
PHYS 3090: Homework 2 (due Wed. Sept. 28)

Problem 1: Identify the singular points in the following functions and demonstrate whether they are poles,
essential singularities, or removable singularities. For any poles or essential singularities, determine their
residues.

(a) f(z) = cos(z + 1/z) (3 points)

(b) f(z) = z3+6z2+5z−12
3z2−6z+3 (3 points)

(c) f(z) = z2−4
z+2 (3 points)

(d) f(z) = cot(z)/z2 (3 points)

The following problem derives a useful formula for computing residues.

Problem 2: Consider the function f(z) = g(z)/h(z), where g(z) is entire.

(a) Show that if f(z) has a simple pole at z = a, then Res f(a) = g(a)/h′(a). Hint: Taylor expand h(z). (3
points)

(b) Now let’s generalize this result to a pole of arbitrary order. Show that if f(z) has a pole of order n at
z = a, then we have the following formula (3 points)

Res f(a) =
n g(n−1)(a)

h(n)(a)
. (1)

(c) For the function f(z) = ez−1
ez+1 , determine the locations and orders for all poles and compute their residues.

(3 points)

Problem 3: Compute the following contour integrals
∮
C
dz f(z), where

(a) f(z) = 1
z2+1 , where C is the circle |z − i| = 1 (3 points)

(b) f(z) = 1
z4+1 , where C is the rectangle with corners at z = ±2i and z = 2± 2i (3 points)

(c) f(z) = tan(z), where C is the circle |z| = 5 (3 points)

This problem is a bit challenging. Don’t get confused: there is a simple pole at z = 1, but this is not the
singular point you should be concerned with.

Problem 4: Compute
∮
C
dz e1/z

1−z where C is the circle |z| = 0.1. Hint: you will need to use the formula for

an infinite geometric series:
∑∞

n=0 z
n = 1

1−z for |z| < 1. (3 points)



Picard’s theorem is a remarkable result which says that if f(z) has an essential singularity at z = a, then
within any finite neighborhood of a, no matter how small, f(z) can have any and every complex value
(except possibly one) an infinite number of times. The goal of this problem is to see how this works for a
simple example.

Problem 5: Suppose the function f(z) has a singular point at z = 0. Let’s define a neighborhood around
z = 0 according the condition |z| < ε, where ε is some positive real number. The smaller ε is, the smaller
the neighborhood around z = 0. If z = 0 is an essential singularity, then no matter how small we take ε, we
can find infinitely many solutions to the equation f(z) = c within our neighborhood, where c is any complex
number (with possibly one exception). This is not the case if z = 0 is a pole.

For simplicity, we will consider c = 1 in this problem. (The generalization to arbitrary c is left as an exercise
for the curious student.)

(a) First, let’s show that Picard’s theorem does not hold if f(z) has a pole at z = 0. Consider the function
f(z) = 1/zn, where n is a positive integer. Sketch the locations of the solutions to the equation f(z) = 1
in the complex plane. Argue that if ε is sufficiently small (in this case, smaller than 1), then no solutions
to f(z) = 1 are enclosed within the neighborhood. (3 points)

(b) Now, let’s suppose f(z) has an essential singularity at z = 0. Consider the function f(z) = e1/z. Sketch
the locations of the solutions to the equation f(z) = 1 in the complex plane. Argue that no matter how
small ε is, there are infinitely many solutions within the neighborhood. (3 points)

(c) What is the “one exception” for the function f(z) = e1/z? That is, for what value of c is there no
solution to the equation f(z) = c within our neighborhood, for any value of ε? (1 point)

This is a nice problem, suggested by a student last year, in which you derive the Cauchy-Riemann relations
in polar coordinates.

Problem 6: Consider an analytic function f(z) = u(x, y) + iv(x, y). Show that if u, v are expressed in polar
coordinates (r, θ), then the Cauchy-Riemann relations are (3 points):

∂u

∂r
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r
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∂θ
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∂r
= −1

r

∂u

∂θ
. (2)
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