.f to put in your versions of user1, . . . , user8,
sub1, . . . , sub8
2) compile it, e.g., f77 -c phys user.f

3) archive it with ar -rsv physica.a phys user.o

4) link the program with physica.link

For off-site users: phys user.f can be found in the physica-link tar file,
along with the necessary archives.

REAL*8 FUNCTION USER1(A)

IMPLICIT REAL*8 (A-H,O-Z)

USER1=A

RETURN

END

REAL*8 FUNCTION USER2(A,B)

IMPLICIT REAL*8 (A-H,O-Z)

USER2=A+B

RETURN

END

REAL*8 FUNCTION USER3(A,B,C)

IMPLICIT REAL*8 (A-H,O-Z)

USER3=A+B+C

RETURN

END

391

User Routine Source Code

REAL*8 FUNCTION USER4(A,B,C,D)

IMPLICIT REAL*8 (A-H,O-Z)

USER4=A+B+C+D

RETURN

END

REAL*8 FUNCTION USER5(A)

IMPLICIT REAL*8 (A-H,O-Z)

USER5=5.0

RETURN

END

REAL*8 FUNCTION USER6(A)

IMPLICIT REAL*8 (A-H,O-Z)

USER6=6.0

RETURN

END

REAL*8 FUNCTION USER7(A,B)

IMPLICIT REAL*8 (A-H,O-Z)

SUM = 0.0

DO I = 1, INT(A)

SUM = SUM+B

END DO

USER7 = SUM

RETURN

END

REAL*8 FUNCTION USER8(A)

IMPLICIT REAL*8 (A-H,O-Z)

USER8=8.0

RETURN

END

SUBROUTINE SUB1(IATYPE,ICODE,IUPDATE,IER,X1,X2,ADIFF)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 ADIFF, X1(1), X2(1)

C Determine if vector X1 is different than vector X2

C If there is a difference set ADIFF = 1, otherwise set ADIFF = 0

CCC

IF(IATYPE(1) .NE. 1)GO TO 991

IF(IATYPE(2) .NE. 1)GO TO 992

IF(IATYPE(3) .NE. 0)GO TO 993

IF(ICODE(1,1) .NE. ICODE(1,2))GO TO 994

392

User Routine Source Code

IUPDATE(3) = 1 ! third argument to be updated

ADIFF = 0.0D0

DO I = 1, ICODE(1,1)

IF(X1(I) .NE. X2(I))THEN

ADIFF = 1.0D0

RETURN

END IF

END DO

RETURN

991 WRITE(*,*)’ error in SUB1: first argument is not a vector’

IER = -1

RETURN

992 WRITE(*,*)’ error in SUB1: second argument is not a vector’

IER = -1

RETURN

993 WRITE(*,*)’ error in SUB1: third argument is not a scalar’

IER = -1

RETURN

994 WRITE(*,*)’ error in SUB1: input vectors not the same length’

IER = -1

RETURN

C Setting IER to -1 indicates to PHYSICA that an error has occured in

C the subroutine. This is like an alternate RETURN. If you call this

C subroutine in a script command file, and the error occurs, the script

C will stop execution

END

SUBROUTINE SUB2(IATYPE,ICODE,IUPDATE,IER,XIN,XOUT,A)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 A, XIN(1), XOUT(1)

C Divide a vector by a scalar and put the output in another vector

C e.g., CALL SUB2 XIN XOUT A and XOUT will be XIN/A

CCC

IF(IATYPE(1) .NE. 1)GO TO 991

IF(IATYPE(2) .NE. 1)GO TO 992

IF(IATYPE(3) .NE. 0)GO TO 993

IUPDATE(2) = 1 ! second argument to be updated

NPTS = MIN(ICODE(1,1),ICODE(1,2)) ! use minimum length

DO I = 1, NPTS

IF(XIN(I) .GT. 100.0D0)GO TO 994

XOUT(I) = XIN(I)/A

END DO

RETURN

393

User Routine Source Code

991 WRITE(*,*)’ error in SUB2: first argument is not a vector’

IER = -1

RETURN

992 WRITE(*,*)’ error in SUB2: second argument is not a vector’

IER = -1

RETURN

993 WRITE(*,*)’ error in SUB2: third argument is not a scalar’

IER = -1

RETURN

994 WRITE(*,*)’ error in SUB2: XIN(I) > 100’

IER = -1

RETURN

END

SUBROUTINE SUB3(IATYPE,ICODE,IUPDATE,IER,MATRIX,DIAGONAL)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 MATRIX(1), DIAGONAL(1)

C Extract the diagonal from a square matrix and put it into a vector

C e.g., CALL SUB3 MATRIX DIAGONAL

C and DIAGONAL will be MATRIX[J,J] for J = 1, #

CCC

IF(IATYPE(1) .NE. 2)GO TO 991

IF(IATYPE(2) .NE. 1)GO TO 992

IUPDATE(2) = 1 ! second argument to be updated

NROWS = ICODE(1,1)

NCOLS = ICODE(2,1)

IF(NCOLS .NE. NROWS)GO TO 993

DO J = 1, NCOLS

DIAGONAL(J) = MATRIX(J+(J-1)*NCOLS)

END DO

RETURN

991 WRITE(*,*)’ error in SUB3: first argument is not a matrix’

IER = -1

RETURN

992 WRITE(*,*)’ error in SUB3: second argument is not a vector’

IER = -1

RETURN

993 WRITE(*,*)’ Use a square matrix for SUB3’

IER = -1

RETURN

END

SUBROUTINE SUB4(IATYPE,ICODE,IUPDATE,IER,X,M,XOUT)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 M(1), X(1), XOUT(1)

394

User Routine Source Code

C Calculate XOUT = X<>M (inner product)

C where X is a vector, M is a matrix, XOUT is the output vector

CCC

IF(IATYPE(1) .NE. 1)GO TO 991

IF(IATYPE(2) .NE. 2)GO TO 992

IF(IATYPE(3) .NE. 1)GO TO 993

IUPDATE(3) = 1 ! third argument to be updated

NROWS = ICODE(1,2)

NCOLS = ICODE(2,2)

NUMX = ICODE(1,1)

NUMXO = ICODE(1,3)

IF(NUMX .NE. NROWS)GO TO 994

IF(NUMXO .NE. NCOLS)GO TO 995

DO I = 1, NCOLS

XOUT(I) = 0.0D0

DO J = 1, NROWS

XOUT(I) = XOUT(I) + X(J)*M(I+(J-1)*NCOLS)

END DO

END DO

RETURN

991 WRITE(*,*)’ *** error in SUB4’

WRITE(*,*)’ first argument is not a vector’

IER = -1

RETURN

992 WRITE(*,*)’ *** error in SUB4’

WRITE(*,*)’ second argument is not a matrix’

IER = -1

RETURN

993 WRITE(*,*)’ *** error in SUB4’

WRITE(*,*)’ third argument is not a vector’

IER = -1

RETURN

994 WRITE(*,*)’ *** error in SUB4’

WRITE(*,*)’ vector length not equal to row dimension of matrix’

IER = -1

RETURN

995 WRITE(*,*)’ *** error in SUB4’

WRITE(*,*)

’ output vector length not equal to column dimension of matrix’

IER = -1

RETURN

END

SUBROUTINE SUB5(IATYPE,ICODE,IUPDATE,IER,LFILE,X,Y)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

395

User Routine Source Code

INTEGER*4 LENF, IUNIT, I, NPTS

REAL*8 X(1), Y(1), XDUM

LOGICAL*4 LUOPEN

LOGICAL*1 LFILE(1)

CHARACTER*80 AFILE

C Read a vector X from a file, multiply it by 5 and add it to vector Y

C with the result put into X

C e.g., CALL SUB5 ‘FILE.DAT’ X Y

C and X will be X*5+Y

CCC

IF(IATYPE(1) .NE.-1)GO TO 991

IF(IATYPE(2) .NE. 1)GO TO 992

IF(IATYPE(3) .NE. 1)GO TO 993

IF(ICODE(1,1) .GT. 80)GO TO 994

IUPDATE(2) = 1 ! second argument to be updated

LENF = ICODE(1,1)

DO I = 1, LENF

AFILE(I:I) = CHAR(LFILE(I))

END DO

DO 2 I = 30, 99

INQUIRE(UNIT=I,OPENED=LUOPEN,ERR=2)

IF(.NOT.LUOPEN)THEN

IUNIT = I

GO TO 4

END IF

2 CONTINUE

4 OPEN(FILE=AFILE(1:LENF),UNIT=IUNIT,STATUS=’OLD’,READONLY,SHARED,ERR=995)

I = 1

10 READ(33,*,ERR=996,END=20)XDUM

IF(I .GT. ICODE(1,2))THEN

WRITE(*,*)’ message from SUB5’

WRITE(*,*)’ max. number of elements from the file has been read’

WRITE(*,*)’ but there is more that could be read’

GO TO 20

END IF

X(I) = XDUM

I = I+1

GO TO 10

20 NPTS = MIN(ICODE(1,2),ICODE(1,3))

DO I = 1, NPTS

X(I) = X(I)*5.0D0+Y(I)

END DO

ICODE(1,2) = NPTS ! update the length of X

RETURN

991 WRITE(*,*)’ *** error in SUB5’

396

User Routine Source Code

WRITE(*,*)’ first argument is not a string’

IER = -1

RETURN

992 WRITE(*,*)’ *** error in SUB5’

WRITE(*,*)’ second argument is not a vector’

IER = -1

RETURN

993 WRITE(*,*)’ *** error in SUB5’

WRITE(*,*)’ third argument is not a vector’

IER = -1

RETURN

994 WRITE(*,*)’ *** error in SUB5’

WRITE(*,*)’ string is longer than 80 characters’

IER = -1

RETURN

995 WRITE(*,*)’ *** error in SUB5’

WRITE(*,*)’ unable to open file: ’//AFILE(1:LENF)

IER = -1

RETURN

996 WRITE(*,*)’ *** error in SUB5’

WRITE(*,9961)I,AFILE(1:LENF)

9961 FORMAT(’ reading line#’,I3,’ from file: ’,A)

IER = -1

RETURN

END

SUBROUTINE SUB6(IATYPE,ICODE,IUPDATE,IER,X,Y)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 X(1), Y(1)

C Multiply a vector by 6 and add it to another vector

C e.g., CALL SUB6 X Y

C and X will be X+6*Y

CCC

IF(IATYPE(1) .NE. 1)GO TO 991

IF(IATYPE(2) .NE. 1)GO TO 992

IUPDATE(2) = 1 ! second argument to be updated

NPTS = MIN(ICODE(1,1),ICODE(1,2))

DO I = 1, NPTS

X(I) = X(I)+Y(I)*6.0D0

END DO

RETURN

991 WRITE(*,*)’ *** error in SUB6’

WRITE(*,*)’ first argument is not a vector’

IER = -1

RETURN

397

User Routine Source Code

992 WRITE(*,*)’ *** error in SUB6’

WRITE(*,*)’ second argument is not a vector’

IER = -1

RETURN

END

SUBROUTINE SUB7(IATYPE,ICODE,IUPDATE,IER,X,Y)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 X(1), Y(1)

C Multiply a vector by 7 and add it to another vector

C e.g., CALL SUB7 X Y

C and X will be X+7*Y

CCC

IF(IATYPE(1) .NE. 1)GO TO 991

IF(IATYPE(2) .NE. 1)GO TO 992

IUPDATE(2) = 1 ! second argument to be updated

NPTS = MIN(ICODE(1,1),ICODE(1,2))

DO I = 1, NPTS

X(I) = X(I)+Y(I)*7.0D0

END DO

RETURN

991 WRITE(*,*)’ *** error in SUB7’

WRITE(*,*)’ first argument is not a vector’

IER = -1

RETURN

992 WRITE(*,*)’ *** error in SUB7’

WRITE(*,*)’ second argument is not a vector’

IER = -1

RETURN

END

SUBROUTINE SUB8(IATYPE,ICODE,IUPDATE,IER,X,Y)

INTEGER*4 IATYPE(15),ICODE(3,15),IUPDATE(15),IER

REAL*8 X(1), Y(1)

C Multiply a vector by 8 and add it to another vector

C e.g., CALL SUB8 X Y

C and X will be X+8*Y

CCC

IF(IATYPE(1) .NE. 1)GO TO 991

IF(IATYPE(2) .NE. 1)GO TO 992

IUPDATE(2) = 1 ! second argument to be updated

NPTS = MIN(ICODE(1,1),ICODE(1,2))

DO I = 1, NPTS

X(I) = X(I)+Y(I)*8.0D0

398

User Routine Source Code

END DO

RETURN

991 WRITE(*,*)’ *** error in SUB8’

WRITE(*,*)’ first argument is not a vector’

IER = -1

RETURN

992 WRITE(*,*)’ *** error in SUB8’

WRITE(*,*)’ second argument is not a vector’

IER = -1

RETURN

END

399

User Routine Source Code

400

Index

! character, 78, 187
Γ function, 301

incomplete, 302
natural logarithm, 301

∗M keyword, 45
∗S keyword, 45
∗T keyword, 45
∗V keyword, 45
β functions, 294

complete, 301, 305
β functions complete, 294
β functions incomplete, 295
χ2 minimization, 97
χ2 of fit, 97, 99
χ2 probability function, 297
µSR MUD data sets, 221
µSR data sets, 223
ψ function, 295, 296, 298
x-axis, 357, 370

angle, 379
digits, 365
digits in fraction, 365
menu, 64
numbers, 357, 359, 361–364, 366

angle, 366
drop first/last, 360
size, 365

plot characteristics, 355
position, 378, 379
scale factor, 364, 365
small tics, 357, 361
text label, 357, 364, 365
tic marks, 359–361, 366
virtual maximum, 361

virtual minimum, 362
y-axis, 359, 366

angle, 379
digits, 375
digits in fraction, 375
menu, 64
numbers, 368, 370, 372–377

angle, 376
drop first/last, 371
size, 376

plot characteristics, 366
position, 379
scale factor, 374, 375
small tics, 368, 372
text label, 368, 375
tic marks, 368, 370–372, 376
virtual maximum, 372
virtual minimum, 373

.physicarc file, 29
// operator, 284, 314
? for script parameters, 78
@ for EXECUTE, 76
$HOME/.physicarc file, 29
\ NORMAL qualifier, 94
\ALLWINDOWS qualifier, 209, 210, 212
\ALPHANUMERIC qualifier, 19
\APPEND qualifier, 28, 135, 187, 190, 248,

276
\AREAS qualifier, 23, 25, 40
\ASCII qualifier, 186, 194, 196, 204
\AVERAGE qualifier, 9
\AXES qualifier, 23, 24, 31, 116, 208
\AXESONLY qualifier, 116, 118
\BORDER qualifier, 27, 32

401

INDEX

\BOUNDS qualifier, 125
\BOXES qualifier, 40, 110, 233
\CHAOS qualifier, 224
\CHECKDUP qualifier, 124
\CHISQ qualifier, 97, 99
\CIT467 qualifier, 19
\CL qualifier, 100
\CLEAR qualifier, 183
\CLOSE qualifier, 185
\COLOUR qualifier, 34, 35, 50, 255
\COLOURS qualifier, 22
\COMMENSURATE qualifier, 226
\CONFIRM qualifier, 56, 74, 84, 257, 262
\CONTINUE qualifier, 23, 185
\CONTOURS qualifier, 39
\COORDINATES qualifier, 23
\CORRMAT qualifier, 99
\COUNTER qualifier, 146
\COUNTS qualifier, 162
\COVMAT qualifier, 99
\CYCLES qualifier, 7
\DERIV qualifier, 32
\DIFFUSION qualifier, 36, 214
\DIR qualifier, 215
\DISCARD qualifier, 7, 10
\DISPLAY qualifier, 159
\DITHER qualifier, 38
\DOTPLOT qualifier, 219
\DOWN qualifier, 244, 245, 283, 284
\DUMMY qualifier, 218, 225, 244, 342–

345
\E1 qualifier, 99
\E2 qualifier, 99
\EDGES qualifier, 9
\EMPTY qualifier, 9, 10
\EQUALLY SPACED qualifier, 40
\ERASE qualifier, 262
\ERRFILL qualifier, 110, 187, 194, 233
\ERRSKIP qualifier, 187
\ERRSTOP qualifier, 187
\EXECUTE qualifier, 248

\EXPAND qualifier, 45
\EXTEND qualifier, 187, 190
\FIOWA qualifier, 115, 154, 212
\FIOWABIG qualifier, 115, 154
\FIXED qualifier, 244
\FLIP qualifier, 50
\FLIPPED qualifier, 196
\FORMAT qualifier, 146, 186, 194, 196,

276
\FRACTION qualifier, 71, 72
\FREE qualifier, 98
\GRAPH qualifier, 83, 139, 143, 163, 209,

261
\GREY qualifier, 50
\HBOOK qualifier, 153, 214
\HIST qualifier, 218
\HISTOGRAM qualifier, 34, 117, 240
\HORIZONTAL qualifier, 279
\IMSR qualifier, 223
\INDEX qualifier, 28
\INDICES qualifier, 126, 268
\INITIALIZE qualifier, 29
\INSIDE qualifier, 182
\INTERPOLATE qualifier, 124
\INTERPSIZE qualifier, 26
\ITMAX qualifier, 100
\KEYPAD qualifier, 12
\LAGRANGE qualifier, 8
\LEGEND qualifier, 22, 23, 34, 39
\LEVELS qualifier, 39
\LIBRARY qualifier, 130
\LINES qualifier, 39
\LIST qualifier, 215
\LOG qualifier, 31
\MACRO qualifier, 57, 75, 135
\MATRICES qualifier, 243
\MATRIX qualifier, 11, 146, 161, 162, 195,

216, 271, 278
\MAX qualifier, 161
\MEAN qualifier, 87
\MEDIAN qualifier, 87

402

INDEX

\MESSAGES qualifier, 71, 72, 101, 104,
185, 248, 268, 272

\MIN qualifier, 161
\MOMENT qualifier, 251
\MSR qualifier, 223
\MUD qualifier, 221
\NBINS qualifier, 8
\NONRECURSIVE qualifier, 88
\NOREPLOT qualifier, 19
\NPTS qualifier, 71, 159
\OVERLAY qualifier, 187, 190
\PAGE qualifier, 130, 146
\PARAMETERS qualifier, 71, 73
\PARTIAL qualifier, 22, 32
\PEARSON qualifier, 252
\PERCENT qualifier, 83, 139, 143, 163
\PHYSICA qualifier, 11, 211
\PNUM qualifier, 157
\POINTS qualifier, 37
\POLAR qualifier, 24, 33, 119, 124, 271
\POLYGON qualifier, 161, 183
\PROFILE qualifier, 32, 34, 39, 214
\RANDOM qualifier, 34, 106, 112, 237, 291
\READ qualifier, 12
\RECURSIVE qualifier, 90
\REPLOT qualifier, 57, 70, 71, 75, 117,

209
\REPLOTONLY qualifier, 19, 210
\RESET qualifier, 23, 24, 32, 34, 39, 94
\RWN qualifier, 215
\SCALAR qualifier, 20, 193, 243, 277
\SIZE qualifier, 125
\SPECIFIC qualifier, 21
\STATIC qualifier, 12
\TEXT qualifier, 203, 209, 243, 278
\TILE qualifier, 274
\TOLERANCE qualifier, 96
\TTBUFFERS qualifier, 11, 212
\UNFORMATTED qualifier, 189, 195, 201,

204
\UP qualifier, 245, 283, 284

\UPDATE qualifier, 101
\VARNAMES qualifier, 94
\VARY qualifier, 94, 225, 244
\VECTORS qualifier, 186, 243
\VERTICAL qualifier, 279
\VIRTUAL qualifier, 109, 232
\VOLUMES qualifier, 25, 40
\WEIGHTS qualifier, 6, 7, 10, 97, 250
\WORLD qualifier, 83, 139, 143, 163
\WRITE qualifier, 12
\XAXIS qualifier, 136, 357
\XDISCARD qualifier, 10
\XFIOWA qualifier, 214
\XPROFILE qualifier, 32
\XYOUT qualifier, 70, 71, 125–127
\YAXIS qualifier, 136, 368
\YBOS qualifier, 154, 218
\YDISCARD qualifier, 10
\YPROFILE qualifier, 32, 34, 39
\ZEROS qualifier, 98
3-d figures, 254
3DPLOT command, 4

hardcopy, 5

acute, 181
adjacent duplicate points, 268
AERF function, 300
AERFC function, 300
AIRY function, 294
AIX, 211
ALIAS command, 5 , 29, 225
ALL keyword, 29
Alpha, 3
alphanumeric clear, 19
alphanumeric monitor width, 112, 238
alphanumeric terminal window, 5
alphanumeric window, 4
AlphaVMS, 14
altering vector content, 44
AMP&PHASE keyword, 324
angular momentum, 306

403

INDEX

append operator, 284 , 314
example, 284

append scalar, 314
append string, 284
append to string variable, 314
append vectors, 284
arc drawing, 83, 84
ARC keyword, 84
arc length, 332, 334
arc tangent, 290
area calculation, 316
area fill, 111, 234
AREA function, 316
area inside polygon, 316
arithmetic mean, 249
array function

LOOP, 345
PROD, 343
RPROD, 345
RSUM, 344
SUM, 342

array string variable, 108, 204
length, 266

ARROLEN keyword, 86, 108, 230
ARROTYP keyword, 86, 108, 231
arrow drawing, 83, 85, 230
arrow head length, 86, 108
arrow head width, 86, 108
ARROW keyword, 85, 110, 233
arrow styles, 86
arrow type, 108
ARROWID keyword, 86, 108, 231
ASCII code, 239
ASCII decimal representation, 311, 315
ASSIGN command, 5
associated Legendre functions, 304
asymmetric error bars, 119
asynchronous trapping, 16, 78, 149
ATAN2 function, 290
ATAN2D function, 290
attaching to a subprocess, 28

AUTOHEIGHT keyword, 138
automatic plotting, 208
AUTOSCALE keyword, 109, 231
autoscaling, 225
autoscaling axes, 29, 116, 231
average deviation, 249, 251
average filter, 87
axis autoscaling, 231
axis box, 357, 368
axis box characteristics, 377
axis commensurate, 226
axis corner locations, 377
axis drawing, 116
axis length, 109, 232
axis scales, 115, 226
axis text labels, 136
AXP OSF/1, 153

bar graphs, 263
BEI function, 303
BELL command, 271
BER function, 303
BESI0 function, 296
BESI1 function, 296
BESJ0 function, 295
BESJ1 function, 295
BESK0 function, 296
BESK1 function, 296
Bessel functions, 295, 303

first kind, 295
modified, 296, 303
second kind, 295

BESTFIT command, 6
cycles, 7
iterations, 7
weights, 6

BESY0 function, 295
BESY1 function, 295
BETA function, 294
beta functions, 294

complete, 294

404

INDEX

incomplete, 295
BETAIN function, 295
BIN command, 7

averages, 9
counts, 7
data, 7
discard extremes, 7
edge defined bins, 9
increment only if empty, 9
Lagrange type, 8
number of bins, 8
weight, 7

BIN2D command, 9 , 161
bins defined by box corners, 11
dimensions, 10
discard extremes, 10
extremes, 10
increment only if empty, 10
weights, 10

binary file read, 189
BINARY keyword, 276
binary ordered Walsh function, 308
BINOM function, 296
binomial coefficient, 296
BIRY function, 294
bitmap

compressed format, 128
device, 6
erase, 262
hardcopy, 140, 352

bivariate normal probability function, 297
BIVARNOR function, 297
blurring vector, 328
bolding, 172
Boolean, 80
Boolean operator, 281
BORDER keyword, 55, 73
BOTNUM keyword, 379
BOTTIC keyword, 380
box drawing, 83, 85
BOX keyword, 85, 110, 233, 357, 368, 378

, 379–382
box number size, 380–382
breve, 181
BROADCAST keyword, 55, 73
BUFFER command, 11 , 58, 76

CALL command, 14 , 147, 152
CAREA vector, 25
causal recursive filter, 87
CCONT vector, 23
centimeters, 30, 83, 111, 112, 140, 163,

234, 236, 261
central measures, 248
CERN library, 153, 215
CHAOS data sets, 224
CHAR function, 311 , 315
CHARA keyword, 354
CHARSZ keyword, 4, 354
CHEBY function, 296
Chebyshev polynomials, 296, 303
chi-square minimization, 97
chi-square probability function, 297

inverse, 297
CHISQ function, 297
CHISQINV function, 297
CHLOGU function, 302
choose window, 56, 74
choosing data points, 159
circle drawing, 83, 84
CIRCLE keyword, 84, 110, 233
circumflex, 181
CIT467

toggle graphics, 19
CIT467 keyword, 155
clear alphanumerics, 19
CLEAR command, 19 , 113, 209, 210,

238, 274
clear graphics, 54, 155, 156, 183, 209
Clebsch-Gordan coefficients, 306
Clebsch-Gordan coefficients function, 307
CLEBSG function, 307

405

INDEX

CLEN function, 314
CLIP keyword, 353
clipping, 139
close drawing file, 69
close file, 185
CLOSE keyword, 69
closest value, 337
CNTSEP keyword, 109, 232
colour, 209, 225, 240
colour bitmap, 48
COLOUR command, 20 , 174, 261

using a scalar , 20
COLOUR keyword, 352
commensurate and windows, 272
commensurate axes, 109, 226, 232
commensurate graph and windows, 226
comment, 78

in formatted text, 166
comment line, 263
common scale, 117
complementary error function, 300

inverse, 300
complete β function, 294, 301, 305
compressed format, 128
conditional statements, 80
confidence level of fit, 100
CONFIRM keyword, 56, 74, 84
confirmation request, 56, 74
contour, 212
contour area, 23, 25

calculation, 25
interpolation size, 26

contour axes, 24
CONTOUR command, 21 , 110, 136, 231,

233
contour coordinates, 23, 25
contour label, 23

separation, 109, 232
size, 110, 232

contour legend, 23
axis relocation, 23

size, 23
contour level

colour, 22
exact, 21
label, 22

separation, 22
size, 22

saving, 23
selection, 21

zooming in, 22
specific, 21

contour matrix
boundary, 27

contour matrix data, 24
contour plot

legend entry size, 110, 232
legend format, 110, 233

contour polar coordinates, 24
contour scattered points, 24
contour volume, 23, 25

calculation, 25
control keys, 11
control-c trapping, 78, 94
control-I, 136
control-z, 28
conventions used in this manual, 3
CONVOL function, 328
convolution, 328

even number of points, 329
formula, 335
noise effects, 329
odd number of points, 328

convolution formula, 86
convolution integral, 309
coordinate conversion, 275
COPY command, 27

append, 28
conditional, 27
unconditional, 28

correlation matrix, 99
COS&SIN keyword, 325

406

INDEX

cosine integral, 298
COSINT function, 298
covariance matrix, 99
crosshair, 157, 354
cubic spline, 112, 237, 317, 331–334
CUNITS keyword, 83, 113, 143, 157, 159,

242
CURSOR keyword, 258, 354 , 355
CVOLM vector, 25
CXMAX vector, 25
CXMIN vector, 25
CYMAX vector, 25
CYMIN vector, 25

data ‘spikes’, 87
data interpolation, 330
DATE function, 262, 310

example, 310
DAWSON function, 298
Dawson’s integral, 298
DCL command, 28
DEALIAS command, 5, 28
deconvolution, 328

even number of points, 329
DEFAULTS command, 29

initialization file, 29
reset windows, 29

degrees of freedom, 98
DENS$AREA vector, 40
DENS$CONT vector, 39
DENS$VOLM vector, 40
DENSITY command, 30 , 50, 110, 112,

136, 214, 231, 233, 237
\DIFFUSION qualifier, 218
\PROFILES qualifier, 218

density plot, 31, 212
axes, 31
boxes, 40

accentuating values, 41
box size scale factor, 41
delimiting values, 41

filled boxes, 41
input variables, 40

diffusion, 36
grey scales, 36

dithering pattern, 37, 38
areas, 40
contours, 39
data range, 38
input variables, 38
legend, 39
user defined, 38
volumes, 40

grey scales, 37
legend, 32
legend entry size, 110, 232
legend format, 110, 233
log of data, 31
matrix data boundary, 32
of derivative, 32
polar coordinates, 33
profiles, 32
random points, 34

input variables, 35, 36
random points colour, 35
solid filled regions, 33

input variables, 33
legend, 34

types, 31
zooming in, 32

DERIV function, 112, 237, 317
example, 318
Fritsch and Carlson, 318
interpolating splines, 317
Lagrange polynomials, 317
smoothing splines, 317

DESTROY command, 44 , 183
all matrices, 45
all scalars, 45
all string variables, 45
all vectors, 45
conditional, 45

407

INDEX

examples, 46
expand names, 45
expression, 45
index ranges, 45
keywords, 45
unconditional, 44

DET function, 322
determinant of a matrix, 322
DEVICE command, 47 , 69, 84, 114, 128,

140, 157, 163, 212, 225
keywords, 47

DEVICE keyword, 114
dieresis, 181
differentiating nonrecursive filters, 88
diffraction theory, 301
DIGAMMA function, 295, 296, 298
Digi-Pad, 54
digital filter, 86
digital halftoning, 36
digital smoothing polynomial filter, 334
Digital Unix, 211
DIGITIZE command, 53

keyboard key codes, 55
mouse button codes, 55
optional output variables, 54
preparation, 54

digitizing crosshair, 54
digitizing data, 53
digitizing pad types, 54
digitizing points, 160
DILOG function, 299
Dilogarithm function, 299
DIM function, 292
DISABLE command, 55 , 73, 209

BORDER keyword, 55, 272
BROADCAST keyword, 55
CONFIRM keyword, 56, 84, 257
ECHO keyword, 56

local effect, 56
HISTORY keyword, 56
JOURNAL keyword, 57, 75, 135

PROMPTING keyword, 57, 79
REPLAY keyword, 57
REPLOT keyword, 57
SHELL keyword, 58
STACK keyword, 58, 247

discrete Fourier series, 325
dispersion, 248
DISPLAY command, 4, 30, 58 , 111, 112,

119, 166, 234, 236, 239, 241, 242,
261, 271

FILL keyword, 120, 164, 173, 264
FONT keyword, 59, 113, 180
HATCH keyword, 59, 110, 234
LINES keyword, 59, 82
MENU keyword, 62, 108
message, 58
PCHAR keyword, 62
SPECIAL keyword, 59

display file, 53
plotting units, 53

display variable, 243
dithering pattern, 41, 83, 110, 233
DO loop, 57, 74, 77, 80, 269

nested, 80
problems, 114, 237

dot fill pattern, 112, 120, 121, 164, 172,
173, 237, 264, 353

PostScript, 50
dot fill pattern definition, 164, 173
dotplot, 219
dots per inch, 33, 35, 36, 38, 48, 49, 121,

164, 173, 241, 264
draw arc, 84
draw arrow, 85, 108, 230
draw box, 85
draw circle, 84
draw circle sector, 84
draw ellipse, 85
draw figures, 56, 74, 82
draw polygon, 85
draw rectangle, 85

408

INDEX

draw string, 56, 74, 263
draw string characteristics, 257
draw wedge, 84
drawing file close, 69
drawing file edit, 69
drawing file frame, 70
drawing file open, 69
dummy variable, 225, 342
duplicate points eliminate, 268
dynamic buffer, 11, 12, 212

maximum size, 11
dynamic load, 14, 147

ECHO keyword, 56, 59, 74
EDGR, 47, 76, 84, 145, 155, 180, 182,

257, 262, 272
EDGR command, 69 , 156

CLOSE keyword, 69
EDIT keyword, 69
FRAME keyword, 70
OPEN keyword, 69

edit a drawing file, 69
EDIT keyword, 69
EI function, 300
EIGEN function, 323
eigenvalue, 323
eigenvector, 323
EINELLIC function, 299
elapsed time, 291
electrical engineering, 303
elements of array string variable, 266
eliminate

matrices, 44
scalars, 44
string variables, 44

eliminate vectors, 44
ELLICE function, 299
ELLICK function, 299
ellipse

drawing, 70
populate, 70

ELLIPSE command, 70 , 111, 208, 235
explicitly defined, 71
fit an ellipse, 71
fraction, 72
messages, 72
method, 72
number of points, 71
output variables, 70, 73
parameter order, 71, 72
replotting, 70

ellipse drawing, 83, 85
ELLIPSE keyword, 85, 110, 233
elliptic integrals, 299

first kind, 299
second kind, 299

ELTIME function, 291
ENABLE command, 55, 73 , 209, 257

BORDER keyword, 73
BROADCAST keyword, 73
CONFIRM keyword, 74
ECHO keyword, 74, 78

local effect, 74
HISTORY keyword, 74
JOURNAL keyword, 57, 74, 135
PROMPTING keyword, 75
REPLAY keyword, 75
REPLOT keyword, 75
SHELL keyword, 75
STACK keyword, 76, 247

ENDDO statement, 80
ENDIF statement, 80
environment variable, 156, 270

file name, 77, 135, 166, 185, 211, 247,
270, 276

environment variable translation, 314
environmnet variable, 77
EQS function, 315
equation solve, 320
erase, 140
erase alphanumeric, 13
erase dots, 120, 164, 173, 234, 241, 264

409

INDEX

erase fill, 233
erase graphics, 209, 352
erase legend background, 140
erase line segment, 145
erase text, 262
ERASEWINDOW command, 76 , 209, 262
ERF function, 299 , 306
ERFC function, 300
ERRBAR keyword, 63, 108, 230
ERRFILL keyword, 110, 188, 194, 233
error bars, 119, 209

asymmetric, 119
clipping, 120
shape, 119
symmetric, 119

error function, 299, 301
complementary, 300
inverse, 300

error trapping, 152
Euler’s constant, 295, 296, 298, 299
EVAL function, 316

example, 316
evaluation forced, 316
executable files, 225
EXECUTE command, 29, 76 , 81, 84,

247, 257, 271
abort, 78
comments, 78
conditional statements, 80
DO loops, 80
echoing, 78
filename extension, 77
generalized parameters, 78
parameter passing, 78
prompting, 79
returning from, 78
script library, 77
transferring control, 78

EXIST function, 336
example, 336

EXPAND function, 311

example, 311
expand variable name, 45
EXPINT function, 300
EXPN function, 300
exponential integrals, 300
exponential integrals of order n, 300
expression, 281

with DESTROY, 45
expression function, 14, 152
expression in fit, 94, 101
expression variable, 311, 316

expansion, 311
expression with COPY, 27
EXTENSION command, 77, 81
extrema, 248

fast Fourier transform, 324, 329, 330
coefficients, 325
prime factors, 326
restrictions, 326

FC keyword, 318, 331
FERDIRAC function, 301
Fermi-Dirac function, 301
Feynman diagram, 299
FFT function, 267, 324 , 328

example, 326
prime factors, 326
restrictions, 326

FIGURE command, 56, 74, 82 , 108, 110,
111, 113, 230, 233–235

ARROW keyword, 108
fillable figures, 82
units, 83
X Windows, 83

figure types, 82
file stack, 247
filename extension, 77, 81, 225
fill area under a curve, 120
fill histogram, 118
FILL keyword, 83, 110, 233
fill pattern, 41, 83, 110, 233, 240

410

INDEX

fill with dot pattern, 120, 164, 173, 264,
353

fill with hatch pattern, 120, 164, 173, 264,
353

fillable figures, 82
filter

causal recursive, 87
coefficients, 86
digital, 86
noise amplification, 87
nonrecursive, 86, 88, 335
recursive, 90
time-invariant, 87

FILTER command, 86
examples, 91

FINELLIC function, 299
FIOWA data sets, 212
FIOWA histograms, 212
FIOWA scatterplots, 213
first derivative, 317
FIRST function, 337
FISHER function, 301
Fisher’s F -distribution function, 301
fit, 6

confidence level, 100
degrees of freedom, 98, 100
expression, 94, 101
informational messages, 101
iterations, 100
method, 95
normal, 96

chi-square, 97
correlation matrix, 99
covariance matrix, 99
errors, 99
weights, 97

parameters, 94
Poisson, 98

chi-square, 99
tolerance, 96
update, 101

weights, 97
zeros, 98

FIT command, 94
hint for physicists, 98
parameters, 225

FIT$CHISQ variable, 98, 99
FIT$CL variable, 100
FIT$CORR variable, 99
FIT$COVM variable, 99
FIT$E1 variable, 99
FIT$E2 variable, 99
FIT$FREE variable, 98
FIT$VAR array string variable, 95
FMIN command, 101

example, 102
FOLD function, 218, 338

example, 338
folding a matrix, 338
font, 174
font default, 113, 242
FONT keyword, 59, 108, 113, 180, 242
font names, 113, 242
font table, 113, 242
formatted text, 166

accents, 181
blank lines, 169
bold, 172
character height, 169
colour, 173
command delimiters, 166
comments, 166
continuation lines, 168
emphasis mode, 179
filled, 172
font, 174
hexadecimal mode, 180
horizontal space, 177
italics mode, 179
justification centre, 174
justification left, 175
justification right, 176

411

INDEX

left margin, 171
line spacing, 170
slanted mode, 179
subscript mode, 178
superscript mode, 179

formatted text special characters, 166
Fourier coefficients, 325
Fourier series, 325
Fourier transform, 267, 324

inverse, 325, 328
FRAME keyword, 70, 139
frame within a drawing file, 70
FREC1 function, 301
FREC2 function, 301
free format, 186
FREQ function, 297
FRES1 function, 301
FRES2 function, 301
Fresnel integrals, 301
Fritsch and Carlson, 318

interpolation, 331
FULL keyword, 63
full width half maximum, 334
function, 288

array, 288
looping, 288

basic, 290
define dummy variable, 225
element by element, 288
looping, 342
numeric, 288
numeric analysis, 316
numeric with string argument, 314
return variable’s characteristics, 336
shape changing, 338
special mathematical, 294
string, 288
that return a string, 309
trigonometric, 289

FWHM, 334
FZERO command, 102

example, 104
method, 102

GAMMA function, 301
gamma function, 301

incomplete, 302
gamma functions

natural logarithm, 301
GAMMACIN function, 302
GAMMATIN function, 302
GAMMLN function, 301
GAMMQ function, 302
GAUSS function, 297
Gauss series, 302
Gauss-Jordan method, 320
Gauss-Newton method, 95
Gaussian, 329
Gaussian distribution

integral, 299
normalized, 297

Gaussian function, 309
Gaussian probability function, 297

inverse, 298
GAUSSIN function, 298
GAUSSJ function, 320

examples, 320
general characteristics, 352
GENERAL keyword, 64
generalized parameter, 312
GENERATE command, 105 , 112, 237,

291
random number, 106
random number seed, 107

GENERIC keyword, 155
generic terminal driver, 155
geometric figures, 82
geometric mean, 249, 250
GET command, 63, 107 , 228, 261, 348

and script files, 107
ERRFILL keyword, 188, 194
FONT keyword, 59

412

INDEX

GPLOT keywords, 108
PHYSICA keywords, 108

GKS, 52
plotting units, 53

global section, 115, 153
GLOBALS command, 115 , 154
GOTO statement, 77, 79, 269
GPLOT defaults, 29
GPLOT keywords, 108, 228, 230
GPLOT menu, 63, 230

x-axis, 64
y-axis, 64
full, 63
general, 64
short, 64

GPLOT window, 273
GR1105 keyword, 155
graph

autoscaling, 109
graph axes, 208
GRAPH command, 109, 111, 113, 115 ,

136–138, 208, 218, 231, 235, 238–
240

axes only, 116
data and axes, 116
data only, 116
error bars, 119
examples, 121
filling, 120
histogram, 117
legend entry, 116
polar coordinates, 119
replot data, 117

graph commensurate axes, 226
graph coordinates, 275
graph legend, 117, 137
graph scales, 226
graph units, 83, 140, 163, 261
graphics clear, 19, 47, 156, 209
graphics cursor, 84, 113, 139, 157–159,

161, 162, 257, 273, 354

graphics display device, 155
colour, 20

graphics editor, 69
graphics erase, 76
graphics font, 113, 242
graphics hardcopy, 19, 84, 128, 140, 163

bitmap, 76
HPLaserJet, 48
InkJet, 48
LA100, 49
PostScript, 49
Printronix, 49
ThinkJet, 49

graphics orientation, 156
graphics output disable/enable, 155
graphics page, 272
graphics pixels, 352
graphics window

borders, 55, 73
grave, 181
greek letters, 261
grey scale, 240, 241
GRID command, 124

duplicate points, 124
non-interpolated grid example, 126
output matrix size, 125
output vectors, 125–127
polar coordinates, 124
range of interpolation, 125
sparse data, 126
sparse data example, 127

grid lines, 359, 368

Hamming, R.W., 87
Hankel transform, 267
hardcopy

device type, 114
page, 272
plot file, 257

HARDCOPY command, 4, 128
examples, 130

413

INDEX

print and save codes, 128
harmonic oscillator, 302
HATCH keyword, 59, 111, 234, 241
hatch pattern, 41, 83, 110, 120, 172, 173,

233, 240, 241, 264
defaults, 30

hatch pattern definition, 164, 173
hatch pattern fill, 59, 353
hatch pattern redefining, 111, 234
HBOOK data set, 214

histograms, 216
listing, 215
Ntuples, 215
scatterplots, 217

HELP command, 130
library user defined, 130
paging the output, 130

HERMITE function, 302
Hermite polynomials, 302
histogram, 115, 240, 353

bar
appearance, 108, 238
colour, 242
size, 115, 118
width, 241

colour, 115, 118
fill, 111, 118, 234
fill pattern, 240
grey scale, 241
hatch fill, 115, 241
plotting, 117
type, 117, 209

HISTORY keyword, 56, 74
HISTYP keyword, 117, 239, 353
HLDIR routine, 215
Houston

plotting units, 52
HP PaintJet

bitmap device, 48
HPLaserJet

graphics resolution, 48

hardcopy device, 48
plotting units, 48

HPPlotter
plotting units, 52

hypergeometric function, 302, 304
logarithmic confluent, 302

HYPGEO function, 302

IµSR data sets, 223
IATYPE array, 15, 148
ICHAR function, 311, 315
ICLOSE function, 337
ICODE array, 15, 148, 152
IDENTITY function, 323
identity matrix, 323
IEQUAL function, 337
IER variable, 16, 149
IF block, 77, 80, 134, 269
IF statement, 269
IFF keyword, 27, 46
IFFT function, 325, 328
IMAGEN, 52

plotting units, 52
IMSR data sets, 223
inches, 83, 111, 112, 140, 163, 234, 236,

261
incomplete β function, 252, 295
incomplete Γ function, 302
incomplete gamma function, 302
index

range, 45
INDEX function, 315

example, 316
influence function, 6
initialization file, 29
InkJet

hardcopy device, 48
plotting units, 49

inner product operator, 285 , 321
example, 285, 286

INPUT command, 131

414

INDEX

and script files, 131
input line

recall buffers, 11, 58, 75, 212, 253
control keys, 11

INQUIRE command, 133
examples, 134

inside a polygon, 182
INTEGRAL function, 112, 237, 318

example, 319
smoothing splines, 319

integral transform, 267
integrating recursive filters, 90
integration, 318
interactive input, 131
INTERP function, 112, 237, 330 , 332

Fritsch and Carlson, 331
Lagrange interpolation, 331
linear interpolation, 331
spline interpolation, 331

INTERP keyword, 317
interpolating nonrecursive filters, 89
interpolating polynomial, 318
interpolation 2-dimensional, 124
interpolation using FFT, 325
intersection operator, 244, 283
invalid field on read, 110, 233
inverse χ2 probability function, 297
inverse complementary error function, 300
inverse error function, 300
inverse Fourier transform, 325
INVERSE function, 321
inverse Gaussian probability function, 298
inverse normal probability function, 298
inverse of a matrix, 321
invert matrix, 346
IRIX, 211
IUPDATE array, 16, 149

JACOBI function, 303
Jacobi polynomials, 303
Jahn’s U function, 306, 308

JAHNUF function, 308
JOIN function, 336
JOURNAL command, 57, 75, 135

initial defaults, 135
journal file, 59
JOURNAL keyword, 57, 74
justification of text, 258

KEI function, 303
Kelvin functions, 303

first kind, 303
second kind, 303

KER function, 303
keyboard focus, 4
keypad buffer, 11, 12, 212
KEYWORD command, 135

wildcard, 136
keywords, 3
Kummer’s function, 303
kurtosis, 249, 251

LA100
bitmap device, 49
plotting units, 49

label, 77, 79
LABEL command, 136 , 357, 368
\XAXIS qualifier, 218
example, 137
turn off label, 136
where to draw, 136

labeled tic marks, 226
LABSIZ keyword, 110, 232
Lagrange interpolation, 318, 331
LAGRANGE keyword, 317, 331
LAGUERRE function, 303
Laguerre polynomials, 303
LANDSCAPE keyword, 156
Laplace transform, 267
LaserJet III, 128
LaserJet IIP, 128
LAST function, 337
LATEX output, 130

415

INDEX

LCASE function, 310
example, 310

leading zeros, 364, 374
least-squares fit, 6, 72, 335
least-squares line, 333
least-squares residual, 225
LEFNUM keyword, 382
LEFTIC keyword, 382
LEGEND command, 116, 137

example, 141
FRAME keyword, 56, 74

legend entry, 137
clipping, 139
frame box, 139

coordinates, 139
coordinates units, 139
move, 140
outline, 139
resize, 140

line segment, 138
plotting symbols, 138

status, 141
string portion, 138
text

height, 138
title, 140

height, 141
transparency, 140

legend format, 34, 39, 110, 233
LEGENDRE function, 304
Legendre functions, 304

associated, 304
Legendre polynomials, 303, 304
LEGFRMT keyword, 34, 110, 233
LEGSIZ keyword, 39, 110, 232
LEN function, 336 , 337
length of a vector, 270, 336
Leo Tick formula, 90
leptokurtic, 251
Lexmark printer, 33, 35, 36, 38, 121, 164,

173, 241, 264

likelihood function, 95
LINE command, 111, 113, 142 , 235

X Windows, 143
line graph

plotting symbols, 239
LINE keyword, 111, 235
line thickness, 209, 352
line type, 59, 82, 138, 209, 352

defaults, 30
redefining, 111, 235
styles, 235

linear correlation coefficient, 252
linear interpolation, 331
LINEAR keyword, 331
LINES keyword, 59
lines through the origin, 279
link, 147
LINTHK keyword, 352
LINTYP keyword, 352
LINUX, 211
Linux, 3
LIST command, 146
literal string

write, 278
LJ250

bitmap device, 48
LN03+, 52

plotting units, 52
LOAD command, 14, 147 , 212

function, 152
function arguments, 152
function example, 152
subroutine, 147

example, 150
local minimum, 101
LOGAM function, 301
logarithmic x-axis, 357, 361, 362
logarithmic y-axis, 368, 372, 373
logarithmic confluent hypergeometric func-

tion, 302
logical name, 29, 77, 156, 270

416

INDEX

logical name assignment, 5
logical name translation, 314
logical search list, 77
login command file, 29
LOGIN.COM, 384, 389
LOOP function, 218, 225, 345

examples, 346
looping function, 288, 342–346
loops, 80
Lorentzian function, 309
lowercase conversion, 310
LU decomposition, 321, 322

macron, 181
MAP command, 115, 153
MASK keyword, 63, 108, 230
math symbols, 261
matrix

change size, 154
column interchange, 282
creation, 154
determinant, 322
folding, 338
input, 132
inverse, 321
invert, 346
listing, 146
LU decomposition, 321, 322
maxima, 161
minima, 161
reflect, 282
slices, 245
transpose, 282
unfolding, 338

MATRIX command, 154
MAX function, 293
MAXHISTORY keyword, 114, 236
maxima, 157
maximum, 249
maximum likelihood function, 95
maximum matrix column index, 249

maximum matrix row index, 249
maximum vector index, 249
mean, 249
mean deviation, 251
mean filter, 87
mean value, 250
median, 249
median filter, 87
median value, 250
MENU command, 230
MENU keyword, 62
mesokurtic, 251
MIN function, 293
minima, 157
minimum, 249
minimum local, 101
minimum matrix column index, 249
minimum matrix row index, 249
minimum vector index, 249
MOD function, 292
modified Bessel functions, 296, 303
modulus function, 292
monitor colour, 352
MONITOR command, 58, 75, 155
monotone piecewise cubic interpolation, 318
MSR data sets, 223
MUD data sets, 221
Muller’s method, 102
Muller, D.E., 103
multinomial distribution, 98
multiple graphs, 272
multiple pages, 48

NCURVES keyword, 113, 238
NES function, 315
nested IF blocks, 80
network read, 58, 76
new features, 156
NEWS command, 156
NLXINC keyword, 29, 360
NLYINC keyword, 29, 371

417

INDEX

noise amplification by filter, 87
nonrecursive filter, 86, 88, 335
nonrecursive filter differentiating, 88
nonrecursive filter interpolating, 89
nonrecursive filter smoothing, 89
normal distribution, 94
normal distribution of errors, 96
NORMAL function, 297
normal probability function, 297
normal probability function inverse, 298
normalized gaussian distribution, 297
normalized tina resolution, 306
NSXINC keyword, 29, 357, 360
NSYINC keyword, 29, 368, 371
NSYMBOLS keyword, 138
Ntuples, 215
NUMBLD keyword, 353
numeric evaluation, 316
NXDEC keyword, 364, 365
NXDIG keyword, 364, 365
NXGRID keyword, 359
NYDEC keyword, 375, 375
NYDIG keyword, 375, 375
NYGRID keyword, 368

object module, 14, 147
OFF keyword, 138, 139, 155, 232
ON keyword, 138, 139, 155, 232
on-line help, 130, 136
open a drawing file, 69
OPEN keyword, 69
opening an EDGR file, 156
OpenVMS, 3
operator

Boolean, 281
operator append, 314
order property, 283
ORIENTATION command, 69, 156 , 212,

225
initial default, 156

OSF/1, 153

outer product operator, 284
example, 285

output device, 6, 155
outside a polygon, 182

PaintJet
bitmap device, 48

parameter in fit, 94
parameter passing, 312
partial derivative, 24
particle physics, 299
pause during script execution, 271
PCHAR keyword, 4, 62, 108, 238
pcm extension, 77, 81
PEAK command, 113, 157

default code keys, 158
X Windows, 157

Pearson’s r, 252
pen plotter, 50
pen plotter speed, 112, 238
penalty function, 6
perspective projection, 4
PFACTORS function, 324 , 326
phys user.f, 391
PHYSICA defaults, 29, 64
PHYSICA keywords, 63, 108, 228, 230
PHYSICA menu, 63
PHYSICA version number, 253
PHYSICA.JOURNAL, 135
PHYSICA$DIR, 18
PHYSICA$INIT file, 29
PHYSICA$LIB, 77
PHYSICA$LIB, 270
PHYSICA INIT file, 29
PHYSICA LIB, 270
PHYSICA USER FUNCTIONS, 14, 18
PHYSICA USER FUNCTIONS.COM, 384, 389
PHYSICA USER FUNCTIONS.FOR, 15, 148,

391
PICK command, 11, 111, 113, 159 , 183,

235

418

INDEX

automatic digitizing, 160
examples, 160

choose matrix, 161
choose matrix maxima, 161
choose matrix minima, 161
choosing a polygon, 161
default code keys, 159
regional counts, 162
regional counts matrix, 162
X Windows, 159

piecewise linear interpolants, 271
piechart, 162

coordinates, 162
coordinates units, 163
wedge, 162
wedge filling, 163

piechart wedge drawing, 84
PIEGRAPH command, 111, 162 , 234

example, 165
pixels, 352
platykurtic, 251
PLM function, 304
PLMN function, 304
PLMU function, 304
plot a histogram, 117
plot file, 84
plot keyword

axis box, 351
general, 348
summary, 348
text, 348
x-axis, 349
y-axis, 350

plotter, 6
file, 262
pen, 20

PLOTTEXT command, 138, 165
plotting axes only, 116
plotting data and axes, 116
plotting data only, 116
plotting symbol, 29, 62, 108, 115, 138,

209, 238, 353, 354
angle, 115
centred, 239
colour, 115, 239
connecting, 239
maximum value, 239
rotation angle, 240
size, 115, 119, 239, 354
special codes, 239

plotting units, 69, 84, 140, 143, 157, 163,
272

plotting units type, 113
PMODE keyword, 63, 108, 230
POICA function, 304
Poisson distribution, 94
Poisson distribution of errors, 98
Poisson-Charlier polynomial, 304
polar coordinates, 119, 124, 271
POLYGON command, 182
polygon drawing, 83, 85
POLYGON keyword, 85, 110, 233
polygon vertices, 85
PORTRAIT keyword, 156
POSTRES keyword, 112, 237
PostScript

colour, 50
erase, 209, 262
grey scale, 50
hardcopy, 352
hardcopy devices, 49
plotting units, 49
resolution, 33, 35, 36, 38, 49, 112,

121, 164, 173, 237, 241, 264
pre-defined windows, 273
prime factors, 324, 326
print graphics, 128
Printronix

bitmap device, 49
plotting units, 49

PROB function, 297
probability functions, 297

419

INDEX

bivariate normal, 297
Gaussian, 297

inverse, 298
integral of χ2 distribution, 297
normal, 297

inverse, 298
probability functions χ2, 297

inverse, 297
probability integral of χ2 distribution, 297
PROD function, 225, 343

example, 343
program input, 269
program version, 113
program version date, 114
projection, 4
PROMPTING keyword, 57, 75
PT100G keyword, 155
PTYPE keyword, 63, 108, 230, 352

quantum mechanics, 306
quintic polynomial equations, 24
QUIT command, 183

Racah coefficients, 306, 307
RACAHC function, 307
Rademacher function, 305, 309
RADMAC function, 305
RAN function, 107, 112, 237, 291

seed, 291
random number, 291

generation, 106
seed, 107, 112, 237, 291

RCHAR function, 134, 313 , 314
example, 314
format, 313

read across a network, 58, 76
READ command, 184

close the file, 185
informational messages, 185
invalid field, 110, 233
matrix, 195

ASCII file, 196

ASCII file examples, 196
formatted read, 196
unformatted file, 201
unformatted file examples, 202
unformatted file read by record, 202
unformatted file stream read, 202

maximum record length, 184
scalar, 193
scalars

ASCII file, 194
ASCII file examples, 194
formatted read, 194
invalid field, 194
number field, 194
unformatted file, 195
unformatted file examples, 195

text, 203
ASCII file, 204
examples, 204
unformatted file, 204

vectors, 186
ASCII file, 186
ASCII file examples, 188
binary files, 189
column numbers, 186
comment lines, 187
field counts, 187
formats, 186
invalid field, 187
line numbers, 186
output variables, 187
unformatted file, 189
unformatted file examples, 191
unformatted file field counts, 190
unformatted file read by record, 189
unformatted file stream read, 190

REBIN command, 205
matrix, 206

example, 207
vector, 205

examples, 206

420

INDEX

rectangle drawing, 83, 85
recursive filter, 90
recursive filter integrating, 90
redraw on single graph, 208
reflect operator, 282

examples, 282
REFRESH command, 208 , 211
regular matrix, 124
RENAME command, 208
REPLAY keyword, 57, 75
replot buffers, 19, 71, 209

clear, 19
what is saved, 209

REPLOT command, 19, 57, 70, 75, 117,
136, 140, 208 , 212, 224, 231

\TEXT qualifier, 209
disable, 209
enable, 209
examples, 210
replot buffers, 19
text, 209, 261

REPLOT keyword, 57, 75
reserved character names, 166
RESIZE command, 210
RESTORE command, 11, 154, 211 , 224

µSR MUD data set, 221
µSR data set, 223
CHAOS data set, 224
FIOWA data set, 212

examples, 214
HBOOK data set, 214

examples, 218
IµSR data set, 223
PHYSICA session, 211
XFIOWA data set, 214
YBOS data set, 218

examples, 220
RETURN command, 78, 224
RETURN from DCL, 28
RITNUM keyword, 380
RITTIC keyword, 381

Roland
plotting units, 52

ROLL function, 339
example, 339

root-mean-square, 249, 250
root-mean-square error, 99
rotation group, 303
RPROD function, 225, 345

example, 345
RSUM function, 225, 344

example, 344
run-time link, 147
run-time load, 14, 147

arguments, 147
function, 152

arguments, 152
example, 152

restrictions, 147
subroutine, 147

example, 150
running mean filter, 87
running median filter, 87
running products, 345
running sums, 344

SAVE command, 211, 224
save graphics in a file, 128
SAVGOL function, 332, 334
Savitzky-Golay filter, 332, 334
Savitzky-Golay smoothing

method, 335
scalar

append, 314
dummy variable, 288, 342–345

SCALAR command, 94, 218, 225 , 342–
345

dummy variable, 225
fit parameter, 225

SCALES command, 22, 32, 115, 116, 226
, 232

example, 227

421

INDEX

scattered points, 124
scatterplot, 215
script file, 16, 56, 74, 76, 149, 155, 256

abort, 78, 224
and INQUIRE command, 133
and SET command, 229
automatic execution, 29
branching, 79
conditional statements , 80
DO loops, 80
filename extension, 77, 81, 270
generalized parameters, 78
GOTOs, 79
IF blocks, 80
initialization, 29
interactively create, 247
label, 79
library, 77
nesting DO loops, 80
nesting IF blocks, 80
parameter, 312
parameter passing, 78
pause, 271
prompting, 79
returning from, 78, 224
sequential parameters, 79
TEXT command, 257
transferring control, 78

sector drawing, 83, 84
SEED keyword, 112, 237
selective erase, 352
sequential parameters, 79
session restore, 211
session save, 224
SET command, 4, 63, 107, 228 , 273, 348

and script files, 229
ARROLEN keyword, 86
ARROTYP keyword, 86
ARROWID keyword, 86
AUTOSCALE keyword, 115, 117, 226
CHARA keyword, 240

CHARSZ keyword, 119, 239
CNTSEP keyword, 22
ERRFILL keyword, 188, 194
examples, 229
FILL keyword, 41, 83
FONT keyword, 136, 174, 257, 258,

261
HATCH keyword, 30, 59, 110, 118, 120,

164, 173, 234, 264
how it works, 229
LABSIZ keyword, 22
LEGFRMT keyword, 39
LEGSIZ keyword, 23, 34
LINE keyword, 145, 352
LINES keyword, 30, 62
LINTYP keyword, 82, 111, 120, 235,

240, 279
PCHAR keyword, 62, 115, 117, 118,

120, 139, 353, 354
POSTRES keyword, 33, 35, 36, 38, 50,

121, 164, 173, 241, 264
SEED keyword, 107, 291
TENSION keyword, 317, 319, 331–334
TXTHIT keyword, 138, 141, 258, 261
UNITS keyword, 69, 83, 110–112, 140,

143, 157–159, 163, 169–171, 175–
177, 232, 234, 236, 275

WIDTH keyword, 64
XUAXIS keyword, 23, 34, 39

shareable image, 14
command procedure, 384, 389
creating, 18
function, 152
source code, 18, 391

shared memory, 153, 154
SHELL keyword, 58, 75
shift elements, 339–341
SHORT keyword, 64
SHOW command, 57, 74, 243 , 283

examples, 244
history lines

422

INDEX

display, 114, 236
max number, 114, 236
wrap, 114, 237

SHOWHISTORY keyword, 114, 236
SIGN function, 292
sine integral, 298
SININT function, 298
skewness, 248, 249, 251
SLICES command, 231, 245

example, 245
SMOOTH function, 112, 237, 330, 332 ,

334
method, 333
tension, 333
with weights, 332

SMOOTH keyword, 317, 319
smoothing

Savitzky-Golay filter, 334
smoothing filter, 329, 330
smoothing nonrecursive filters, 89
SOLARIS, 211
solve system of equations, 320
SORT command, 245 , 283, 284
\UP qualifier, 244
associated vectors, 245
examples, 246

spawning a subprocess, 28
SPECIAL keyword, 59
special names, 166
SPEED keyword, 112, 238
Spence’s integral, 299
Spencer’s formulae, 89
spline interpolation, 331
SPLINE keyword, 331
spline smooth

weight, 333
spline smooth method, 333
spline smooth weight, 332
spline tension, 112, 237, 317, 319, 331,

333
SPLINTERP function, 112, 237, 330, 331

SPLSMOOTH function, 112, 237, 332, 333

with weights, 334
STACK command, 58, 76, 84, 247 , 257

append to file, 248
simultaneously execute commands, 248

stack file, 225
STACK keyword, 58, 76
standard deviation, 98, 99, 249, 251, 333
static buffer, 11, 12, 212
STATISTICS command, 248

central measures, 248
dispersion, 248
examples, 252
extrema, 248
linear correlation coefficient, 252
messages, 248
moments, 251
parameter definitions, 250
skewness, 248
weights, 250

STATUS command, 135, 253
STATUS keyword, 141
STEP function, 340

example, 340
stop, 183
string

formatting, 138
writing, 278

string font, 136
string format, 141
STRING function, 313
string function

CHAR, 311
CLEN, 314
DATE, 310
EQS, 315
EVAL, 316
EXPAND, 311
ICHAR, 315
INDEX, 315

423

INDEX

LCASE, 310
NES, 315
RCHAR, 313
STRING, 313
SUB, 315
SUP, 315
TCASE, 311
TIME, 310
TRANSLATE, 314
UCASE, 310
VARNAME, 312
VARTYPE, 312

string height, 138
string length, 315
string variable, 45, 204

append, 314
in expression, 311, 316

Struve function, 305
second order, 305

Struve function first order, 305
STRUVE0 function, 305
STRUVE1 function, 305
STUDENT function, 305
Student’s t-distribution, 305
Student’s t-distribution inverse, 306
STUDENTI function, 306
SUB function, 315
sub-window boundary, 272
SUBn keywords, 14
sum, 249, 250
SUM function, 225, 342

example, 343
SUP function, 315
SURFACE command, 254

colour figure, 255
examples, 256

symbol size, 4
symmetric error bars, 119
symmetric matrix, 323
syntax check, 311
system of equations, 320

tab, 136
Taylor expansion, 96, 97, 99
TCASE function, 311

example, 311
TENSION keyword, 112, 237, 317
terminal broadcast messages, 56
TERMINAL command, 78, 224, 256 , 269
terminal interface, 12, 58, 75
terminal width, 64, 112, 238
TEX output, 130
text angle, 258, 355
text append, 284
text bolding, 111, 234, 258
text colour, 258
TEXT command, 56, 74, 209, 257 , 354,

355
confirm, 257
erase, 262
example, 262
script file, 257
stack files, 257

text draw, 263
text emphasis, 258
text font, 29, 113, 242, 258
text format, 59, 138, 258
text height, 258, 261, 355
text hexadecimal codes, 258
text horizontal space, 258
text justification, 258, 354, 355
text location, 258, 261
text plot characteristics, 354
text position, 355
text replot, 261
text special characters, 261
text sub-scripts, 258
text vertical spacing, 258
THEN keyword, 80
Thiessen triangulation, 33, 35, 36, 38, 124,

271
ThinkJet

bitmap device, 49

424

INDEX

Thinkjet
plotting units, 49

tic marks, 109, 226, 227, 231, 232, 357,
359, 361, 362, 368, 370, 372, 373,
380–382

labeled, 226
tilde, 181
TILE command, 111, 234, 263

bar definition, 263
example, 265
string definition, 264

time elapsed, 291
TIME function, 262, 310

example, 310
time-invariant filters, 87
TINA function, 306
TITLE keyword, 140
TK4010 keyword, 155
TK4107 keyword, 155
TLEN command, 266

example, 266
toggle case conversion, 311
toggle graphics, 19
TOPNUM keyword, 381
TOPTIC keyword, 381
TRANSFORM command, 267

example, 267
TRANSLATE function, 314

example, 314
TRANSPARENCY keyword, 140
transpose operator, 196, 214, 218, 282 ,

346
example, 282

trapezoidal rule filter, 90
trapping, 78
triangle coefficient, 307
trigonometric functions, 289
TXTANG keyword, 258, 355
TXTHIT keyword, 169, 170, 355

UCASE function, 134, 310

example, 310
umlaut, 181
unary operator, 282
UNFOLD function, 338

a matrix, 338
example, 339

unformatted binary file, 189, 195, 201, 204
union operator, 244, 283
UNIQUE command, 268

examples, 268
units, 175–177
UNITS keyword, 113, 143, 242
unity matrix, 323
UNIX, 3, 14, 28, 29, 77, 131, 135, 156,

166, 185, 211, 247, 270, 276, 314,
391

update after fit, 101
uppercase conversion, 310
USE command, 269
user defined library, 130
user writte

subroutine, 212
user written

function, 152, 212, 225
arguments, 147, 152
example, 152

subroutine, 14, 147, 225
arguments, 147
example, 15, 17, 148, 150
IATYPE array, 15, 148
ICODE array, 15, 148
IER variable, 16, 149
IUPDATE array, 16, 149
matrix data, 17, 150
name, 14
numeric argument, 16, 149
sharable image, 18
string argument, 17, 149

USERN function, 147, 152

variable, 224

425

INDEX

display, 243
history, 56, 74

variable name
expand, 45

variable parameters, 225
variance, 87, 98, 249, 251
variance-ratio distribution, 301
VARNAME function, 312

example, 312
VARTYPE function, 312
VAX, 3
VAX/VMS, 14, 115, 147, 154
vector

append, 284
copies, 27
final index, 337
first index, 337
generation, 105
input, 131
intersection, 283
length, 270, 336, 337
list, 146

paged, 146
order property, 283
ordered, 244
reading, 186
sorting, 245
union, 283

VECTOR command, 270
vector coupling coefficients, 306
VERSION keyword, 113
VERSIONDATE keyword, 114
vertex coordinates, 317
virtual maximum, 109, 227, 232
virtual memory space, 58, 75
virtual minimum, 109, 227, 232
VLEN function, 337
VMS, 3, 5, 14, 28, 29, 56, 73, 77, 130, 131,

153, 156, 211, 270, 314, 391
Voigt profile function, 309
VOLUME command, 271

under a matrix, 271
VT241 keyword, 155
VT640 keyword, 155

WAIT command, 271
WALSH function, 308
wave function, 302
wedge drawing, 84
WEDGE keyword, 84, 110, 233
what is in this manual, 1–2
WHERE function, 244, 283, 284, 337

example, 338
WIDTH keyword, 112, 238
width of alphanumeric monitor, 112, 238
WIGN3J function, 307
WIGN6J function, 308
WIGN9J function, 308
Wigner 3− j function, 307
Wigner 6− j function, 308
Wigner 9− j function, 308
Wigner symbols, 306
wildcard, 243
window, 83, 140, 163, 175–177, 209

commensurate graphs, 226
definitions saved, 224
erase, 76
physica, 211
reset, 29

WINDOW command, 56, 74, 139, 163, 226,
272

boundaries, 272
define new window, 272
display window coordinates, 272
multiple window creation, 274
plotting units, 272
pre-defined windows, 273
relation to GPLOT, 273
what are windows, 272

world boundary, 272
WORLD command, 275
world coordinate system, 156, 157, 261,

426

INDEX

275, 377
world units type, 113, 242
WRAP function, 341

example, 341
WRAP keyword, 114, 237
WRITE command, 275

appending to a file, 276
format, 276
matrix, 278
scalars, 277

examples, 278
maximum number, 278

string, 278
text

examples, 278
unformatted file, 276
vectors, 276

examples, 277
maximum number, 276

X keyword, 155
X Window System, 4, 5, 143, 157, 159

cursor readout, 242
units type, 113

FIGURE command, 83
graphics replay, 57, 75
refresh, 208
zoom window, 208

XAXIS keyword, 64, 355
XAXISA keyword, 354, 360, 366, 371, 376,

379
XCNT matrix, 23
XCROSS keyword, 359
XFIOWA data sets, 214
XITICA keyword, 366
XITICL keyword, 366
XLABSZ keyword, 136, 357
XLAXIS keyword, 29, 378
XLEADZ keyword, 364
XLOC keyword, 258, 354, 355
XLOG keyword, 227, 357 , 360

XLWIND keyword, 171, 175–177, 274, 355,
377 , 378, 379

XMAX keyword, 279, 357, 359, 361, 361
XMIN keyword, 279, 357, 359, 362, 362
XMOD keyword, 363 , 364
XNUMA keyword, 365
XNUMSZ keyword, 4, 29, 365 , 380, 381
XOFF keyword, 364, 364
XPAUTO keyword, 364
XPOW keyword, 364, 365
XPREV keyword, 112, 238
XTICA keyword, 360, 360
XTICL keyword, 360 , 380, 382
XTICS keyword, 361 , 380, 382
XTICTP keyword, 359
XUAXIS keyword, 29, 34, 39, 378
XUWIND keyword, 171, 175–177, 274, 355,

378, 378 , 379
XVMAX keyword, 361
XVMIN keyword, 362
XZERO keyword, 359

YAXIS keyword, 64, 366
YAXISA keyword, 360, 366, 371, 376, 379

YBOS data sets, 218
YBOS dotplots, 219
YBOS histograms, 219
YCNT matrix, 23
YCROSS keyword, 370
YITICA keyword, 376 , 377
YITICL keyword, 376, 376
YLABSZ keyword, 136, 368
YLAXIS keyword, 29, 379
YLEADZ keyword, 374
YLOC keyword, 258, 354, 355
YLOG keyword, 227, 368 , 371, 372
YLWIND keyword, 22, 110, 169, 170, 232,

233, 274, 354, 355, 357, 360, 361,
365, 366, 368, 371, 372, 376, 377,
378 , 379

427

INDEX

YMAX keyword, 279, 368, 370, 372, 372
YMIN keyword, 279, 368, 370, 373, 373
YMOD keyword, 374, 374
YNUMA keyword, 376
YNUMSZ keyword, 29, 376 , 380, 382
YOFF keyword, 374, 374
YPAUTO keyword, 374
YPOW keyword, 374, 375
YPREV keyword, 113, 238
YTICA keyword, 370, 370
YTICL keyword, 371 , 381, 382
YTICS keyword, 372 , 381, 382
YTICTP keyword, 370
YUAXIS keyword, 29, 32, 379
YUWIND keyword, 22, 110, 169, 170, 232,

233, 274, 354, 355, 357, 360, 361,
365, 366, 368, 371, 372, 376, 377,
378 , 379

YVMAX keyword, 372
YVMIN keyword, 373
YZERO keyword, 370

ZEBRA, 215
ZEBRA RZ, 214
zero filled vector, 270
ZEROLINES command, 111, 235, 278

example, 279
line type, 279

428

