
TRIUMF 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3

Computing Document J.L. Chuma February 1998 TRI-CD-98-01 v1.0

Copyright 1993,1994,1995,1996,1997,1998 – All rights are reserved

PHYSICA c©

USER’S GUIDE

Mathematical Analysis and Data Visualization Software

TRIUMF makes no warranty of any kind with regard to this material.

TRIUMF shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

http://www.triumf.ca
http://www.triumf.ca/compserv.html
http://www.triumf.ca/people/chuma/homepage.html
http://www.triumf.ca/people/chuma/physica/homepage.html

Contents

1 INTRODUCTION 1

1.1 How to run PHYSICA . 2
1.2 A first example . 2
1.3 What is in this manual . 3
1.4 Conventions used in this manual . 4
1.5 Questions or comments? . 4

2 GETTING STARTED 5

2.1 Graphics display device type . 5
2.1.1 X Window displays . 5

2.2 Plotting units . 6
2.3 PHYSICA windows . 8
2.4 Graphics orientation . 9

3 PROGRAM INSTRUCTIONS 10

3.1 Keyboard input . 10
3.2 Script files . 11

3.2.1 Environment variables in file names . 11
3.2.2 Parameter correction . 11
3.2.3 Flow control . 12
3.2.4 Filename extension . 12
3.2.5 Comments . 12
3.2.6 Echoing . 12
3.2.7 Flow control . 13
3.2.8 Parameter passing . 13
3.2.9 Initialization file . 14
3.2.10 Creating script files interactively . 14
3.2.11 Labels and GOTO statements . 14
3.2.12 DO loop blocks . 14
3.2.13 IF statements and blocks . 15

3.3 Instruction types . 16
3.3.1 Operating system commands . 16
3.3.2 Assignments . 17
3.3.3 Evaluations . 18
3.3.4 Comments . 18
3.3.5 Program commands . 18

i

4 VARIABLES 19

4.1 Number and size of variables . 19
4.2 Variable names . 20
4.3 Indices . 20

4.3.1 Special characters . 21
4.3.2 Index on a function or expression . 21
4.3.3 Index as an expression . 21
4.3.4 Index starting value . 22

4.4 Scalars . 22
4.5 Vectors . 23
4.6 Matrices . 23
4.7 String variables . 24

4.7.1 Appending strings . 24
4.7.2 Expression variables . 25

5 GRAPH EXAMPLES 27

5.1 Basics . 27
5.2 A script to plot a curve with axes . 28
5.3 Read some data and plot two curves on common axes 28
5.4 Using four windows to draw four graphs . 30
5.5 Getting the axis numbers right . 30
5.6 Plotting symbols . 31

5.6.1 Size and angle . 31
5.6.2 Plotting a vector field . 32

5.7 A graph with two y axes . 33
5.8 Two x axes . 35

5.8.1 Non-linear user-defined axis . 36
5.9 Using two adjoined axis frames . 38
5.10 Numbering the small tic marks . 42
5.11 Error bars . 44

5.11.1 User defined error bars . 45
5.12 Graph legend . 46

5.12.1 A non-transparent legend frame . 46
5.12.2 A legend without a frame . 48

5.13 Avoiding plotting symbol overlaps . 49
5.14 Filling . 50

5.14.1 Fill the area under a curve . 50
5.14.2 Fill the area between two curves . 51
5.14.3 A filled ring . 53

5.15 Text tied to a curve . 54

6 HISTOGRAM EXAMPLES 54

6.1 Basic histogram . 55
6.2 Histogram types . 55
6.3 Filled histograms . 56

6.3.1 Fill bars with different widths . 56
6.3.2 Fill under a histogram profile . 56

7 DENSITY AND CONTOUR PLOTS 57

7.1 Box type density plots . 57
7.2 Profiles on density plots . 58

ii

7.3 Contour plots . 58
7.4 Mandelbrot set . 59

8 DATA MANIPULATION 62

8.1 Scaling data . 62
8.2 Generating data vectors . 62
8.3 Selecting data . 62
8.4 Copying vectors . 62

8.4.1 Conditional copying . 63
8.5 A simple average calculation . 63
8.6 Find the root mean square distribution . 64
8.7 A simple integration procedure . 64

8.7.1 Dealing with data spikes . 65
8.8 Fitting . 66

8.8.1 Fit to a non-linear function . 67
8.8.2 Fit data with two line segments . 68
8.8.3 More than one independent variable . 69

8.9 Interpolation and smoothing . 70
8.9.1 Interpolation with a fast Fourier transform . 70

9 INDEX 72

iii

List of Tables

2.1 Supported graphics display device types . 5
2.2 Plotting units for HPLaserJet devices . 6
2.3 Plotting units for InkJet devices . 6
2.4 Plotting units for Printronix, LA100, and ThinkJet devices 7
2.5 Plotting units for PostScript devices . 7
2.6 Plotting units for pen plotter devices . 7
2.7 Plotting units for LN03+ and Imagen devices . 8
2.8 Plotting units for GKS graphics metafiles . 8
3.9 Control keys recognized by the terminal interface . 10
3.10Function keys recognized by the terminal interface . 11
3.11 Instruction types . 16
4.12 Variable types . 19
4.13 Reserved keywords . 20
4.14 Index special character examples . 21
4.15 Scalar variable equivalents . 23
4.16 Vector variable equivalents . 23
4.17 Matrix variable equivalents . 24
4.18 String variable equivalents . 25
6.19 The basic histogram types . 55

iv

List of Figures

2.1 The pre-defined PHYSICA windows in landscape orientation 8
2.2 The pre-defined PHYSICA windows in portrait orientation 9
2.3 Examples of LANDSCAPE and PORTRAIT orientations . 9
5.4 Numbering the axes . 31
5.5 Plotting symbols . 32
5.6 A graph with two y axes . 33
5.7 Two adjoined axis frames . 39
6.8 Filled histograms . 57
7.9 Box type density plots . 58
7.10 Profiles on density plots . 59
7.11 Contour plots . 60
8.12 Dealing with data spikes . 66
8.13 Interpolation examples . 70

v

vi

Introduction

1 INTRODUCTION
PHYSICA provides a high level, interactive programming environment. The program constitutes a
fully procedural programming language, with built-in user friendly graphics and sophisticated math-
ematical analysis capabilities. Combining an accessible user interface along with comprehensive
mathematical and graphical features, makes PHYSICA a general purpose research tool for scientific,
engineering and technical applications.

PHYSICA provides you with a wide range of mathematical and graphical operations. Over 200 mathe-
matical functions are available, as well as over 30 operators, providing all of the standard operations
of simple calculus, along with powerful curve fitting, filtering and smoothing techniques. The pro-
gram employs a dynamic array management scheme allowing you a large number of arrays of unlim-
ited size. Algebraic expressions are evaluated using a lexical scanner approach. These expressions
can have up to 1500 “tokens,” where a token is a literal constant, a variable name, a function name,
or an operator. Array evaluations and assignments can be implemented in a simple, direct manner.

Line graphs, histograms and pie-charts, as well as contour, density and surface plots are available.
Publication quality graphics can be easily obtained. You have complete control over the appearance
of a drawing.

Initial development was for the VAX/VMS operating systems, but the program has been ported to
AlphaVMS, ULTRIX, Digital Unix, Silicon Graphics IRIX, HP-UX, IBM AIX, SUNOS and Solaris, and most
recently, PC Linux.

The user interacts with the program through the user interface, consisting of monitor dependent rou-
tines for display of messages and for reading user input, and device dependent routines for display-
ing drawings and obtaining hardcopies of user sessions. The user interface is a high-level command
language that incorporates a simple to use and easy to learn syntax, based on context-free lexical
scanners. The command language incorporates the basic elements of a structured programming
language, including conditional branching, looping and subroutine calling constructs.

PHYSICA commands are simple and forgiving of input errors. The principle uses of PHYSICA are to
input and manipulate data and then to produce graphical representations of this data. Data can be
read from files, input interactively via the keyboard, or generated internally in various ways.

1

Introduction

1.1 How to run PHYSICA
VMS: If PHYSICA has been properly installed on your system, you can run it by just

typing PHYSICA at the DCL prompt. The PHYSICA command can be defined for all
users by the System Manager, or you can place the following in your LOGIN.COM

file:

DEFINE PHYSICA$DIR <physica-directory>

DEFINE TRIUMF$FONTS <font-directory>

PHYSICA :== $PHYSICA$DIR:PHYSICA

where <physica-directory> is the place where the program and help files are
kept, and <font-directory> is the place where the VAXFONT.DAT file is kept.

UNIX: If PHYSICA is installed, you can type physica at your shell prompt to run it. The
best way to run PHYSICA is from a shell script, as follows:

#!/bin/csh

setenv PHYSICA_DIR <physica-directory>

setenv TRIUMF_FONTS <font-directory>

<physica-directory>/physica

where <physica-directory> is the place where the program and help files are
kept, and <font-directory> is the place where the vaxfont.dat file is kept.

1.2 A first example

One can immediately start using PHYSICA by learning just a few basic commands. A straight-forward
use for PHYSICA is to read two lists of numbers from a file, draw a graph of one list versus the other
list, label the graph with the date and some text string, and, finally, obtain a hardcopy of the final
picture. For example:

READ FILE.DAT X Y

GRAPH X Y

TEXT DATE

TEXT ‘Some text label’

HARDCOPY

Note: The program informs you that it is ready to accept input when the PHYSICA:

prompt appears.

PHYSICA is very useful when a drawing needs to be tailored to exact specifications. For example,
many publications require tic marks on graph axes to point inward. This is accomplished with the
SET command. For example:

2

What is in this manual

PHYSICA: SET

Enter: name { value } >> XTICA 90

Enter: name { value } >> YTICA -90

Enter: name { value } >>

PHYSICA:

PHYSICA makes full use of the TRIUMF graph plotting package, GPLOT.

A necessary supplement to this manual is the PHYSICA Reference Manual which discusses the PHYS-
ICA commands, functions and operators in detail.

1.3 What is in this manual

This manual starts with the introduction and an explanation of how to run the PHYSICA program,
followed by a description of how the graphics display device type is chosen. This is followed by a
general discussion of the graphics plotting units, the program’s own graphics windows, and the two
graphics orientations which are available.

The next chapter discusses program instruction sources and instruction types. Instructions can
be entered interactively from the keyboard, or can be read from script files. A terminal interface is
used which closely mimics the DCL command recall facility. Script files are discussed, including the
branching and looping capabilities. The four types of program instruction are discussed: script file
comments, operating system commands, assignments, evaluations, and program commands.

The next chapter explains how variables are used in the program, including the maximum allowable
number and size of variables. Variable indices are a major feature of the program, and are described
in some detail. The program allows for string variables as well as numeric variables, and some novel
uses for string variables are discussed.

The bulk of this manual is a collection of examples, roughly divided up into categories by chapter.

Users are referred to the PHYSICA Reference Manual for detailed descriptions of the PHYSICA com-
mands, functions and operators. Those who are familiar with the predecessor program, PLOTDATA,
are referred to the PLOTDATA to PHYSICA Conversion Manual for tips on converting PLOTDATA scripts
to PHYSICA.

3

Questions or comments

1.4 Conventions used in this manual

Examples of messages and prompts written by the program, as well as examples of user typed input
are displayed in typewriter type style.

Curly brackets, { }, enclose parameters that are optional and/or have default values; and indicate
that it is not necessary to enter these parameters. Vertical bars, |, separate choices for command
parameters.

Curly brackets and vertical bars should not be entered with commands.

Parentheses, (), enclose formats. The back slash, \, separates a command from a command
qualifier or a parameter from its qualifier. The opening quote, ‘, and the closing quote, ’, delimit
literal strings.

Parentheses, the back slash and quotes must be included where indicated.

VMS usually refers to the OpenVMS operating system for either the VAX or the Alpha architectures.

UNIX refers to any UNIX like operating system, including Linux.

1.5 Questions or comments?

Contact Joseph Chuma, if you have problems, questions or comments.

e-mail: chuma@triumf.ca ←− preferred method of contact
telephone: (604) 222-1047 extension 6310

4

Getting Started

2 GETTING STARTED
2.1 Graphics display device type

Device monitor name

Digital VT100 VT100

Digital VT640 VT640

Digital VT241 VT241

Citoh CIT-467 CIT467

Tektronix 4010/12 TK4010

Tektronix 4107 TK4107

Plessey PT-100G PT100G

Seiko GR-1105 GR1105

X Window System X

generic terminal GENERIC

Table 2.1: Supported graphics display device types

PHYSICA needs to know your graphics display device type. This information can be passed to the
program by a logical name, on VMS systems, by an environment variable, on UNIX systems, or by
interactively answering a question.

VMS: DEFINE TRIUMF_TERMINAL_TYPE monitor_name

UNIX: setenv TRIUMF_TERMINAL_TYPE monitor_name

If TRIUMF_TERMINAL_TYPE is assigned to one of the valid monitor type names, as listed in the second
column of Table 2.1, before running PHYSICA, then no initial question will be asked. If PHYSICA
cannot translate TRIUMF_TERMINAL_TYPE into a valid monitor type name, the monitor type will be
interactively requested.

The graphics hardcopy device type is chosen while running PHYSICA. The default graphics hardcopy
device type is HPLASER, a bitmap device, at 150 dots per inch. The graphics hardcopy device type may
be changed at any time by using the DEVICE command.

2.1.1 X Window displays

Selecting monitor type X indicates that you are using a workstation or terminal that supports the X
Window System. In this case, PHYSICA can be run on the local workstation or on a remote computer
that also has the X Window System. After logging in to a remote machine, and before running
PHYSICA, the appropriate command must be issued to enable your X display to be used.

If the remote system is a VMS system, the following command should be used:

SET DISPLAY/CREATE/NODE=node_name/TRANSPORT=transport_name

5

Plotting units

The node_name parameter is the name of your local workstation or X terminal, as it is known to the
remote host. The transport_name parameter specifies the type of communications link to be used,
typically, TCPIP or DECNET.

If the remote system is a UNIX system, the following command should be used. For a TCP/IP connec-
tion:

setenv DISPLAY node_name:0

and for a DECNET connection, if supported on the local and the remote systems:

setenv DISPLAY node_name::0

Once the X network connection is established, all graphics functions, including keyboard and mouse
input, will be performed on the local workstation, even though PHYSICA is running on the remote
host.

2.2 Plotting units

The plotting units horizontal and vertical ranges, that is, the size of the world coordinate system, is
determined by the graphics hardcopy device type and the orientation, either landscape or portrait.

orientation units horizontal vertical

LANDSCAPE centimeters 27.94 21.59
inches 11.00 8.50

PORTRAIT centimeters 21.59 27.94
inches 8.50 11.00

Table 2.2: Plotting units for HPLaserJet devices

pages = 1 pages > 1
orientation units horizontal vertical horizontal vertical

LANDSCAPE centimeters 26.67 19.05 27.94 20.32*np
inches 10.50 7.50 11.00 8.00*np

PORTRAIT centimeters 19.05 26.67 20.32*np 27.94
inches 7.50 10.50 8.00*np 11.00

Table 2.3: Plotting units for InkJet devices

If you change hardcopy devices, with the DEVICE command, or if you change the orientation, with the
ORIENTATION command, the plotting units will change.

By default, the plotting units are expressed in centimeters. The units type can be changed to inches,
or back to centimeters, with the SET UNITS command.

Since the plotting units are in actual device units, lengths and distances are not distorted on graphics
hardcopy devices. Commensurateness is automatic. For example, no horizontal or vertical scaling

6

Plotting units

orientation units horizontal vertical

LANDSCAPE centimeters 25.00 19.00
inches 9.84 7.48

PORTRAIT centimeters 19.00 25.00
inches 7.48 9.84

Table 2.4: Plotting units for Printronix, LA100, and ThinkJet devices

paper LANDSCAPE PORTRAIT

size units horizontal vertical horizontal vertical

A centimeters 25.00 19.00 19.00 25.00
inches 9.84 7.48 7.48 9.84

B centimeters 40.64 25.40 25.40 40.64
inches 16.00 10.00 10.00 16.00

C centimeters 53.34 40.64 40.64 53.34
inches 21.00 16.00 16.00 21.00

D centimeters 83.82 53.34 53.34 83.82
inches 33.00 21.00 21.00 33.00

E centimeters 109.22 83.82 83.82 109.22
inches 43.00 33.00 33.00 43.00

A4 centimeters 27.16 18.46 18.46 27.16
inches 10.69 7.27 7.27 10.69

Table 2.5: Plotting units for PostScript devices

paper LANDSCAPE PORTRAIT

size units horizontal vertical horizontal vertical

A centimeters 25.00 19.00 19.00 25.00
inches 9.84 7.48 7.48 9.84

B centimeters 40.64 25.40 25.40 40.64
inches 16.00 10.00 10.00 16.00

C centimeters 53.34 40.64 40.64 53.34
inches 21.00 16.00 16.00 21.00

D centimeters 83.82 53.34 53.34 83.82
inches 33.00 21.00 21.00 33.00

E centimeters 109.22 83.82 83.82 109.22
inches 43.00 33.00 33.00 43.00

Table 2.6: Plotting units for pen plotter devices

7

Physica windows

orientation units horizontal vertical

LANDSCAPE centimeters 25.40 19.05
inches 10.00 7.50

PORTRAIT centimeters 19.05 25.40
inches 7.50 10.00

Table 2.7: Plotting units for LN03+ and Imagen devices

orientation units horizontal vertical

LANDSCAPE centimeters 25.40 19.05
inches 10.00 7.50

PORTRAIT centimeters 19.05 25.40
inches 7.50 10.00

Table 2.8: Plotting units for GKS graphics metafiles

need be done to draw a circle.

Commensurate graphs are a different matter, and can be obtained by means of the SET AUTOSCALE or
the SCALE command.

2.3 PHYSICA windows

By default, there is always at least one rectangle drawn on the graphics monitor screen. The largest
rectangle represents the world boundary, that is, the edges of the hardcopy page. A smaller inner
rectangle, drawn with a dashed line, represents a PHYSICA window within the page.

The window and page boundary rectangles are for the user’s reference only and will not appear on a
hardcopy. They can be turned off with the DISABLE BORDER command, and turned back on with the
ENABLE BORDER command.

Figure 2.1: The pre-defined PHYSICA windows in landscape orientation

Windows are chosen with the WINDOW command. There are twelve (12) pre-defined windows, see
Figures 2.1 and 2.2. Window zero is the default window and is the full page. It is a simple matter to

8

Graphics orientation

Figure 2.2: The pre-defined PHYSICA windows in portrait orientation

define your own special windows with the WINDOW command.

Windows are defined by four keywords: %XLWIND, %XUWIND, %YLWIND and %YUWIND which are used by
GPLOT, the TRIUMF graph plotting package. These characteristics are explained in Appendix A of
the PHYSICA Reference Manual.

2.4 Graphics orientation

There are two graphics orientations available in the PHYSICA program. Use the ORIENTATION com-
mand to change the graphics orientation.

In LANDSCAPE orientation the large dimension is horizontal. In PORTRAIT orientation the large dimen-
sion is vertical. The default orientation is LANDSCAPE. See Figure 2.3.

Figure 2.3: Examples of LANDSCAPE and PORTRAIT orientations

9

Program instructions

3 PROGRAM INSTRUCTIONS
Instructions to PHYSICA can come from two sources:

• interactively via the terminal keyboard
• non-interactively via a PHYSICA script file

The maximum total length of an input line from any of these sources is 255 characters.

It is possible to continue any instruction on several input lines. If an input line ends with a minus
character, -, the next input line will be appended to the end of that line. The interactive mode prompt
that is displayed for continuation lines is continuation: . For example,

PHYSICA: READ -

continuation: FILE.DAT -

continuation: X Y Z

Remember, though, that the maximum total length of an input line is 255 characters, including all
continuation lines.

3.1 Keyboard input

One way to enter instructions is interactively, via the keyboard. The terminal interface closely mimics
the DCL command recall facility.

The prompt PHYSICA: indicates that the program is ready for keyboard input.

There are three input line recall buffers: the dynamic buffer, the static buffer, and the keypad buffer.
The BUFFER command controls these line recall buffers. Table 3.9 shows the control keys recognized
by the terminal interface. Table 3.10 shows the function keys recognized by the terminal interface.

key action

control-^ appended to a string recalls the last command containing it
control-A toggles insert/overstrike mode
control-E moves alphanumeric cursor to end of line
control-H (BACKSPACE) moves alphanumeric cursor to the beginning of the input line
control-K disables recall shell, a ”!” in column 1 re-enables it
control-N reads the dynamic recall buffer from a file
control-P writes the dynamic recall buffer to a file
control-R refreshes the current input line
control-X (control-U) erases input line to the left of the alphanumeric cursor

Currently LINEFEED (control-J), ESC and TAB (control-I) are not enabled

Table 3.9: Control keys recognized by the terminal interface

10

Script files

key action

PF1 list and allows selection from dynamic recall buffer
PF2 lists the HELP facility
PF3 lists, loads (via control-L), and selects from static buffer
PF4 invokes a simple desk calculator
ENTER lists or loads the keypad buffer
F14 toggles insert/overstrike mode

Table 3.10: Function keys recognized by the terminal interface

3.2 Script files

Instructions to the program may come from a PHYSICA script file, also called a macro file. One script
file can execute another script file, and so on, up a limit of twenty (20) nested files.

To direct the input to be from such a file, use the EXECUTE command, or, equivalently, use the ‘at’, @,
character. For example: EXECUTE file.pcm or @file.pcm

3.2.1 Environment variables in file names

For UNIX users, it is now possible to use an environment variable in a file name, if the environment
variable is preceeded by a $. For example,

setenv DATAFILE dum.dat

physica

read $DATAFILE x y z

The environment variable can be just the first part of the filename, for example,

setenv DATAFILE dum

physica

read $DATAFILE.dat x y z

3.2.2 Parameter correction

By default, in many cases, if an incorrect parameter of a valid command is read from the script file
or is substituted from the parameter list, then the user will be asked to enter the correct information
from the terminal keyboard, and the command will then be executed.

11

Script files

VMS: Whenever you are prompted for a command parameter, typing control-z, that
is, simultaneously pressing the control key and the z key, aborts execution of
that command, and of the script and any higher level calling scripts. If you
type control-space, which is a null, only that command, not the script, will be
aborted.

UNIX: Whenever you are prompted for a command parameter, typing control-d aborts
execution of that command, and of the script and any higher level calling scripts.
If you type control-space, which is a null, only that command, not the script,
will be aborted.

During execution of a script file, messages are displayed on the terminal screen. If there is a non-
severe input error or if required parameters are missing, the user is prompted to make corrections
via the terminal keyboard and then execution of the script file resumes. This property can be turned
off with the DISABLE PROMPTING command.

3.2.3 Flow control

The user may type control-c, that is, type the control key and the c key simultaneously, any time
during execution of a script to abort that script, and return to interactive input.

Within a script file, it is possible to have labels, GOTO statements, IF statements or blocks, and DO

loop blocks.

See the description of the EXECUTE command in the PHYSICA Reference Manual for more information.
See also the descriptions of other relevant commands: STACK, TERMINAL, RETURN, DISPLAY, INQUIRE,
BELL, and WAIT.

3.2.4 Filename extension

The default script filename extension is .pcm, so, by default, the command @file is equivalent to
@file.pcm

The default filename extension can be changed with the EXTENSION command.

3.2.5 Comments

Comment lines are allowed in script files, where a comment line is any line that begins with an
exclamation mark, !. These lines are simply ignored, but can be useful for documentation purposes.
Comments can also be appended to the end of a line. Just start the comment with an exclamation
mark. For example:

READ file.dat x y z ! This is a comment

3.2.6 Echoing

If the ENABLE ECHO command is entered, the commands that are read from the file will be displayed
on the terminal screen. This is useful for following the progress of a script file. If ECHO is disabled,

12

Script files

with the DISABLE ECHO command, but is enabled within a script, it will be enabled only while within
that script.

3.2.7 Flow control

If the TERMINAL command is encountered in a script file, control passes back to the terminal. The
user interactively enters commands at this point. When a null line is entered, the script file then
recommences execution with the command immediately after the TERMINAL command.

If the RETURN command is encountered in a command file, or entered interactively after a TERMINAL

command, control passes back to the calling script, if there is one, or to the keyboard, if that script
was the top level script.

If control-c is typed while a script is executing, the entire script stack will be aborted, that is, no
matter how deeply the scripts are nested, program flow control is passed back to the keyboard.

3.2.8 Parameter passing

Parameters that are entered with the EXECUTE command and after the file name are used in one of
two ways. Either the nth parameter will replace the nth question mark, ?, that is found in the file, or
the nth parameter in the list will replace all ?n’s found in the file. For example, suppose you have the
following script file:

! This script file is called file.pcm

READ ?1 ?2 ?3

WRITE\APPEND ?1 x y

and you interactively enter the command

EXECUTE file file.dat a b or
@file file.dat a b

then file.dat is substituted for every occurrence of ?1, a is substituted for every occurrence of ?2,
and b is substituted for every occurrence of ?3. The commands that would be executed are:

READ file.dat a b

WRITE\APPEND file.dat x y

The same thing could be accomplished with sequential parameter substitution:

READ ? ? ?

WRITE\APPEND ? x y

but you would have to enter EXECUTE file file.dat a b file.dat to get the same result.

Sequential parameters must be in a one-to-one correspondence with the ?’s and in the correct order.
It is possible to mix sequential and numbered parameters in the same file, but it is not recommended

13

Script files

as this can be very confusing.

3.2.9 Initialization file

It is possible to have individualized sets of PHYSICA defaults by means of initialization script files.
Create a script file and assign its name before running the program. That script will then be executed
automatically whenever PHYSICA is run.

VMS: The file assigned to the logical name PHYSICA$INIT is executed.
DEFINE PHYSICA$INIT your_initfile

You could include this assignment in your DCL login command file.

UNIX: The file assigned to the environment variable PHYSICA_INIT is executed.
setenv PHYSICA_INIT your_initfile

If PHYSICA_INIT is undefined, the file .physicarc in the current directory is exe-
cuted. If this file doesn’t exist, the file $HOME/.physicarc is executed. No further
action is taken if this file doesn’t exist.

3.2.10 Creating script files interactively

Executable script files may be created while running PHYSICA by making use of the STACK command.
Subsequent input to the program will be written to the specified stack file.

Any incorrect commands that are entered interactively will not be stacked in the file, and any inap-
propriate command parameters will be corrected before they are written to the stack file.

3.2.11 Labels and GOTO statements

Labels and GOTO’s can only be used in script files.

A label is a string terminated with a colon, :, with no embedded blanks. A label must be on a line by
itself.

Use a GOTO to branch to a label. Do not include the colon with the label after a GOTO. For example:

...

GOTO A_LABEL

...

A_LABEL:

...

3.2.12 DO loop blocks

DO loops can only be used in script files.

DO loops in PHYSICA are similar to Fortran do loops, but must be terminated with an ENDDO statement.
The range of the looping variable can be any expression resulting in a vector. The loop will execute
a number of times equal to the length of the loop range vector, with the loop variable taking on

14

Script files

successive values of the loop range vector. Nested loops are allowed. The maximum number of DO
loops in a script is fifty (50).

The looping variable will be made into a scalar variable. In the following example, the variable J will
be a scalar.

...

DO J = X ! looping variable is J, range of the loop is X

... ! J will take on each value of X

ENDDO

...

The looping variable is initialized to the first value of the loop range. The commands contained within
the loop block are executed a number of times equal to the length of the loop range vector.

3.2.13 IF statements and blocks

IF statements and blocks can only be used in script files.

The general form of an IF statement is: IF (boolean) THEN instruction

The general form of an IF block is:

IF (boolean) THEN

...

ENDIF

Use an IF statement to execute a single instruction. Use an IF block to execute a block of instruc-
tions. An IF block must be terminated with an ENDIF.

The boolean can be any expression with a scalar result. The boolean expression can take any form,
but must be a simple function or it must be enclosed in parentheses. If the result of the boolean is
one (1) it is true, otherwise it is false.

Nested IF blocks are allowed. The maximum number of IF blocks in a script is fifty (50).

The following are examples of IF statements.

...

IF EXIST(B) THEN DISPLAY ‘variable B has already been made’

IF (A>B) THEN DISPLAY ‘A > B’

IF (A=B) THEN DISPLAY ‘A = B’

IF (A<B) THEN DISPLAY ‘A < B’

...

The following is an example of an IF block.

15

Instruction types
...

IF (A>B) THEN ! an example of an IF block

...

ENDIF

...

The following is an example of IF blocks used with GOTO’s.

!

J=5

START:

IF (J>8) THEN GOTO END

...

J=J+1

GOTO START

END:

J=5

START2:

IF (J<=8) THEN

...

J=J+1

GOTO START2

ENDIF

3.3 Instruction types

There are four types of PHYSICA instructions. See Table 3.11.

Operating system commands input that starts with a dollar sign, $, for VMS
input that starts with a percent sign, %, for UNIX

Assignments input of the form variable = expression

Evaluations input of the form = expression

Program commands all other input

Table 3.11: Instruction types

Comments are allowed on assignment, evaluation and program command lines, but not on operating
system commands. A comment begins with an exclamation mark, !, and continues to the end of the
line. An input line can be simply a comment.

3.3.1 Operating system commands

16

Instruction types

VMS: Any input line that begins with a dollar sign, $, is considered to be a DCL com-
mand. These commands are executed by spawning a subprocess.

UNIX: Any input line that begins with a percent sign, %, is considered to be a UNIX
command and are passed on to the shell.

3.3.2 Assignments

An assignment stores the value, or values, of an expression into an output variable. An assignment
has the form

variable = expression

where expression is some combination of no more than 1500 literal constants, variables, functions,
and operators. For example:

Y=A*COS(X)+3*SIN(X/6)+C*EXP(-X)

The output variable is the variable on the left side of the equal sign. The type of variable generated
by an assignment is determined by the expression or by indices on the output variable.

If the output variable does not exist, it is created. If the output variable exists but its type is different
than that indicated by the assignment, it is destroyed first and then recreated as the appropriate
type. If the output variable already exists, and is of the right type, with dimension greater than or
equal to the dimensions specified by an index, then just the necessary elements are changed. If the
output variable exists, and is of the right type, with dimension less than that specified by an index,
then the variable dimension will be expanded, and the new, unassigned, elements will be zero filled.

For example:

X=2 ! defines X to be a scalar

X=[1:10] ! now X is a vector of length 10

X[6:15]=[3:12]*2 ! X[1:5] are unchanged, X now has length 15

X[2:7]=[-7:-2] ! X still has length 15

X[10:20]=[1:5] ! now X has length 20, elements 15 to 20 are zero

3.3.2.1 String variable assignments

A string assignment stores the value of a string into a string variable. A string assignment has the
form:

variable = string

where string is some combination of literal strings, string variables, string functions, and string
operators. A simple example of a string assignment: T=‘ This is a string’ after which T has the
value ‘ This is a string’.

17

Instruction types

A literal quote string is any set of characters enclosed in quotes, that is, an opening quote, ‘, and a
closing quote, ’.

3.3.3 Evaluations

An evaluation is similar to an assignment, except that the value(s) of the expression are displayed
on the terminal screen and not stored in variables. An evaluation has the form

=expression

For example: =(6.5/44)*COSD(30)

3.3.4 Comments

Any input line that begins with an exclamation mark, !, is considered to be a comment line. Com-
ments are simply ignored. Comments can also be appended to the end of any input line, just start
the comment with an exclamation mark.

If a comment line is read from a script file and echoing has been turned on with the ENABLE ECHO

command, the comment will be displayed on the terminal screen.

3.3.5 Program commands

It is assumed that if an input line is not an operating system command, an assignment or an
evaluation, then it must be a command line. In general, a command line consists of a command
field, followed by one or more parameter fields. The maximum number of parameter fields is forty-
nine (49).

The general form for a command line is:

command\qualifier...\qualifier p1\qualifier p2\qualifier ...

The parameter fields in a command line are separated by commas and/or blanks. If a field is
enclosed by quotes, ‘ ’, or parentheses, (), then enclosed commas and blanks are considered to
be a part of that field. For example, the following command lines:

command\qualifier p1 ‘a, test line’ p3

command\qualifier p1 (a, test line) p3

consists of four fields:

1. command\qualifier

2. p1

3. a, test line

4. p3

18

Variables

VMS: Whenever you are prompted for a command parameter, typing control-z, that
is, simultaneously pressing the control key and the z key, aborts execution of
that command, and of the script and any higher level calling scripts. If you
type control-space, which is a null, only that command, not the script, will be
aborted.

UNIX: Whenever you are prompted for a command parameter, typing control-d aborts
execution of that command, and of the script and any higher level calling scripts.
If you type control-space, which is a null, only that command, not the script,
will be aborted.

To make use of a default value for a command parameter, indicate the position of that parameter by
entering a null field. Two successive commas define a null field. For example, the command line:
command p1,,p3 has three parameter fields, with a second parameter field which is null.

3.3.5.1 Qualifiers

Command qualifiers are attached to a command and separated from the command, or from a pre-
ceding qualifier, by a backslash, \. No blanks are allowed in a qualifier.

A qualifier can be negated, if it makes sense to do so, by preceding the qualifier with a minus sign,
or with NO. For example, \COLOUR can be negated with \-COLOUR or by \NOCOLOUR.

Some commands allow qualifiers on parameters. For example:

READ file.dat\[line1:line2] x\a y\b

4 VARIABLES
All numeric literals in PHYSICA are stored internally as double precision real numbers. Numeric
valued variables are stored internally as double precision real numbers, but PHYSICA also allows
string valued variables. Table 4.12 shows the variable types.

scalar a single number
vector a one dimensional list of numbers
matrix a two dimensional array of numbers
string a character string
string array an array of strings

Table 4.12: Variable types

Except for some variables which are created automatically by various commands, each variable is
named by the user.

4.1 Number and size of variables

Other than restrictions due to memory allocation on your computer, there is

19

Variables

• no maximum number of vectors, scalars or matrices
• no maximum length for vectors and no maximum size for matrices
• no maximum number of string variables
• no maximum dimension for string array variables
• no maximum length for string variables
• no maximum length for string elements of string array variables

4.2 Variable names

The first character of a variable name must be an alphabetic character, that is, A to Z. Except for this
restriction, variable names can be any combination of:

alphabetic characters ABC...XYZ digits 0123456789

underscore dollar sign $

The maximum length of a variable name is thirty-two (32) characters.

All variable names are stored internally as upper case, but can be refered to as upper or lower case.

Function names and some other keywords are reserved names and cannot be used as variable
names. See Table 4.13 for a list of the reserved keywords. See the PHYSICA Reference Manual for a
list of the function names.

ALL ARC ARROW AUTOHEIGHT BOX

CAREA CCONT CIRCLE CLOSE COMMENSURATE

CVOLM CXMIN CXMAX CYMIN CYMAX

DAREA DVOLM DCONT EDIT ELLIPSE

FRAME GRAPH HEIGHT IFF LANDSCAPE

LIST NSYMBOLS OFF ON OPEN

PHYSICA POLYGON PORTRAIT STATUS SUB1

SUB2 SUB3 SUB4 SUB5 SUB6

SUB7 SUB8 TITLE TRANSPARENCY WEDGE

XAXIS YAXIS

Table 4.13: Reserved keywords

The VARNAME function accepts a variable, either string or numeric, as its argument, and converts
that variable’s name into a string. For example, a=VARNAME(x) would create a string variable called
A with the value ‘X’.

4.3 Indices

Indices can be used on any numeric variable, except scalars, and on any string variable. A string
variable is a string, and can have only one index, which is interpreted as a character index. A string
array variable is an array of strings, and can have either one or two indices. If one index is used, it is

20

Variables

assumed to be an array index. If two sets of indices are used, the first is assumed to an array index
and the second is assumed to be a character index. Indices can also be used on functions, and on
expressions. An index can be a simple numeric literal or a complicated expression. Indices can also
be nested.

4.3.1 Special characters

There are two special characters that are defined only within a variable index: # denotes the last
element of a dimension, and * denotes the entire range of a dimension. The * character is not
allowed on string variables. The # character can be used in an index expression, for example, X[#-1]
is the next to last element of vector X. Refer to Table 4.14 on page 21 for some examples of these
special index characters.

X[#] is the last element of vector X

TS[#] is the last character of string variable TS

TA[#] is the last string of string array variable TA

TA[#][3:7] is characters 3 to 7 of the last string of TA
M[#,2:10] is elements 2 to 10 from the last row of matrix M

M[3:12,#-1] is elements 3 to 12 from the next to last column of M

X[*] is all of vector X

M[3,*] is all of row 3 from matrix M

M[*,5] is all of column 5 from M

Table 4.14: Index special character examples

and * cannot be used in indices on output variables, since they would be undefined. They also
cannot be used in indices on functions or in indices on expressions.

4.3.2 Index on a function or expression

Indices can be used on any function, except for the array functions LOOP, SUM, PROD, RSUM, and RPROD.
For example, if x and y are vectors of length 10, then sin(x+y) is also a vector of length 10, and an
index can be used, such as sin(x+y)[3]. The special index characters # and * cannot be used in
indices on functions.

Indices can be used on an expression. For example, if x and y are vectors of length 10, then (x+y) is
also a vector of length 10, and an index can be used, such as (x+y)[3]. The special index characters
and * cannot be used in indices on expressions.

4.3.3 Index as an expression

An index can be any expression that results in a scalar or a vector. The index expression is evaluated
first, and the resultant values are truncated to integers. For example, suppose x = [1;2;3;...;100],
then:

21

Scalars

=x[1:10:2] ! displays 1 3 5 7 9

=x[2.1;2.5;2.9] ! displays 2 2 2

y=[2:5] ! define Y to be 2 3 4 5

=x[y/2+3] ! displays 4 4 5 5

z=[2;3] ! define Z to be 2 3

=x[y[z+1]-2] ! displays 2 3

4.3.4 Index starting value

By default, a variable index starts at one (1), but you can define variable indices to start at any
integer value, positive or negative. For example:

x = [1:100] ! define a vector X to be the numbers 1;2;3;...;100

x[-5:3]=x[1:9] ! redefine X to have a starting index of -5

SHOW x ! display information on vector X

vector indices length type history

X [-5:100] 106 X[-5:3]=[1:9]

y=[1:106] ! make vector Y with same length as X, starting at 1

z=x+y

SHOW\VECTORS ! display information on all vectors

vector indices length type history

X [-5:100] 106 X[-5:3]=[1:9]

Y [1:106] 106 Y=[1:106]

Z [1:106] 106 Z=X+Y

The FIRST function returns a scalar value equal to the starting index of a vector, while the LAST

function returns the final index of a vector. The LEN function returns a scalar value equal to the
total length of a vector. The VLEN function returns a vector whose nth element is the length of the
nth dimension of its argument. VLEN of a vector returns a vector of length 1, while VLEN of a matrix
returns a vector of length 2.

Note: The CLEN function returns a scalar value equal to the length of a string. The TLEN command
gives the number of string elements in a string array.

4.4 Scalars

A scalar is a single valued double precision real numeric variable. A scalar can be used wherever a
single numeric value is expected. Indices have no meaning, and so are not allowed on scalars.

A literal scalar can be a single number, such as, 3.456, or an expression that results in a single
number, such as LEN(x)+2.

22

Vectors

Table 4.15 shows the possible ways that variables can be considered to be equivalent to scalars, that
is, can be used wherever scalars are expected.

Let a and b be scalars
Suppose that M is a matrix, V is a vector, and S is a scalar
S = the value of S
V[a] = the value stored in the ath element of V
M[a,b] = the value stored in row a and column b of M

Table 4.15: Scalar variable equivalents

4.5 Vectors

A vector is a one dimension array of double precision real numbers. A vector can be thought of as a
list of numbers. There is no maximum length for vectors.

A literal vector can be a list of numbers, such as, [3;4.2;.456;-8], or a range of numbers, such as,
[3:21:2], or an expression that results in a list of numbers, such as 3*[2:5]^2. Elements of a list
are separated by semicolons, ;, while the colon, :, is used as the range element separator.

Table 4.16 shows the possible ways that variables can be considered to be equivalent to vectors, that
is, can be used wherever vectors are expected.

Let a be a scalar and let x be a vector.
Suppose that M is a matrix and V is a vector.
V = V[i] for i = 1, . . . , LEN(V)

V[x] = V[i] for i = x[i], x[2], . . ., x[#]

M[x,a] = M[i,a] for i = x[i], x[2], . . ., x[#]

M[a,x] = M[a,j] for j = x[i], x[2], . . ., x[#]

Table 4.16: Vector variable equivalents

All vectors have an order property. Vectors are either in ascending order, descending order, or un-
ordered. The type is displayed in the SHOW command, where +O means ascending order, -O means
descending order, and no symbol means un-ordered. For now, being ordered only has an affect on
the vector union, /|, and the vector intersection, /&. These operations are much faster if the vector
operands are ordered. The WHERE function produces an ascending order vector, as does the SORT\UP
command. The SORT\DOWN command produces a descending order vector. This new vector property
will be utilised more in the future to enhance speed and efficiency.

4.6 Matrices

A matrix is a two dimensional array of double precision real numbers, with rows and columns. The
row and column indices of a matrix are separated with a comma. The row dimension is specified
first. There is no maximum size for matrices.

A literal matrix can be a list of vectors, such as, [[1;2;3];[4;5;6];[7;8;9]], or an expression that

23

String variables

results in a matrix, such as [2:5]><[2:6]. Elements of a list are separated by semicolons, ;.

Table 4.17 shows the possible ways that variables can be considered to be equivalent to matrices,
that is, can be used wherever matrices are expected.

Let x and y be vectors
Suppose that M is a matrix.
M = M[i,j] for i = 1, . . . , VLEN(M)(1), j = 1, . . . , VLEN(M)(2)

M[x,y] = M[i,j] for i = x[i], x[2], . . ., x[#], j = y[i], y[2], . . . , y[#]

Table 4.17: Matrix variable equivalents

4.7 String variables

String variables can be used wherever strings are expected, such as file names and keyword param-
eters.

A string is defined to be a one dimensional array of ASCII characters. A string can be a literal
quote string, such as, ‘this is a quote string’, or an expression that results in a string, such as
RCHAR(35.6).

A literal quote string must begin with an opening quote, ‘ and end with a closing quote, ’.

A string variable is a single string, that is, a one dimensional array of characters. A string array
variable is an array of strings. An element of a string variable is a single character. An element of
a string array variable is a string. There is no maximum length for either a string variable or any
element of a string array variable, nor a maximum number of elements of a string array variable.
The elements of a string array variable need not be the same length.

The CLEN function returns a scalar value equal to the length of a string. The TLEN command gives the
number of string elements in a string array.

A string variable, or an element of a string array variable, can be entered directly by means of an
assignment. For example:

TS=‘This is a string’ ! string variable

TA[3]=‘This is a string’ ! array string variable: third element

An entire string array variable can be created with the READ\TEXT command.

Commands that expect strings, such as the TEXT command, which draws a string, or the PLOTTEXT

command, which expects a file name as a parameter, will only accept a single string. Remember,
though, that a string can be a literal quote string, a string variable, one element of a string array
variable, and/or some combination of string functions and string operators.

Table 4.18 shows all of the possible ways that a string variable can be considered to be equivalent to
a single string, that is, can be used wherever a string is expected.

24

String variables

Let a be a scalar and let x be a vector
Suppose that TA is a string array variable and T is a string variable
T = T[i] for i = 1, . . . , CLEN(T)

TA[a] = TA[a][i] for i = 1, . . . , CLEN(T[a])

T[x] = T[i] for i = x[i], x[2], . . . , x[#]

TA[a][x] = TA[a][i] for i = x[i], x[2], . . . , x[#]

Table 4.18: String variable equivalents

4.7.1 Appending strings

Strings may be appended together using the append operator, //. For example, suppose that T is
a string variable with the value ‘this is a string’. You can make a new string variable using the
assignment:

T2=‘start of new string ’//T//‘ end of new string’

and T2 will have the value: ‘start of new string this is a string end of new string’.

A variable name can be converted to a string by means of the VARNAME function. A scalar value can
be converted to a string by means of the RCHAR function. For example, if A is a scalar with the value
−1.234, and T is a string variable with the value ‘ units’, then the assignment:

T2=‘The value of ’//VARNAME(A)//‘ is ’//RCHAR(A)//T

makes a string variable T2 with the value: ‘The value of A is -1.234 units’.

A format string is allowed as the second argument of the RCHAR function. For example:

T2=‘The value of ’//VARNAME(A)//‘ is ’//RCHAR(A,‘F4.1’)//T

makes a string variable T2 with the value: ‘The value of A is -1.2 units’.

For information on VARNAME, RCHAR and other string functions, refer to the PHYSICA Reference Manual.

4.7.2 Expression variables

String variables can be used in numeric expressions, as so called expression variables, to shorten or
to simplify an expression. Parentheses around an expression variable are assumed during a numeric
evaluation. For example:

T=‘A+B’

Y=X*T ! this is equivalent to Y=X*(A+B)

A string variable will be numerically evaluated if it is a numeric operand or the argument of a numeric
function. Otherwise, a string variable is treated as a string. You can force numeric evaluation by

25

String variables

using the EVAL function. For example:

T=‘3+2’ ! define T to be a string variable

=T ! the string ‘3+2’ will be displayed

=EVAL(T) ! the numeric value 5 will be displayed

The EXPAND function produces a string by parsing the input string and expanding any expression
variables present in this string. If an expression variable, contained in the original string, also
contains expression variables, they are also expanded, and so on until all such expression variables
have been expanded. Syntax checking is done during the expansion.

The maximum length of a completely expanded expression is two thousand five hundred (2500)
characters.

As an example of expression variable use, consider the following set of instructions:

A=2 ! define a scalar A

B=3 ! define a scalar B

FC1=‘(A+B)/A’ ! define a string variable FC1

FC2=‘SQRT(A/B)’ ! define a string variable FC2

FC3=‘FC1*FC2’ ! define a string variable FC3

FC4=‘FC3+4*FC2’ ! define a string variable FC4

=FC4 ! displays ‘FC3+4*FC2’

=EXPAND(FC4) ! displays ‘(((A+B)/A)*(SQRT(A/B)))+4*(SQRT(A/B))’

=EVAL(FC4) ! displays 5.307228

26

Graph Examples

5 GRAPH EXAMPLES
5.1 Basics

Let’s start with a graph of vector Y versus vector X, using all the program defaults. First we generate
some ‘data’, then set up the automatic axis labels and then draw the graph.

X = [1:180:2]*PI/180

Y = SIN(X)

LABEL\X ‘X (Radians)’

LABEL\Y ‘SIN(X)’

GRAPH X Y

Now consider the following commands, which produce two graphs in seperate windows.

WINDOW 5

LABEL\XAXIS ‘cosh(x)+sin(1/(.1+x<^>2<_>)) vs. x’

X=[0:3:.01]

GRAPH X COSH(X)+SIN(1/(.1+X^2))

WINDOW 7

LABEL\XAXIS ‘x*cos(x) vs. x*sin(x)’

X=[0:19*PI:.5]*2.55555

GRAPH SIN(X)*X COS(X)*X

27

Graph Examples

5.2 A script to plot a curve with axes

The script file, graph.pcm, listed below, reads two columns of numbers, in free format, from a file. The
name of the file is passed to the script via the generalized parameter, ?1. The first column is stored
in a vector called X and the second column is stored in a vector called Y. The script then produces an
autoscaled graph of Y versus X using joined plotting symbols. Plotting symbol number one, a ‘box’, is
used. The plot is then labeled with the date and time, positioned interactively. Note that comments
begin with a !.

! script file graph.pcm

!

READ ?1 X Y ! read two columns of numbers into vectors X and Y

SET PCHAR 1 ! plotting symbol #1, joined

GRAPH X Y ! plot the data, autoscaled, with axes

TEXT DATE ! draw the current date using the graphics cursor

TEXT TIME ! draw the current time using the graphics cursor

The figure below was produced by entering the command: @graph file.dat The data file, with
two columns of numbers, is also shown below.

1.1 2.2

1.2 2.4

1.3 2.6

1.4 3.1

1.5 4.5

1.6 5.1

5.3 Read some data and plot two curves on common axes

The script file, graph.pcm, listed below, reads three columns of numbers from a file. The filename is
passed to the script via a generalized parameter, ?1. The first column is stored in a vector called X,
the second column is stored in a vector called Y1, and the third column is stored in a vector called
Y2. The script then produces a graph of Y1 versus X and overlays a curve of Y2 versus X. It then
replots both curves on a common scale. Identifying text is read into a string array variable called
TXT and located on the plot with the graphics cursor. The date and time are also drawn on the plot,
but the position and justification are pre-set, so the graphics cursor is not used. The figure below
was produced by entering the command: @graph file.dat The data file, with three columns of
numbers and two lines of header is also shown below.

28

Graph Examples

THIS IS ONE HEADER LINE

THIS IS ANOTHER HEADER LINE

1.1 2.2 -3.3

1.2 2.4 -3.6

1.3 2.6 -4.6

1.4 3.1 -5.7

1.5 4.5 -6.2

1.6 5.1 -7.9

! script file graph.pcm

!

READ\TEXT\CONTINUE ?1\[1:2] TXT ! read string array variable from lines 1 and 2

! and don’t close the file after

READ ?1 X Y1 Y2 ! read vector data (starting in line 3)

GRAPH X Y1 ! plot data with axes

SET LINTYP 10 ! change line type

GRAPH\-AXES X Y2 ! overlay a curve

REPLOT ! replot on common scale

TEXT TXT[1] ! draw the first text string

TEXT TXT[2] ! now the second string

SET

%TXTHIT 1.5 ! set text height to 1.5% of the window height

%XLOC 95 ! set text x location to 95% of window width

%YLOC 2 ! set text y location to 95% of window height

CURSOR -3 ! set text justification to right justification

! blank line to finish SET command

TEXT DATE//‘ ’//TIME ! plot the date and time, not positioned interactively

DEFAULTS ! reset program defaults

29

Graph Examples

5.4 Using four windows to draw four graphs

The following set of commands will draw log(x)
versus x with no plotting symbol, the data points
joined by straight line segments, and on the same
page but in other windows, sin(x) versus x with
unjoined ‘diamond’ symbols,

∫
sin(x) versus x with

joined ‘star’ symbols, and finally a histogram of
some randomly generated ‘data’.

X = [1:50] ! fake some ‘data’

WINDOW 5 ! choose a physica window

SET PCHAR 0 ! no plotting symbol

GRAPH X LOG(X) !

WINDOW 6 !

SET PCHAR -5 ! unjoined ‘diamonds’

GRAPH X SIN(X/50*PI) !

WINDOW 7 !

SET PCHAR 14 ! joined ‘stars’

GRAPH X INTEGRAL(X,SIN(X/50*PI)) !

WINDOW 8 !

SET HISTYP 1 ! choose histogram type

GRAPH X RAN(X)*10 !

5.5 Getting the axis numbers right

Suppose you want a y-axis number range from 0 to 0.0008 and an x-axis number range from −40 to
30. You set the axis scales with the commands below and by default you will get the left axis box in
Figure 5.4.

SCALE -40 30 0 .0008 ! x-axis: -40 to 30, y-axis: 0 to 0.0008

GRAPH\AXESONLY ! only plot the axes

But suppose you want the y-axis numbers to be of the form n.0 with something like (×10−m) included
as part of the y-axis label. Then you could enter the commands below to produce the axis box on
the right in Figure 5.4.

SET

30

Graph Examples

Figure 5.4: Numbering the axes

YPAUTO 0 ! do not automatically calculate the y-axis power

YPOW -4 ! set the y-axis power

NYDEC 1 ! number of decimal places for y-axis numbers

NYDIG 3 ! number of digits for y-axis numbers

! blank line finishes the SET command

SCALE -40 30 0 .0008 ! set the axis scales after the numbering format

GRAPH\AXESONLY ! just plot the axes

5.6 Plotting symbols

To illustrate one way to set up plotting symbols for a graph, consider the following commands, which
produce the left graph in Figure 5.5 on page 32.

SET %CHARSZ 3 ! make the plotting symbols bigger

SET PCHAR -14 ! plotting symbols to be unjoined ‘star’s

X=[1:20] ! create vector X = {1;2;3;...;20}

GRAPH X X ! draw the graph

SET PCHAR 1 ! plotting symbols to be joined ‘box’s

GRAPH\-AXES X X+2 ! overlay a curve

5.6.1 Size and angle

To illustrate how to control the size and angle of the plotting symbols, consider the following com-
mands, which produce the graph on the right in Figure 5.5 on page 32.

GENERATE X 0,,PI 30 ! make some ’data’

GENERATE SIZE 0,,2 30 ! symbol size vector

GENERATE ANGLE 0,,360 30 ! symbol angle vector

31

Graph Examples

(a) Simple setup (b) Size and angle

Figure 5.5: Plotting symbols

SET PCHAR -18 SIZE 1 ANGLE ! ’centred arrow’ symbols, unjoined, all colour 1

SET BOX 0 ! turn off graph box

GRAPH X SIN(X) ! plot sin(x) vs. x

5.6.2 Plotting a vector field

The following commands illustrate one way to plot
a vector field, where the angle of the plotting sym-
bols conveys information.

GENERATE A 0,,360 20 ! create vector A: min= 0, max= 360, length= 20

GENERATE R 5,,5 20 ! create vector R: min= 5, max= 5, length= 20

SET PCHAR -18 1 1 A ! symbol ‘centered arrow’, size 1, colour 1, angle A

GRAPH\POLAR R A ! draw graph in polar coordinates

GRAPH\-AXES\POLAR R/2 A ! overlay curve in polar coordinates

SET PCHAR -18 1 1 90-A ! symbol ‘centered arrow’, size 1, colour 1, angle 90-A

GRAPH\-AXES\POLAR 3*R/4 A ! overlay curve

32

Graph Examples

5.7 A graph with two y axes

Figure 5.6: A graph with two y axes

This example illustrates one way to display two
different y axes on a single graph. See Fig-
ure 5.6. Suppose we have three vectors, a, b,
and frequency and we want to plot a and b ver-
sus frequency on one set of axis scales, and then
plot some function of a and b versus frequency

in the same axis box, but with a different y-
axis scale on the right. We also want to la-
bel the curves and the axes. Note: The REPLOT

command does not work with this type of con-
structed graph.

Start by generating some “data” to plot, and
then executing the 2yaxes.pcm script, passing
the newly created vectors as parameters. This
script allows you to try out any function of a and
b.

frequency=[1:90]

a=sqrt(frequenc)

b=frequency^0.3

@2yaxes frequency a b ‘abs(0.3*A-B)’

! this is the 2yaxes.pcm script

!

xtemp = ?1 ! the x variable

ytemp = ?2 ! the first y variable

ztemp = ?3 ! the second y variable

fnc = ?4 ! an expression (string) variable

set

rittic 0 ! turn off right side tics

lintyp 3 ! choose a line type

%xuaxis 85 ! move the right side in for numbers and label

colour 1 !

scale min(xtemp) max(xtemp) min([ytemp;ztemp]) max([ytemp;ztemp])

graph xtemp ytemp

set lintyp 5

graph\-axes xtemp ztemp

!

lenf = len(xtemp)

world\percent xtemp[10] ytemp[10] xloc1 yloc1 ! for labeling the curves

world\percent xtemp[lenf-5] ztemp[lenf-5] xloc2 yloc2 !

set

33

Graph Examples

%xloc xloc1-2

%yloc yloc1+2

cursor -2

text varname(?2)

set

%xloc xloc2-2

%yloc yloc2+2

cursor -2

text varname(?3)

get

%xuaxis xux

%ylaxis ylx

%yuaxis yux

%yiticl yiticl

set

xaxis 0 ! turn off both axes

yaxis 0 !

box 0 ! turn off the box

lintyp 1 !

colour 2 !

scale min(xtemp) max(xtemp) min(fnc) max(fnc)

graph xtemp fnc

world\percent xtemp[lenf/2] (fnc)[lenf/2] xloc1 yloc1

set

%xloc xloc1-2

%yloc yloc1-15

cursor -2

text ‘<c2>’//fnc ! label the curve

set

yitica -90 ! rotate the yaxis numbers

ytica -90 ! rotate the yaxis tics

%yiticl yiticl*1.2 ! move the numbers out a bit

%xlaxis xux ! move the y-axis to the right side

yaxis 1 ! only turn on the y-axis

graph\axesonly

set

%xloc 4

%yloc (yux+ylx)/2

cursor -10

txtang 90

34

Graph Examples

text ‘<c1>’//varname(?2)//‘ and ’//varname(?3) ! label the axes

set

%xloc 96

%yloc (yux+ylx)/2

cursor -10

txtang -90

text ‘<c2>’//fnc

destroy xtemp ytemp ztemp xloc1 yloc1 xloc2 yloc2 fnc

defaults

5.8 Two x axes

This example illustrates one way to add tic marks
at arbitrary user-defined locations on a second x-
axis. See the Figure opposite. First, generate some
“data” and create a vector with the locations of the
tic marks, in graph units.

Then the data is plotted, followed by the conver-
sion of the tic mark locations into world units so
the locations of the numbers to be drawn above
the tic marks can be determined. The trick here is
to plot the tic marks as if they were data.

x = [1:10] ! fake some data

y = x^2 !

x2 = [1.2;2.5;4.3;8.9] ! locations for tic marks (in graph units)

lx2 = len(x2) ! length of vector x2

y2 = [1:lx2] ! y2 = [1;2;3;4;...]

set

toptic 0 ! turns off automatic tic marks on top axis

pchar 2 ! plotting character 2 (connected)

autoscale on ! autoscale the plot

graph x y ! graph the data with numbers on bottom axis

get

%xnumsz xnumsz ! x-axis number size (% of window)

%ylaxis ylaxis ! location of bottom of y-axis (% of window)

%yuaxis yuaxis ! location of top of y-axis (% of window)

%xiticl xiticl ! distance from x-axis to numbers (% of window)

ylaxis ylaxisw ! location of bottom of y-axis (world units)

yuaxis yuaxisw ! location of top of y-axis (world units)

35

Graph Examples

xiticl xiticlw ! distance from x-axis to numbers (world units)

ymin ymin ! number at bottom of y-axis

ymax ymax ! number at top of y-axis

!

! figure out where to plot the tic marks

!

y1 = xiticlw/(yuaxisw-ylaxisw)*(ymax-ymin)+ymax

yloc = yuaxis+1.2*xiticl ! y location for plotting the numbers

set

%txthit xnumsz ! text height (% of window)

cursor -2 ! centre justification

%yloc yloc ! y location for text (% of window)

txtang 0 ! text angle

clip 0 ! allow plotting outside of axis box

pchar 0 ! no plotting symbol

world\percent x2 y2 xp yp ! convert graph units to % world coordinates

do j = [1:lx2] ! for each large tic mark

set %xloc xp[j]

text rchar(x2[j]) ! draw the upper x-axis numbers

graph\-axes [x2[j];x2[j]] [ymax;y1] ! plot the tic marks on top of box

enddo

5.8.1 Non-linear user-defined axis

This example illustrates one way to have two x

axes on the same plot. The goal here is to plot
one function versus another function, instead of
a function versus an independent variable, and to
show functional values on the bottom x-axis and
the original “independent” variable on the upper x-
axis. Of course, the upper axis will be non-linear.
See the figure opposite.

In this case, suppose x = cosd(θ) and y = x2. We
want to plot y versus x, with the bottom x-axis
scaled to the values of the cosd function, and the
upper x-axis scaled to the values of θ. First, we
generate some ‘data’.

generate theta 0,,180 100 ! make a vector with 100 elements from 0 to 180

x = cosd(theta)

y = x^2

x2 = [0;45;90;135;180] ! the upper axis large tic mark locations

36

Graph Examples

x3 = [5;10;15;20;25;30;35;40] ! the upper axis small tic mark increments

The trick here is that the upper x-axis tic marks are plotted as if they were data, in relation to the
lower x-axis scales.

lx2 = len(x2) ! length of vector x2 = number of large tic marks

y2 = [1:lx2] ! y2 = [1;2;3;4;...]

xupper = cosd(x2) ! convert to functional values

lx3 = len(x3) !

y3 = [1:lx3] !

set

%yuaxis 85 ! make room for a label

toptic 0 ! turn off automatic tic marks on top axis

pchar 0 ! no plotting symbol

autoscale on ! autoscale the plot

xtica 90 ! tic marks to point inside the axis box

ytica -90 !

label\xaxis ‘Cos(<theta>)’

label\yaxis ‘Cos<^>2<_>(<theta>)’

graph x y ! draw the graph with the bottom x-axis

get

%xnumsz xnumsz ! number size on x-axis

%ylaxis ylaxis ! lower end of y-axis (as % of window)

%yuaxis yuaxis ! upper end of y-axis (as % of window)

%xiticl xiticl ! distance from x-axis to top of numbers (as %)

ylaxis ylaxisw ! lower end of y-axis (world units)

yuaxis yuaxisw ! upper end of y-axis (world units)

xiticl xiticlw ! distance from x-axis to top of numbers (world units)

ymin ymin ! number at bottom of y-axis

ymax ymax ! number at top of y-axis

ticlen = xiticlw/(yuaxisw-ylaxisw)*(ymax-ymin)

y1 = ymax+ticlen

y11 = ymax+0.5*ticlen

yloc = yuaxis+1.2*xiticl

set

%txthit xnumsz ! height of text (% of window height)

cursor -2 ! centre justify text

%yloc yloc ! vertical location of text

txtang 0 ! text angle (degrees)

clip 0 ! allow plotting outside of axis box

world\percent xupper y2 xp yp ! convert graph units to % of window

do j = [1:lx2] ! for each large tic mark ...

37

Graph Examples

set %xloc xp[j] ! set horizontal location of text

text rchar(x2[j]) ! draw the upper x-axis numbers

graph\-axes [xupper[j];xupper[j]] [ymax;y1] ! draw large tic marks

xtmp = cosd(x2[j]+x3) ! on top of box

world\percent xtmp y3 xpp ypp

do k = [1:lx3]

graph\-axes [xtmp[k];xtmp[k]] [ymax;y11] ! draw small tic marks

enddo ! on top of box

enddo

get ! find the mid point of the x-axis

%xuaxis xux

%xlaxis xlx

set

%xloc (xux+xlx)/2 ! position a label at the mid point

%yloc 95

cursor -2 ! centre justify

text ‘<theta> (degrees)’

defaults

5.9 Using two adjoined axis frames

The following example script file produces a drawing for inclusion into a publication. Figure 5.7 on
page 39 illustrates the drawing that results from execution of this script. The data for this figure is
not included here.

CLEAR ! clear graphics

ORIENTATION PORTRAIT ! choose orientation

SCALE -10 40 5 0.0 8 8 ! set axis scales

WINDOW 12 5 0 100 100 ! define and use a window

FILE=‘afig.dat’ ! define a file name

READ FILE//‘1’ E Z0 Z6\4 ! read data from afig.dat1

READ FILE//‘2’\10 EK K0 K5 ! read afig.dat2 starting on line 10

READ FILE//‘3’\7 EW W6\4 ! read afig.dat3 starting on line 7

READ FILE//‘4’\9 EB A B ! read afig.dat4 starting on line 9

!

! following are needed for smoothing

GENERATE EKS MIN(EK),,MAX(EK) 100

GENERATE EWS MIN(EW),,MAX(EW) 100

GENERATE EBS MIN(EB),,MAX(EB) 100

!

! automatic axis labels

LABEL\X ‘Excitation Energy (MeV)’

LABEL\Y ‘<V4%>d<^>2<_,sigma>/d<OMEGA>/dE (mb/sr/MeV)’

38

Graph Examples

Figure 5.7: Two adjoined axis frames

39

Graph Examples

!

! lower frame of the figure

SET

FONT ROMAN.3 ! select text font

%YUAXIS 96 ! y-axis upper edge

%YNUMSZ 2.5 ! y-axis number size

%XNUMSZ 2.5 ! x-axis number size

YMOD 5 ! y-axis numbers modulo 5

NSYINC 2 ! number of short y-axis tics

LINTYP 3 ! line type

NSXINC 2 ! number of short x-axis tics

COLOUR 1

TENSION 0.1 ! spline tension for smoothing

LINTYP 3 ! set line type for data curve

GRAPH\AXESONLY ! just draw axes

! plot smoothed Klein 5 deg csx, long dashes

COLOUR BLUE ! choose colour

GRAPH\-AXES EKS SMOOTH(EK,K5,EKS) ! overlay smooth curve

! plot smoothed Wambach 6 deg csx, dash-dot

SET LINTYP 4 ! set line type

COLOUR RED ! choose colour

GRAPH\-AXES EWS SMOOTH(EW,W6,EWS) ! overlay smooth curve

! plot the 6 deg data, histogram form

SET

HISTYP 1 ! histogram without tails

LINTYP 1 ! line type

COLOUR MAGENTA ! choose colour

GRAPH\-AXES E Z6 ! overlay data curve

!

! now set up the upper frame of the figure

LABEL\X ! blank out x-axis label

SET

BOX 0 ! turn off axis box

%XNUMSZ 0 ! x-axis number size

YAXIS 0 ! turn off y axis

YCROSS 1 ! force axis crossing

YMIN -5 ! y-axis minimum

YMAX 3 ! y-axis maximum

COLOUR 1

GRAPH\AXESONLY ! just draw axes

! draw the 0 deg data

COLOUR RED ! choose colour

GRAPH\-AXES E Z0 ! overlay data curve

40

Graph Examples

SET

BOX 1 ! turn axis box on

HISTYP 0 ! turn off histogramming

LINTYP 3 ! line type

YAXIS 1 ! turn on y-axis

YCROSS 0 ! do not force axis crossing

%XLOC 19.9 ! text x location

%YLOC 90.8 ! text y location

%TXTHIT 2 ! text height

TXTANG 0 ! text angle

CURSOR -1 ! text justification

COLOUR BLUE !

TEXT ‘<theta>=1.4<X>A1<X>’

! plot Klein 0 deg csx with dashed line

SET LINTYP 3 ! set line type

COLOUR GREEN !

GRAPH\-AXES EKS SMOOTH(EK,K0,EKS)

! plot Bloom 0 deg csx with dotted line

SET LINTYP 9 ! set line type

SET COLOUR 1 !

GRAPH\-AXES EBS SMOOTH(EB,A,EBS)

COLOUR MAGENTA ! choose colour

GRAPH\-AXES EBS SMOOTH(EB,B,EBS) ! overlay smooth curve

SET

%XLOC 19.9 ! text x location

%YLOC 58.3 ! text y location

%TXTHIT 2 ! text height

TXTANG 0 ! text angle

CURSOR -1 ! text justification

COLOUR BLUE ! choose colour

TEXT ‘<theta>=6<X>A1<X>’

DEFAULTS ! reset program defaults

41

Graph Examples

5.10 Numbering the small tic marks

The script below shows one way to number the
small tic marks on either the x or y-axis, produc-
ing the figure on the right.

SCALE 0 3 3 0 4 2 ! axis scales

GET !

XTICS XSHORT ! length of the short x-axis tic marks

XTICL XLONG ! length of the long x-axis tic marks

YTICS YSHORT ! length of the short y-axis tic marks

YTICL YLONG ! length of the long y-axis tic marks

%YITICL YITICL ! distance from axis to y-axis numbers

%XITICL XITICL ! distance from axis to x-axis numbers

! blank line finishes GET command

SET !

BOX 0 ! turn off axis box

NSXINC 5 ! number of small x-axis tic marks

NSYINC 5 ! number of small y-axis tic marks

YTICL 0 ! length of long tic marks on y-axis

XTICL 0 ! length of long tic marks on x-axis

%YITICL 1.5*YITICL ! distance from y-axis to numbers

%XITICL 1.5*XITICL ! distance from x-axis to numbers

! blank line finishes SET command

GRAPH\AXESONLY ! draw axes

SET !

NSXINC 0 ! turn off small tic marks on x-axis

NSYINC 0 ! turn off small tic marks on y-axis

YTICA -90 ! flip tic marks on y-axis

XTICA 90 ! flip tic marks on x-axis

YTICL YLONG ! reset the y-axis long tic mark length

XTICL XLONG ! reset the x-axis long tic mark length

! blank line finishes SET command

GRAPH\AXESONLY ! draw axes

GET !

%XLAXIS XLAXIS ! location of left end of x-axis

%YNUMSZ YNUMSZ ! size of y-axis numbers

42

Graph Examples

%YLAXIS YLAXIS ! location of bottom end of y-axis

%XNUMSZ XNUMSZ ! size of x-axis numbers

! blank line finishes GET command

YNUMS = [0:4:.4] ! the numbers to place on the y-axis

XNUMS[1:LEN(YNUMS)] = 0 ! the x coordinates of these numbers

WORLD\PERCENT XNUMS YNUMS XP YP ! convert to world units %

SET !

%XLOC XLAXIS-0.5*YITICL ! x location for the numbers

%TXTHIT 0.7*YNUMSZ ! text height for the numbers

CURSOR -11 ! justify right centre

! blank line finishes SET command

DO J = [2:5] !

SET %YLOC YP[J] ! y locations for numbers

TEXT RCHAR(YNUMS[J]) ! draw the first set of numbers

ENDDO !

DO J = [7:10] !

SET %YLOC YP[J] !

TEXT RCHAR(YNUMS[J]) ! draw the second set of numbers

ENDDO !

! DESTROY XNUMS YNUMS

XNUMS = [0:3:.2] ! the numbers to place on the x-axis

YNUMS[1:LEN(XNUMS)] = 0 ! the y coordinates of these numbers

WORLD\PERCENT XNUMS YNUMS XP YP ! convert to world units %

SET !

%YLOC YLAXIS-XITICL ! y location for the numbers

%TXTHIT 0.7*XNUMSZ ! text height for the numbers

CURSOR -10 ! justify upper centre

! blank line finishes SET command

DO J = [2:5] !

SET %XLOC XP[J] ! x locations for numbers

TEXT RCHAR(XNUMS[J]) ! draw the first set of numbers

ENDDO !

DO J = [7:10] !

SET %XLOC XP[J] !

TEXT RCHAR(XNUMS[J]) ! draw the second set of numbers

ENDDO !

DO J = [12:15] !

SET %XLOC XP[J] !

TEXT RCHAR(XNUMS[J]) ! draw the third set of numbers

ENDDO !

DESTROY XNUMS YNUMS XSHORT XLONG YSHORT YLONG YITICL XITICL -

XLAXIS YNUMSZ YLAXIS XNUMSZ XP YP

DEFAULTS ! reset defaults

43

Graph Examples

5.11 Error bars

The following script produces the figure opposite,
which illustrates the use of error bars.

READ xsec.dat E2 E3 X2 X3 -

DX2 DX3 Y2 Y3 R2 R3

S12[1] = 30

SY12[1] = 10

SY13[1] = 2

DY12[1] = 3.5

DY13[1] = 1.0

SCALE 0 250 5 -1 4 5

SET

YLOG 10

%CHARSZ .8

%XNUMSZ 2.5

%YNUMSZ 2.5

XTICA 90

YTICA -90

FONT ITALIC.3

PCHAR -12

COLOUR 1

GRAPH\AXESONLY E2 X2

COLOUR RED

GRAPH\-AXES E2 X2 DX2

SET %CHARSZ 1.5

GRAPH\-AXES S12 SY13 DY13

SET PCHAR -3

SET %CHARSZ 0.8

COLOUR BLUE

GRAPH\-AXES E3 X3 DX3

SET %CHARSZ 1.5

GRAPH\-AXES S12 SY12 DY12

GET

%YLAXIS YLAX

%YUAXIS YUAX

%XLAXIS XLAX

%XUAXIS XUAX

SET

%XLOC (XUAX+XLAX)/2

%YLOC 3

CURSOR -2

COLOUR 1

TEXT ‘E<_>p’//CHAR(39)//‘<^>(MeV)’

SET

%XLOC -4

%YLOC (YLAX+YUAX)/2

CURSOR -6

TEXT ‘d<sigma>/d<Omega>(nb/sr/MeV)’

SET

%XLOC (XUAX+XLAX)/2

%YLOC (100+YUAX)/2

%TXTHIT 2.5

CURSOR -9

COLOUR MAGENTA

TEXT ‘<^>12<_>C(p,p’//CHAR(39)//-

‘)X; E<_>p<^> = 303 MeV’

SET

%XLOC 27

44

Graph Examples

%YLOC 45

CURSOR -7

COLOUR BLUE

TEXT ‘=120<degree>’

SET %YLOC 34.5

COLOUR RED

TEXT ‘=160<degree>’

DEFAULTS

5.11.1 User defined error bars

The script below draws rectangular error bars, for y-errors, where the width of the error bar rectangle
is controllable by the user. The following commands produced the figure on the right.

X = [1:10]

Y = 2+3*X

YERROR = 2*RAN(X)

XERROR = RAN(X)/2

SET PCHAR -12

GRAPH X Y

@EBARS X Y XERROR YERROR

REPLOT

! This script produces rectangular error bars centered about the data

! points. Execute it with: @EBARS X Y DY DW

! where you would normally enter GRAPH X Y DY DW to produce a graph with

! errors given in DY and DW.

XTEMP = ?1

YTEMP = ?2

DYTEMP = ?3

DXTEMP = ?4

DO J = [1:LEN(XTEMP)]

XTEMPX[1+(J-1)*5] = XTEMP[J]-DXTEMP[J]

YTEMPY[1+(J-1)*5] = YTEMP[J]+DYTEMP[J]

PC[1+(J-1)*5] = -16

XTEMPX[2+(J-1)*5] = XTEMP[J]-DXTEMP[J]

YTEMPY[2+(J-1)*5] = YTEMP[J]-DYTEMP[J]

PC[2+(J-1)*5] = 16

XTEMPX[3+(J-1)*5] = XTEMP[J]+DXTEMP[J]

YTEMPY[3+(J-1)*5] = YTEMP[J]-DYTEMP[J]

PC[3+(J-1)*5] = 16

XTEMPX[4+(J-1)*5] = XTEMP[J]+DXTEMP[J]

YTEMPY[4+(J-1)*5] = YTEMP[J]+DYTEMP[J]

PC[4+(J-1)*5] = 16

XTEMPX[5+(J-1)*5] = XTEMP[J]-DXTEMP[J]

45

Graph Examples

YTEMPY[5+(J-1)*5] = YTEMP[J]+DYTEMP[J]

PC[5+(J-1)*5] = 16

ENDDO

! now we can produce our graph

SET PCHAR PC

GRAPH XTEMPX YTEMPY

DESTROY XTEMP YTEMP DYTEMP DXTEMP J PC XTEMPX YTEMPY

DEFAULTS ! reset program defaults

5.12 Graph legend

5.12.1 A non-transparent legend frame

This example shows how a multiple curve graph
with legend could be done.

!

! first create the string portions of the legend entries

!

t1 = ‘<froman.3>sin(<fitalic.3>x<froman.3>)<fitalic.3>e-

<froman.3,^><fitalic.3>x<froman.3>/5’

t2 = ‘<fitalic.3>x<froman.3>/2-5’

t3 = ‘<froman.3>(<fitalic.3>x<froman.3>/3.5)<^>2<_>+3-

<fitalic.3>x<froman.3>/3.5’

t4 = ‘<froman.3>cos(<fitalic.3>x<froman.3>)<fitalic.3>e-

<froman.3,^>-<fitalic.3>x/9’

!

! create the "data" to plot

!

x = [0:4*pi:.2]

y = sin(x)*exp(x/5)

y2 = x/2-5

y3 = (x/3.5)^2+3*x/3.5

y4 = cos(x)*exp(-x/9)

!

46

Graph Examples

! set up the graph legend

!

legend on

legend frame on

legend\percent frame 25 55 57 75

legend title ‘<h3%,froman.serif>Test Legend’

legend transparency off

legend autoheight off

!

! plot the data curves

!

set

%txthit 2.2

lintyp 1

pchar 1

legend nsymbols 1

graph t1 x y

set

lintyp 10

pchar 2

legend nsymbols 2

graph\-axes t2 x y2

set

lintyp 5

pchar 3

legend nsymbols 3

graph\-axes t3 x y3

set

lintyp 7

pchar 13

legend nsymbols 4

graph\-axes t4 x y4

!

! replot to clean it all up

!

replot

defaults

47

Graph Examples

5.12.2 A legend without a frame

This is another example of how a multiple curve
graph with legend could be done.

file=‘sigma.dat’

read file\[3] t1 sigmaexp experr

black = 1

red = 2

green = 3

blue = 4

set

txthit 1

font triumf.2

ylog 10

nsyinc 9

nlxinc 3

nsxinc 4

pchar -1

xtica 90

ytica -90

colour black

scales 180 300 6 1 4 3

legend off

legend nsymbol 3

legend frame off

legend frame 20 63 68 82

legend title ‘<c1><u>16<d>O(<pi><u>+<d>,<pi><u>-<d><pi><u>+<d>)’

graph\axesonly

read file\[8:31] t2 oset1

read file\[34:57] oset2\2

read file\[60:83] oset3\2

set

48

Graph Examples

pchar 3

lintyp 3

colour blue

legend on

graph\-axes ‘Cohen et al. NP_A395(1983)’ t2 oset1

set

pchar 10

colour red

graph\-axes ‘Oset et al. NP_A454(1986)’ t2 oset2

set

pchar 14

colour green

graph\-axes ‘Rockmore PR_C27(1983)’ t2 oset3

read file\[86:105] t3

read file\[108:127] rock2\2

set

lintyp 1

colour black

graph\-axes ‘This work’ t3 rock2*7

set

cursor -1

%xloc 15

%yloc 94

text ‘<sigma>(<mu>b)’

set

%txthit 2.5

cursor -3

%xloc 95

%yloc 3.0

text ‘T<_><pi><^> (MeV)’

replot

5.13 Avoiding plotting symbol overlaps

Suppose you have several curves on a graph and you want to have a plotting symbol at every PIth

point. Suppose each curve uses plotting symbol number PS. Then it might be nice to arrange that
these plotting symbols do not overlap. The following algorithm will prove helpful.

Make vector I=[1;2;3;...] with length equal to be that of the curve you want to plot. Let PS be

49

Graph Examples

the plotting symbol number, increment this for each new curve. Let PI be the plotting interval.
A plotting symbol is placed on the curve every PIth point. Let P0 be the point number offset of
the first tagged point, increment this also for each new curve. For the plotting symbol array, use:
PS*INT(I/(PI*(INT((I-1-P0)/PI+1)+P0))

The following example plots several random sine functions, tagging every curve with a different
symbol.

GENERATE X 0,,2*PI 100

TMP = 1

PI = 10

PS = 0

P0 = 0

I = [1:LEN(X)]

DO J = [1:4]

PS = PS+1

P0 = P0+1

SET PCHAR PS*INT(I/(PI*(INT((I-1-P0)/PI)+1)+P0))

OFFSET = 40*RAN(TMP)

AMP = RAN(TMP)

GRAPH\-AXES X AMP*SIN(X-OFFSET)

ENDDO

REPLOT

DESTROY TMP PI PS P0 I J OFFSET AMP

5.14 Filling

5.14.1 Fill the area under a curve

The script below, curvefill.pcm, will fill the area under a curve with either a hatch pattern or a dot
pattern, that is, it will fill the area bounded by the curve and a horizontal line through the origin. It
expects the vector names containing the data, with the independent vector first and the dependent
vector second.

The third parameter the script expects is the fill pattern number. If this number, say f , is between
101 and 110, then hatch pattern number 100− f is used for filling. If f is between 201 and 299 then
a grey scale dot pattern is used for filling, where the fill pattern, mn is 200 − f . The digit m is the
horizontal dot increment and the digit n is the vertical dot increment. For example, a dot pattern of
mn = 45 means to light up every fourth dot horizontally and every fifth dot vertically.

The following commands generate some data and call curvefill.pcm, producing the figure on the
right.

50

Graph Examples

GENERATE X -5,,5 50

Y = X^2+3*X-2

WINDOW 5

@curvefill X Y 108

! script curvefill.pcm

!

XO = ?1

YO = ?2

SET LINTYP ?3

! 100 < LINTYP <= 110 --> use hatch pattern number LINTYP-100

! LINTYP > 200 --> use dot pattern LINTYP-200

L = LEN(XO)

XO[2:L+1] = XO[1:L]

XO[L+2] = XO[L+1]

YO[2:L+1] = YO[1:L]

YO[1] = 0

YO[L+2] = 0

GRAPH XO YO

ZEROLINES\HORIZONTAL ! draw horizontal line thru (0,0)

DEFAULTS

DESTROY XO YO L ! eliminate dummy variables

5.14.2 Fill the area between two curves

The script below, fill.pcm, fills the area between two curves with either a hatch pattern or a dot
pattern. The figure on the right was produced with the following commands.

51

Graph Examples

generate x 0,,180 100

y = sind(x)

generate x1 0,,180 50

y1 = exp(-x1/90)*sind(x1)

@fill x y x1 y1 107

! script fill.pcm

!

XO = ?1 ! make dummy vector XO = first vector

YO = ?2 ! make dummy vector YO = second vector

XO2 = ?3 ! make dummy vector XO2 = third vector

YO2 = ?4 ! make dummy vector YO2 = fourth vector

L = LEN(XO) ! make scalar L = length of first vector

L1 = LEN(XO2) ! make scalar L1 = length of third vector

XO[L+1:L+L1] = XO2[L1:1:-1] ! append XO2 in reverse order onto end of XO

YO[L+1:L+L1] = YO2[L1:1:-1] ! append YO2 in reverse order onto end of YO

SET LINTYP ?5

! 100 < LINTYP <= 110 --> use hatch pattern number LINTYP-100

! LINTYP > 200 --> use dot pattern LINTYP-200

GRAPH XO YO

DEFAULTS ! reset program defaults

DESTROY XO YO XO2 YO2 L L1 ! eliminate dummy variables

52

Graph Examples

5.14.3 A filled ring

The script filled-ring.pcm generates a commen-
surate graph of an area filled ring, centred at (0, 0),
filled with a hatch pattern. The user inputs the
outer radius, the inner radius, and the hatch pat-
tern. The radii are assumed to be in graph units.
The figure oposite was produced with the com-
mand: @filled-ring 12 5 107

! This script will draw two circles and fill the region between them

! OUTER_RADIUS = outer circle radius

! INNER_RADIUS = inner circle radius

! NPTS = number points used to draw circles

! NFILL = fill pattern number

!

! set up circle parameters and fill pattern

OUTER_RADIUS = ?1 ! make scalar

INNER_RADIUS = ?2 ! make scalar

NPTS = 360 ! make scalar

NFILL = ?3 ! make scalar

! Generate the data for the circles

GENERATE THETA 0,,360 NPTS ! make temporary vectors

XTEMP = OUTER_RADIUS*COSD(THETA) !

YTEMP = OUTER_RADIUS*SIND(THETA) !

! append in reverse order

XTEMP[NPTS*2:NPTS+1:-1] = INNER_RADIUS*COSD(THETA)

YTEMP[NPTS*2:NPTS+1:-1] = INNER_RADIUS*SIND(THETA)

! Draw the circles and fill

SET

LINTYP NFILL

PCHAR 0 ! no plotting symbol

AUTOSCALE COMMENSURATE ! choose axis autoscaling type

%XNUMSZ 2.5 ! x-axis number size

%YNUMSZ 2.5 ! y-axis number size

GRAPH XTEMP YTEMP ! plot data with axes

DEFAULTS ! reset program defaults

53

Histogram Examples

DESTROY OUTER_RADIUS INNER_RADIUS NPTS NFILL THETA XTEMP YTEMP

5.15 Text tied to a curve

The following script illustrates the use of string arrays and the way that text can be forced to follow
a data curve with the REPLOT command. The figure below was produced with this script.

GENERATE X1 0,,720 100 ! make vector X1

X2 = X1 ! make vector X2

GENERATE X3 0,,600 100 ! make vector X3

Y1 = SIND(X1)

Y2 = COSD(X2)

Y3 = EXP(X3/1000)*SIND(X3)

WINDOW 3 ! use pre-defined window

TXT[1] = ‘Curve 1’ ! store text string in text array variable

TXT[2] = ‘Curve 2’

TXT[3] = ‘Curve 3’

GRAPH X1 Y1 ! plot data with axes

TEXT\GRAPH TXT[1] ! draw text

GRAPH\-AXES X2 Y2 ! overlay data curve

TEXT\GRAPH TXT[2] ! draw text

GRAPH\-AXES X3 Y3 ! overlay data curve

TEXT\GRAPH TXT[3] ! draw text

CLEAR\-REPLOT ! clear graphics but not replot buffers

REPLOT 3 ! replot on common scale

DESTROY X1 X2 X3 Y1 Y2 Y3 TXT

DEFAULTS

54

Histogram Examples

6 HISTOGRAM EXAMPLES
6.1 Basic histogram

The commands listed below produce the his-
togram in the figure on the right. All of the pro-
gram’s defaults are used.

X = [1.1:1.6:0.1]

Y = [2.2;2.4;2.6;3.1;4.5;5.1]

GRAPH\HISTOGRAM X Y

6.2 Histogram types

HISTYP result

0 (default value) line graph, not a histogram

1 histogram with no tails and profile along the x-axis.
You may control the width and colour of each individual bar.

2 histogram with tails to y = 0 and profile along the x-axis.
You may control the filling pattern, width and colour of each individual bar

3 histogram without tails and profile along the y-axis.
You may control the height and colour of each individual bar.

4 histogram with tails to x = 0 and profile along the y-axis.
You may control the filling pattern, height and colour of each individual bar

Table 6.19: The basic histogram types

It is possible to draw four basic types of histograms using the SET HISTYP approach, or you can use
the \HISTOGRAM qualifier on the GRAPH command to plot a histogram with tails to y = 0 and profile
along the x-axis. Table 6.19 shows the histogram type that will be produced depending on the value
of HISTYP.

The following commands produce examples of the four basic histogram types.

55

Histogram Examples

X = [1.1:1.6:0.1]

Y = [2.2;2.4;2.6;3.1;4.5;5.1]

WINDOW 5

SET HISTYP 1

LABEL\X ‘HISTYP = 1’

GRAPH X Y

WINDOW 6

SET HISTYP 2

LABEL\X ‘HISTYP = 2’

GRAPH X Y

WINDOW 7

SET HISTYP 3

LABEL\X ‘HISTYP = 3’

GRAPH X Y

WINDOW 8

SET HISTYP 4

LABEL\X ‘HISTYP = 4’

GRAPH X Y

6.3 Filled histograms

6.3.1 Fill bars with different widths

The following commands illustrate one way to produce a histogram with filled bars, where the bars
also have different widths. The first graph in Figure 6.8 on page 57 is the result.

X = [1:10] ! fake some data

GENERATE W 0,,1 10 ! make width vector W

SET HISTYP 2 ! tails to y=0

SET PCHAR 8 W ! fill pattern #8, width W

SCALE 0 11 0 10.5 ! fix axis scales

GRAPH X X ! draw the histogram

The following commands illustrate one way to produce a histogram with filled bars, where the bars
have different filling patterns. The middle graph in Figure 6.8 is the result.

F = MOD([0:9],4)+7 ! produces f=[7;8;9;10;7;8;9;10;7;8]

X = [1:10] ! fake some data

SET PCHAR F ! fill patterns are in F

SCALE 0 11 0 10.5 ! fix axis scales

GRAPH\HISTOGRAM X X ! draw the histogram

56

Contour and density plots

(a) Different widths (b) Different patterns (c) Filled profile

Figure 6.8: Filled histograms

6.3.2 Fill under a histogram profile

The following commands illustrate one way to fill under a histogram profile, that is, to fill between
the profile and a horizontal line through y = 0. The third graph in Figure 6.8 is the result.

X = [1:10] ! fake some data

SET HISTYP 1 ! no tails

SET LINTYP 108 ! fill pattern #8

SCALE 0 11 0 10.5 ! fix axis scales

GRAPH X X ! draw the histogram

7 DENSITY AND CONTOUR PLOTS
7.1 Box type density plots

Figure 7.9 was produced with the following commands:

X = {1;0;1;0;.2;.5;.8}

Y = {1;0;0;1;.2;.5;.8}

Z = {0;0;0;0;10;0;-5}

GRID\XYOUT X Y Z M XOUT YOUT ! interpolate regular matrix from sparse data

WINDOW 5

LABEL\XAXIS ‘DENSITY\BOXES XOUT YOUT M’

DENSITY\BOXES XOUT YOUT M ! density plot with boxes

WINDOW 7

LABEL\XAXIS ‘DENSITY\BOXES\DERIV XOUT YOUT M’

DENSITY\BOXES\DERIV XOUT YOUT M ! box plot of derivative

57

Contour and density plots

Figure 7.9: Box type density plots

7.2 Profiles on density plots

Figure 7.10 was produced with the following commands:

X = {1;0;1;0;.2;.5;.8}

Y = {1;0;0;1;.2;.5;.8}

Z = {0;0;0;0;10;0;-5}

SET %XLABSZ 2.5 ! x-axis label size

WINDOW 5

LABEL\XAXIS ‘DENSITY\BOXES\PROFILE XOUT YOUT M’

DENSITY\BOXES\PROFILE XOUT YOUT M

WINDOW 7

SCALE 0 .5 5 0 .5 5

LABEL\XAXIS ‘DENSITY\BOXES\PARTIAL\PROFILE XOUT YOUT M’

DENSITY\BOXES\PARTIAL\PROFILE XOUT YOUT M

DEFAULTS

7.3 Contour plots

Figure 7.11 on page 60 was produced by the following commands:

X = {1;0;1;0;.2;.5;.8}

Y = {1;0;0;1;.2;.5;.8}

Z = {0;0;0;0;10;0;-5}

GRID\XYOUT X Y Z M XOUT YOUT ! interpolate a matrix

SET %LEGSIZ 2.3 ! legend label size

WINDOW 5

LABEL\X ‘CONTOUR\LEGEND XOUT YOUT M’

58

Contour and density plots

Figure 7.10: Profiles on density plots

CONTOUR\LEGEND XOUT YOUT M 10 ! 10 contours of matrix M

WINDOW 7

LABEL\X ‘CONTOUR\LEGEND X Y Z’

CONTOUR\LEGEND X Y Z 10 ! 10 contours of scattered points

WINDOW 6

SCALE 0 .5 5 0 .5 5 ! set axes scales for zooming in

LABEL\X ‘CONTOUR\PARTIAL XOUT YOUT M’

CONTOUR\PARTIAL XOUT YOUT M 10 ! contour plot with no legend

WINDOW 8

LABEL\X ‘CONTOUR XOUT YOUT M’

CONTOUR XOUT YOUT M 10 ! 10 contours, no legend

DEFAULTS

7.4 Mandelbrot set

The following script will plot a Mandelbrot set of
points. Only the contour plot figure is shown,
since the PostScript files for the density plots
would be quite large.

59

Contour and density plots

Figure 7.11: Contour plots

!

! PHYSICA example: mandel.pcm

!

!Defaults

Disable Journal

Disable History

Set Maxhistory 1

Destroy *

! Specify the size of matrices

! If you have an ’allocating dynamic array space’ problem, use Rough

Qu = ‘R’

Inquire ‘Picture quality (R =Rough/ F =Fine):’ Qu

S=0.1

If Eqs(Ucase(Qu[1]),‘F’) then S=0.02

!

X = [-2.4:1.1:S]

Y = [-1.4:1.4:S]

Nmax = 10

Lx = Len(X)

Ly = Len(Y)

Matrix M Xx Yy Tt Ly Lx

M[1:Ly,1:Lx] = 0

Xx = M

60

Contour and density plots

Yy = M

Xxm[1:Ly] = 20

Xxi[1:Ly] = -20

Yym[1:Ly] = 10

Yyi[1:Ly] = -10

Scalar\Dummy J

Do K = [1:Nmax]

Display ‘Progress=’//Rchar(K/Nmax*100,‘F5.0’)//‘%’

Tt = Xx^2 - Yy^2 + (<- Loop(X,J,1:Ly))

Yy = 2*Xx*Yy + Loop(Y,J,1:Lx)

Xx = Tt

M = M + (4<(Xx^2+Yy^2))

Xx = Max(Xx,Loop(Xxi,J,1:Lx))

Xx = Min(Xx,Loop(Xxm,J,1:Lx))

Yy = Max(Yy,Loop(Yyi,J,1:Lx))

Yy = Min(Yy,Loop(Yym,J,1:Lx))

Enddo

M = (1-M)/Nmax

!

! Plot the picture

Device Off

Set

xtica 90

ytica -90

Clear

Scales -2.4 1.1 -1.4 1.4

Density\-Border X Y M

Terminal

Clear

Density\-Border\Diff X Y M

Terminal

Clear

Device PostScript A

Cntr=[-0.85:0.05:0.05]

Set Legfrmt (1x,F5.2)

Contour\Specific\Legend\-Border X Y M Cntr

Defaults

61

Data manipulation

8 DATA MANIPULATION
8.1 Scaling data

Suppose that a dipole magnet survey has just been completed and tied to an absolute NMR calibra-
tion at some point. This calibration requires the entire field measured to be scaled up by a factor
of 1.0157. The field was measured over a 10× 20 point grid and written into a file containing twenty
lines, each line with ten numbers in 10F8.4 format. Only three commands are needed:

READ\MATRIX\FORMAT FIELD.DAT (10F8.4) B 10 20 ! read the data into matrix B

B2 = 1.0157*B ! scale the data

WRITE\MATRIX\FORMAT FIELD2.DAT (10F8.4) B2 ! write to a file

8.2 Generating data vectors

To generate a vector X = {1.0;1.1;1.2;1.3;...;2.0} enter:

GENERATE X 1,,2 11

To generate a vector Y = {1;3;5;7;9;...;21} you could enter:

GENERATE Y 1 2,,11 or
Y = [1:21:2]

To generate vector X filled with 50 random numbers between −2 and +3, enter:

GENERATE\RANDOM X -2 3 50

8.3 Selecting data

Suppose you have three vectors, X, Y and Z, and you want to extract the X’s and Y’s when Z[i] satisfies
some condition, such as 3 <Z[i]< 5. You could enter:

COPY [1:LEN(Z)] KEY IFF (Z>3)&(Z<5) or
KEY = WHERE((Z>3)&(Z<5))

Then you have a vector KEY which can be used for vector indexing. For example,

GRAPH X[KEY] Y[KEY]

8.4 Copying vectors

To copy all of vector X into vector Y, enter:

COPY X Y

62

Data manipulation

If Y does not exist, it is created. If Y does exist already, the new data will overlay the old. Of course,
you could also enter the following expression to accomplish the same thing, except that if the Y vector
exists already, it is destroyed and created anew.

Y = X

Suppose that you have a vector X. The following will double the length of X by duplicating X into itself.

X[LEN(X)+1:2*LEN(X)] = X or
X = X//X

Entering the following command:

Y[1:21:5] = X[2:10:2]

will put X[2] into Y[1], X[4] into Y[6], X[6] into Y[11], X[8] into Y[16], and X[10] into Y[21]. If Y did
not already exist, then Y would be created with 21 elements, and the unfilled elements will be set to
zero, that is, Y[2] = Y[3] = Y[4] = Y[5] = Y[7] = 0, etc.

8.4.1 Conditional copying

Suppose you want to copy the elements of vector X into Y and the elements of vector A into B only
when an expression is true, say but only when Z*cos(X) < 0. You could use:

COPY X A Y B IFF Z*COS(X)<0 or
Y = X[WHERE(Z*COS(X)<0)] and
B = A[WHERE(Z*COS(X)<0)]

8.5 A simple average calculation

The script average2.pcm calculates the average of every two elements of an input vector and outputs
the averages into another vector. If X is the input vector with length n, and XX is the output vector,
then XX[i] = X[2i-1] + X[2i] for i = 1, 2, . . . , n/2.

! calculate average of every 2 elements of input vector and

! output averages to a vector

!

J = 0 ! initialize counter J

K = 1 ! initialize counter K

START: ! a label

J = J+1

IF (J>LEN(?1)) THEN GOTO END

A = ?1[J] ! assign a value to scalar A

J = J+1 ! increment J

IF (J>LEN(?1)) THEN GOTO END

B = ?1[J] ! assign value to scalar B

?2[K] = (A+B)/2 ! assign average value to vector element

63

Data manipulation

K = K+1 ! increment K

GOTO START ! go to label

END: ! another label

For example, if X = [1:10] then @average2 X Y produces vector Y = {1.5;3.5;5.5;7.5;9.5}

8.6 Find the root mean square distribution

Suppose we have a set of events in (X,Y) space and we wish to determine the root mean square
distribution of Y versus X.

W2 = Y*Y ! to accumulate mean of squares

W1 = Y ! to accumulate mean

W0[1:LEN(X)] = 1 ! to accumulate counts

BIN\WEIGHT\NBINS W2 X XB C2 50 ! bin for mean of squares

BIN\WEIGHT\NBINS W1 X XB C1 50 ! bin for means

BIN\WEIGHT\NBINS W0 X XB C0 50 ! bin for counts

RMS = SQRT(C2/C0-(C1/C0)^2)

Here, RMS =
√
ms −m2, where ms is the mean of squares and m is the mean.

8.7 A simple integration procedure

The following script, integrate.pcm, expects two parameters: the independent and dependent vector
names. The following commands generate some data and then call the integrate.pcm procedure,
producing the figure on the right. Of course, you could use the INTEGRAL function instead of this
procedure. This is intended only as an example.

generate x 0,,3*pi 100

@integrate x sin(x)

! script integrate.pcm

!

64

Data manipulation

! Assume that you have two vectors X and Y with X(i+1)-X(i) constant

! and assume that X and Y have same number of elements.

! This file will integrate Y with respect to X and graph the data

! and the ’integral’

GRAPH ?1 ?2 ! plot input data, with axes

SET LINTYP 3 ! set line type to dashed line

SCALAR\DUMMY I

GRAPH\-AXES ?1 RSUM(?2[I],I,1:LEN(?2))*(?1-STEP(?1,1))

REPLOT ! redraw plot on common scale

SET

%XLOC 63 ! text x location

%YLOC 23 ! text y location

CURSOR -1 ! left justify text

%TXTHIT 2 ! text height

TEXT ‘sin(x)’ ! draw text string

SET

%XLOC 53 ! text x location

%YLOC 77 ! text y location

TEXT ‘<Int>sin(x)dx’

DEFAULTS ! reset program defaults

8.7.1 Dealing with data spikes

Suppose one had noise ‘spikes’ in an array of data, Y, which were one ‘channel’ wide. Suppose these
noise spikes always exceeded the scalar value YCUT. Now we want to plot Y, but for values > YCUT we
want to just plot a straight line between the previous point and the next. The following commands
illustrate the technique.

X = [1:100]

Y = SIN(X/10)+5*(RAN(X)>0.94)

YCUT = 1

WINDOW 5

GRAPH X Y

WINDOW 7

YGOOD = Y*(Y<YCUT)+(STEP(Y,1)+STEP(Y,-1))/2.*(Y>YCUT)

GRAPH [1:LEN(YGOOD)] YGOOD

So all we did was place in YGOOD the ‘good’ values of Y or an average of the previous and next point
when it was ‘bad’.

Note that we have not taken care of the case where there are two or more bad points in a row.

65

Data manipulation

Figure 8.12: Dealing with data spikes

Also, the check for a good point can be much more complex than simply comparing Y with YCUT. For
example (Y/2<SQRT(YCUT+10)) could have been the criteria.

8.8 Fitting

Suppose you have generated some data and it resides in columns in a file, file.dat. For example:

. .

. .

THIS IS LINE 100 OF FILE.DAT

1.0 -9.80

1.1 -8.75

1.3 -7.98

. .

. .

10.35 63.29

THIS IS LINE 201 OF FILE.DAT

. .

. .

Read in the data:

READ FILE.DAT\[101:200] X Y

Plot the data, using unjoined boxes for plot symbols:

SET PCHAR -1

GRAPH X Y

Declare and initialize fitting parameters, do the fit and update the fitted Y values into vector YFIT,

66

Data manipulation

then overlay a plot of the fitted line using no plot symbols, and get a hardcopy of the resultant plot:

SCALAR\VARY A B ! declare fitting parameters

A = 8 ! initialize fit parameter

B = -10 ! initialize fit parameter

FIT Y=A*X+B ! do the fit

FIT\UPDATE YFIT ! update the fitted values

SET PCHAR 0 ! no plotting symbol

GRAPH\-AXES X YFIT ! overlay fitted curve

HARDCOPY ! get a hardcopy of the plot

8.8.1 Fit to a non-linear function

The following script produces this figure.

X = [0:720:5] ! make some ‘data’

Y = 5+SIND(X+20)*EXP(X/800)+RAN(X) !

SET !

PCHAR -1 !

FONT TSAN !

NSXINC 5 !

NSYINC 5 !

XTICA 90 ! tic marks to point to inside of axis box

YTICA -90 !

GRAPH X Y !

SCALAR\VARY A,B,C ! declare fit parameters

C = 100 ! initialize to get a reasonable start

FIT Y=A+SIND(X+B)*EXP(X/C) !

FIT\UPDATE YF !

SET PCHAR 0 !

GRAPH\-AXES X YF ! overlay the fitted function

SET

67

Data manipulation

%XLOC 18

%YLOC 85

%TXTHIT 2

CURSOR -1

TEXT ‘Fitted function y=a*sin(x+b)*e<^>(x/c)’

SET

%XLOC 70

%YLOC 85

TEXT ‘a = ’//rchar(a)

SET %YLOC 81

TEXT ‘b = ’//rchar(b)

SET %YLOC 77

TEXT ‘c = ’//rchar(c)

SET

%XLOC 55

%YLOC 94

%TXTHIT 3

CURSOR -2

TEXT ‘<FROMAN.FASHON,B11>PHYSICA <b,FTRIUMF.2>fitting demonstration’

DEFAULTS

8.8.2 Fit data with two line segments

Suppose you have already read in, or generated in some way, two vectors, X and Y. You plot Y versus
X, first turning on the autoscaling:

SET AUTOSCALE ON

SET PCHAR 0

GRAPH X Y

Now, you want to fit two line segments to the plot-
ted curve, such that they join at one end point, X0.
An example plot can be seen on the right.

SCALAR\VARY A B C D

FIT Y=(A+B*X)*(X<X0)+(C+D*X)*(X>=X0)+(A+B*X0-C-D*X0)*1.E5*(X=X0)

I1 = WHERE(X<X0) ! indices where x < x0

68

Data manipulation

I2 = WHERE(X>=X0) ! indices where x >= x0

SET PCHAR 0

GRAPH\-AXES X[I1] A+B*X[I1]

GRAPH\-AXES X[I2] C+D*X[I2]

REPLOT

8.8.3 More than one independent variable

Suppose we had to dig a straight trench down a street where the houses are set back from the street
by varying distances. Find the trench which would result in the minimum usage of the water pipe
segments from the trench to the houses. Also determine the sum of the segments needed.

Suppose the data of the X,Y co-ordinates of the connections to the houses are stored in the file
houses.dat then proceed as follows:

READ HOUSES.DAT X Y ! read in house positions

SCALAR\VARY A B ! declare the free parameters

A=1 ! initialize

B=1 ! initialize

D=X-X ! connect to centre of trench

FIT D=SQRT(ABS(A*X+B-Y)/SQRT(A*A+1)) ! note SQRT

SEG=ABS(A*X+B-Y)/SQRT(A*A+1) ! pieces

STATISTICS SEG SUM\SUMSEG ! sum of the segments

Since least squares is used for fitting we had to take the square root of the expression (which is
the distance of a point to a straight line with slope A and intercept B). Note that we have more than
one independent variable in the expression. Extension to multidimensional cases involving say Z is
straightforward.

The problem of fitting to a scattered set of X,Y points with a straight line which is on the average S

units away will, in general, have two solutions (which one you get will depend on the starting values
of A,B). The only line to replace above is:

D=X-X ! connect to centre of trench

D=X-X+5 ! aim for 5 unit offset

Note also that the optional weight array could be used to fit ‘closer’ to selected data points.

69

Data manipulation

8.9 Interpolation and smoothing

The following commands illustrate interpolation, using a spline under tension, producing the left
graph in Figure 8.13. Note that this uses the default tension of 1.0, but if the tension is set higher,
say to 10, the interpolation would be basically linear.

(a) Spline interpolation (b) FFT interpolation

Figure 8.13: Interpolation examples

X=[0:9.6:.8]

Y={0;.7;.8;.6;.1;-.2;-.2;-.1;0;.05;.1;.1}

XI = [0:9.6:.1] ! where you want interpolated values

SET PCHAR -1 !

GRAPH X Y ! plot the original data

SET PCHAR 0 !

GRAPH\-AXES XI INTERP(X,Y,XI) ! overlay the interpolated curve

REPLOT ! redraw on common scale

8.9.1 Interpolation with a fast Fourier transform

The following example illustrates how data can be interpolated using fast Fourier transforms. See
the graph on the right in Figure 8.13.

N = 8

X = [0:2*N-1]*PI/N

Y = SIN(X)+5*RAN(X)

SET

PCHAR -1

XTICA 90 ! tic marks to point inside the box

YTICA -90

70

Data manipulation

GRAPH X Y ! plot the data

M = FFT(Y,‘COS&SIN’) ! put the cos and sin coefficients into matrix M

XI = [0:2*PI:.05] ! the interpolant locations

SCALAR\DUMMY K ! dummy variable needed for SUM function

SET PCHAR 0

GRAPH\-AXES XI M[1,1]/2+SUM(M[K,1]*COS((K-1)*XI)+M[K,2]*SIN((K-1)*XI),K,2:9)

REPLOT

DEFAULTS

71

Index

! character, 18
.physicarc file, 14
// operator, 25
: character, 23
; character, 23, 24
= character, 17
? for script parameters, 13
@ for EXECUTE, 11
index character, 21
$ character, 16
$HOME/.physicarc file, 14
% character, 16
∗ index character, 21

abort command, 12, 19
ABS function, 69
Alpha, 4
append operator, 63

scalar, 25
format, 25

string, 25
area fill, 50, 51
array string variable, 24
ASCII characters, 24
assignment, 17

string variable, 17
autoscale graph, 28
average calculation, 63
axes, 28

backslash, 19
BELL command, 12
BORDER keyword, 8
box density plot, 57
branching and looping, 14
BUFFER command, 10

centimeters, 6
CLEAR command, 38

\-REPLOT qualifier, 54
CLEN function, 22, 24
closing quote, 24
colon, 23
COLOUR command, 38, 44
command

field, 18
line

general form, 18
parameter, 14

defaults, 19
null field, 19
qualifier, 19

qualifier, 19
commensurate, 6

graph, 8, 53
comment, 12, 18 , 28
conditional copying, 63
constant, 17, 19
continuation line, 10

prompt, 10
CONTOUR command
\LEGEND qualifier, 58
\PARTIAL qualifier, 58

control keys, 10
control-c trapping, 12, 13
control-d, 12, 19
control-space, 12, 19
control-z, 12, 19
conventions used in this manual, 4
COPY command, 62

conditional, 62
conditional copy, 63

COS function, 46
COSD function, 36, 53, 54
cursor, 28

data

72

INDEX

generate, 62
scaling, 62
selecting, 62

date and time, 28
DATE function, 28, 29
DCL command, 16

recall, 10
default parameter, 19
DEFAULTS command, 29, 33, 38, 42, 44–46,

51–54, 58, 64
DENSITY command
\BOXES qualifier, 57, 58
\DERIV qualifier, 57
\PARTIAL qualifier, 58
\PROFILE qualifier, 58

density plot
box type, 57
profile, 58

DESTROY command, 33, 42, 45, 52–54
DEVICE command, 5, 6
DISABLE command, 12

BORDER keyword, 8
DISPLAY command, 12
DO loop, 12, 14 , 35, 37, 42, 45, 50

maximum number, 14
nested, 14
variable, 14

dot pattern, 51
dynamic buffer, 10

ECHO keyword, 12, 18
ENABLE command, 12

BORDER keyword, 8
ECHO keyword, 18

ENDDO statement, 14 , 35, 37, 42, 45, 50
ENDIF statement, 15
environment variable, 5

file name, 11
erase alphanumeric, 10
error bar, 44

user defined, 45
EVAL function, 26
evaluation, 18
EXECUTE command, 11
EXP function, 46, 52, 54
EXPAND function, 26
expression, 17, 18

max size, 17
variable, 25

expansion, 26
EXTENSION command, 12

fast Fourier transform, 70
FFT function, 70
filename, 24

extension
default, 12

fill
between 2 curves, 51
dot pattern, 51
hatch pattern, 51
histogram bars, 56
under curve, 50

FIRST function, 22
fit

more than one variable, 69
non-linear, 67
parameters, 66
straight line, 66
update, 66
weights, 69
with two line segments, 68

FIT command, 67–69
\UPDATE qualifier, 67, 68

flow control, 13
function, 17

name, 20
string, 17

generalized parameter, 13, 28
GENERATE command, 31, 32, 36, 38, 50–54,

56, 62, 64
\RANDOM qualifier, 62

generate data, 62
GET command, 54

TXTHIT keyword, 29
XITICL keyword, 35, 37, 42
XLAXIS keyword, 42, 44
XNUMSZ keyword, 35, 37, 42
XTICL keyword, 42
XTICS keyword, 42
XUAXIS keyword, 44
YITICL keyword, 42
YLAXIS keyword, 35, 37, 42, 44

73

INDEX

YMAX keyword, 35, 37
YMIN keyword, 35, 37
YNUMSZ keyword, 42
YTICL keyword, 42
YUAXIS keyword, 35, 37, 44

GOTO statement, 12, 14 , 63
GPLOT, 3

window, 9
graph

2 x-axes, 35
2 y-axes, 33
adjoined axis frames, 38
basic, 27
commensurate, 53
error bars, 44
fill between 2 curves, 51
fill under curve, 50
filled ring, 53
labels, 27
legend, 46
non-linear axis, 36
numbering, 30
numbering small tic marks, 42
overlay, 28
plotting package, 3
plotting symbol, 31

overlaps, 49
replot, 28, 33
text tied to a curve, 54
two curves, 28
units, 53
user defined tic marks, 35

GRAPH command, 27–31, 33, 35, 37, 45, 51–
57, 62, 64–66, 68

\-AXES qualifier, 29, 31–33, 35, 37, 38,
44, 46, 48, 50, 54, 64, 67, 68, 70

\AXESONLY qualifier, 30, 31, 33, 38, 42,
44, 48

\HISTOGRAM qualifier, 55
\POLAR qualifier, 32

graphics
display device types, 5
hardcopy, 67
orientation, 9

graphics cursor, 28
GRID command

\XYOUT qualifier, 57, 58

hardcopy
device type, 6

HARDCOPY command, 67
hatch pattern, 51, 53
histogram

bar
filled, 56
varying width, 56
width, 56

basic, 55
profile

fill under, 57
types, 55

HISTYP keyword, 55

IF block, 12, 15
maximum number, 15
nested, 15

IF statement, 12, 15 , 63
inches, 6
index, 20–22 , 24

as an expression, 21
on expression, 21
on function, 21
on variable, 20
starting value, 22

initialization file, 14
input line

length, 10
INQUIRE command, 12
instruction

interactive, 10
sources, 10
types, 16–19

INTEGRAL function, 64
INTEGRAL function, 30
internal storage, 19
INTERP function, 70
interpolation, 70

with FFT, 70

justification, 28

keyboard input, 10
keypad buffer, 10
keywords, 20

74

INDEX

label, 14, 63
LABEL command
\XAXIS qualifier, 27, 38, 55, 57, 58
\YAXIS qualifier, 27, 38

landscape orientation, 9
LAST function, 22
LEGEND command
\PERCENT qualifier, 46, 48
AUTOHEIGHT keyword, 46, 48
FRAME keyword, 46, 48
NSYMBOLS keyword, 46, 48
OFF keyword, 48
ON keyword, 46
TITLE keyword, 46, 48
TRANSPARENCY keyword, 46, 48

LEN function, 22, 33, 35, 37, 45, 51, 52, 63–
65

Linux, 4
list vector, 23, 24
literal

matrix, 24
numeric, 19
quote string, 24
scalar, 22
string, 17
vector, 23

LOG function, 30
logical name, 5
login command file, 14
LOOP function

index, 21

macro file, 11
matrix, 23–24

literal, 24
MAX function, 33
maximum

number of variables, 19
variable size, 19

MIN function, 33
MOD function, 56
monitor type, 5

nested
DO loop blocks, 14
IF blocks, 15

null field, 19

numeric literal, 19

opening quote, 24
OpenVMS, 4
operating system commands, 16
operator, 17

string, 17
order property, 23
orientation, 6, 9

default, 9
ORIENTATION command, 6, 9

PORTRAIT keyword, 38
overlay curve, 28

page boundary, 8
parameter

field, 18
maximum number, 18

generalized, 13, 28
numbered, 13
passing, 13
sequential, 13

parentheses, 18
pcm extension, 12
PHYSICA windows, 8–9

pre-defined, 8
PHYSICA$INIT file, 14
PHYSICA INIT file, 14
plot

curve, 28
data with axes, 28
symbol, 28, 31, 67

angle, 31
overlaps, 49
size, 31
vector field, 32

units, 6–8
PLOTTEXT command, 24
portrait orientation, 9
PROD function

index, 21
program

commands, 18
instructions, 10–19

prompt, 10
continuation line, 10

PROMPTING keyword, 12

75

INDEX

qualifier
negation, 19
on command, 19
on parameter, 19

quote
closing, 24
opening, 24
string, 17, 24

RAN function, 30, 45, 50, 65
range vector, 23
RCHAR function, 25, 42
read

string array variable, 28
vectors, 28

READ command, 28, 38, 44, 48, 66, 69
\CONTINUE qualifier, 29
\FORMAT qualifier, 62
\MATRIX qualifier, 62
\TEXT qualifier, 24, 29

recall buffer, 10
control keys, 10

remote login, 5
REPLOT command, 29, 45, 46, 48, 50, 54, 64,

68, 70
reserved keywords, 20
RETURN command, 12, 13
root mean square, 64
RPROD function

index, 21
RSUM function, 64

index, 21
run PHYSICA, 2

scalar, 22–23
append, 25
literal, 22
string variable, 24

SCALAR command
\DUMMY qualifier, 64
\VARY qualifier, 68
VARY keyword, 67
VARY qualifier, 69

SCALE command, 30, 31, 33, 38, 42, 44, 56–
58

scaling data, 62
script file, 11–16

abort, 13
automatic execution, 14
branching, 14
comment, 18
comments, 12
DO loop, 14
echo, 18
echoing, 12
ENDDO statement, 14
ENDIF statement, 15
filename extension, 12
flow control, 12, 13
GOTO statement, 14
IF statement, 15
initialization, 14
interactively create, 14
label, 14
looping, 14
nesting, 11
parameter correction, 11
parameter passing, 13
stacking commands, 14

selecting data, 62
semicolon, 23, 24
sequential parameters, 13
SET command

AUTOSCALE keyword, 8, 35, 37, 68
COMMENSURATE keyword, 53

BOX keyword, 31, 33, 38, 42
CHARSZ keyword, 31, 44
CLIP keyword, 35, 37
COLOUR keyword, 33, 38, 44, 48
CURSOR keyword, 29, 33, 35, 37, 38, 42,

44, 48, 64
FONT keyword, 38, 44, 48
HISTYP keyword, 30, 38, 55–57
LEGSIZ keyword, 58
LINTYP keyword, 29, 33, 38, 46, 48, 51–

53, 57, 64
NLXINC keyword, 48
NSXINC keyword, 38, 42, 48
NSYINC keyword, 38, 42, 48
NYDEC keyword, 31
NYDIG keyword, 31
PCHAR keyword, 28, 30–32, 35, 37, 44–

46, 48, 50, 53, 56, 66, 68, 70

76

INDEX

RITTIC keyword, 33
TENSION keyword, 38
TOPTIC keyword, 35, 37
TXTANG keyword, 33, 35, 37, 38
TXTHIT keyword, 29, 35, 37, 38, 42, 44,

46, 48, 64
UNITS keyword, 6
XAXIS keyword, 33, 38
XITICL keyword, 42
XLABSZ keyword, 58
XLAXIS keyword, 33
XLOC keyword, 29, 33, 35, 37, 38, 42, 44,

48, 64
XNUMSZ keyword, 38, 44, 53
XTICA keyword, 2, 42, 44, 48
XTICL keyword, 42
XUAXIS keyword, 33
YAXIS keyword, 33, 38
YCROSS keyword, 38
YITICA keyword, 33
YITICL keyword, 33, 42
YLAXIS keyword, 33
YLOC keyword, 29, 33, 35, 37, 38, 42, 44,

48, 64
YLOG keyword, 44
YMAX keyword, 38
YMIN , 38
YMOD keyword, 38
YNUMSZ keyword, 38, 44, 53
YPAUTO keyword, 31
YPOW keyword, 31
YTICA keyword, 2, 33, 42, 44, 48
YTICL keyword, 42
YUAXIS keyword, 33, 38

SHOW command, 23
SIN function, 27, 30, 46, 50, 64, 65
SIND function, 52–54
SMOOTH function, 38
smoothing, 70
SORT command
\DOWN qualifier, 23
\UP qualifier, 23

spawning a subprocess, 17
spline interpolation, 70
SQRT function, 33, 69
STACK command, 12, 14

static buffer, 10
STATISTICS command, 69
STEP function, 64, 65
string, 24

append, 25
definition, 24
function, 17, 25
length, 22, 24
literal, 24
operator, 17
variable, 17, 19, 24–26

append, 25
assignment, 17, 24
in expression, 25
read, 28

subprocess, 17
SUM function

index, 21
syntax check, 26

tension, 70
TERMINAL command, 12, 13
terminal interface, 10
TEXT command, 24, 28, 29, 35, 37, 38, 42,

44, 48, 64
\GRAPH qualifier, 54

TIME function, 28, 29
TLEN command, 22, 24
trapping, 13
TRIUMF TERMINAL TYPE, 5

units
graph, 53

UNIX, 2, 4–6, 11, 12, 14, 16, 17, 19

variable, 17, 19–26
index, 20

special character, 21
maximum number, 19
name, 20

length, 20
reserved, 20

size, 19
string, 24
type, 17, 19

VARNAME function, 20, 25, 33
VAX, 4

77

INDEX

vector, 23
index, 62
literal, 23
order property, 23

vector field, 32
VLEN function, 22
VMS, 2, 4, 5, 12, 14, 17, 19

WAIT command, 12
what is in this manual, 3
WHERE function, 23, 62, 68
window, 30

boundary, 8
defined by, 9

WINDOW command, 8, 30, 38, 51, 54, 55, 57,
58, 65

world
boundary, 8
coordinate system, 6, 9

WORLD command
\PERCENT qualifier, 33, 35, 37, 42

WRITE command
\FORMAT qualifier, 62
\MATRIX qualifier, 62

X Window System, 5–6
XLWIND keyword, 9
XUWIND keyword, 9

YLWIND keyword, 9
YUWIND keyword, 9

ZEROLINES command
\HORIZONTAL qualifier, 51

78

