
TQVS: TemporalQueries over Video Streams in
Action

Yueting Chen
York University

ytchen@eecs.yorku.ca

Xiaohui Yu
York University
xhyu@yorku.ca

Nick Koudas
University of Toronto
koudas@cs.toronto.edu

ABSTRACT
We present TQVS, a system capable of conducting efficient
evaluation of declarative temporal queries over real-time
video streams. Users may issue queries to identify video clips
in which the same two cars and the same three persons ap-
pear jointly in the frames for say 30 seconds. In real-world
videos, some of the objects may disappear in frames due to
reasons such as occlusion, which introduces challenges to
query evaluation. Our system, aiming to address such chal-
lenges, consists of two main components: the Object Detec-
tion and Tracking (ODT) module and the Query Evaluation
module. The ODT module utilizes state-of-art Object Detec-
tion and Tracking algorithms to produce a list of identified
objects for each frame. Based on these results, we maintain
select object combinations through the current window dur-
ing query evaluation. Those object combinations contain
sufficient information to evaluate queries correctly. Since
the number of possible combinations could be very large, we
introduce a novel technique to structure the possible combi-
nations and facilitate query evaluation. We demonstrate that
our approach offers significant performance benefits com-
pared to alternate approaches and constitutes a fundamental
building block of the TQVS system.

ACM Reference Format:
Yueting Chen, Xiaohui Yu, and Nick Koudas. 2020. TQVS: Temporal
Queries over Video Streams in Action. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384693

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384693

1 INTRODUCTION
We have witnessed an explosion of video data over recent
decades. Video accounted for 75% of internet traffic in 2017,
and is expected to make up 82% in 2022, with close to 1
million minutes of video crossing the Internet per second1.
According to the Wall Street Journal there will be a billion
cameras on the streets by 2021 [5]. However, the way of
querying video streams is still primitive, and requires lots
of human intervention. In scenarios such as surveillance
applications, humans often have to visually inspect a large
amount of video to identify persons or objects of interest. It
is therefore crucial to develop systems that could support
the extraction of meaningful information from videos in
real time, utilizing declarative queries, in a way akin to how
people are interacting with RDBMS today.

On the other hand, recent breakthroughs in Deep Learning
(DL) [2, 12] have made it possible to achieve highly accurate
results in tasks such as image classification [11], object detec-
tion [13, 14] and object tracking [10, 15, 17], providing the
building blocks to make large-scale video query processing
a reality. A video clip can be considered as a list of frames
that are displayed on a fixed fps (frames per second) rate.
Applying object detection algorithms on each frame, one
can obtain a set of objects (bounding boxes) and the associ-
ated class labels (e.g., car, bus, etc.). The detected objects can
also be assigned unique identifiers (ids) by applying object
tracking algorithms between frames. Such identifiers can be
utilized in declarative query processing on videos. Recently
various works focus on processing and understanding videos
[4, 6–9, 18] based on DL models and algorithms. Although
current systems enable queries at a frame level, our focus
is to enable queries across frames utilizing unique object
identifiers and effectively enable the temporal dimension
into our query framework.

We focus on scenarios such as surveillance cameras where
co-occurring objects are of interest. For example, we wish
to identify video frames where two men appear jointly for
a number of frames (Figure 1a), or where persons and a car
appear jointly in a frame sequence of a set duration (Figure
1b). This type of queries can be expressed in Conjunctive

1https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html

https://doi.org/10.1145/3318464.3384693
https://doi.org/10.1145/3318464.3384693

(a) Two Men (b) A Car Thief

Figure 1: Video Examples

Normal Form (CNF). Such queries can be issued in a declara-
tive manner on the video stream. Alerts are triggered when
one of the queries evaluated to true and the corresponding
video frame sequence is also returned. For example, an alert
can be triggered when a few cars are blocking a traffic in-
tersection for more than one minute. Such queries can also
be utilized to retrieve video clips for forensic investigations
after accidents.

One critical issue in formulating and processing queries in
these scenarios is that objects may disappear from some of
the frames due to various reasons, such as occlusions, or even
object detection/tracking errors. For example, in Figure 1b,
the person may walk out of the scene, or disappear behind
the car for a while. To support such semantics, we propose
[1] to evaluate CNF queries over a sliding window2 of fixed
size, w , along with a duration threshold, d . For example,
one may query objects that appear jointly for 30 seconds
within 40 seconds. In this case, “30 seconds” is the duration
threshold, while “40 seconds” is the size of the window. The
result of such queries is a set of frame sets, where each frame
set satisfies the following conditions:

• n ≥ d , where n is the number of frames in the set.
• IfO ′ is the set of objects that co-occur in all the frames
in the frame set, the evaluation result of the given CNF
expression on O ′ is also TRUE.

To improve efficiency in the evaluation of such queries, in
our work we have proposed to reuse the intermediate results
between different windows. We introduced the concept of
Marked Frame Sets [1] to reduce the number of intermediate
results considered.

We present TQVS, which incorporates our developments
and is capable to efficiently execute temporal queries over
videos. In this demo, we are able to demonstrate:

• The system architecture of TQVS and its modules, in-
cluding object detection and tracking, query parsing,
and query evaluation.

• The current user interface of TQVS. Users are able to
select between video sources, queries, window sizes,

2Other types of windows can be supported as well.

and query duration thresholds. Based on the user input,
queries are evaluated and results are displayed.

• The visualization of query results. We visualize the re-
sult of query evaluation with video players to demon-
strate the set of frames and objects that satisfy the
query. We also provide a performance comparison of
our method and baseline approaches for the chosen
video source and query.

2 OVERVIEW OF THE APPROACH
A query defined by users contains three parts: the CNF ex-
pression to be evaluated, the size of the query window (w)
and the duration parameter (d). Before processing queries,
object detection [3] and tracking algorithms [17] are exe-
cuted on given videos to obtain the identified object set for
each frame. We assume all objects can be assigned with class
labels and unique ids in all frames. Queries are evaluated
on sliding windows with a step size of 1 by default. Based
on the identified object sets, queries can be evaluated and
answered in the following steps:
(1) Computing intermediate results, where the system

enumerates all candidate object sets along with the set
of frames in which they appear. These candidate object
sets correspond to the sets of objects that co-occur in a
certain number of frames, and they have to bemaximal,
meaning that the objects in any proper superset of a
candidate set will not have the same number of co-
occurrences as those objects in that candidate set do.

(2) Evaluation, where the system evaluates queries based
on the candidate object sets and associated frame sets
obtained in the previous step.

Our Approach. To efficiently execute these queries, we
introduce a new structure that we refer to as Marked Frame
Sets, which allows us to prune redundant intermediate re-
sults. We also introduce a data structure called Strict State
Graphs (SSG), G =< S,E >, to capture the relationships be-
tween intermediate results, where S is the set of intermediate
results, and E is the set of edges. Let s ∈ S be an intermediate
result, and Ss ⊂ S be a set of intermediate results containing
all vertices that are adjacent to s (i.e. ∀s ′ ∈ Ss , (s, s

′) ∈ E). We
useOs to denote the object set of s . The following properties
are satisfied on the graph:

• ∀si , sj ∈ Ss , we always haveOsi ∩Osj , Osi andOsi ∩

Osj , Osj .
• Let Oi be another object set. If Oi ∩ Os = ∅, then
∀s ′ ∈ Ss ,Oi ∩Os ′ = ∅.

To summarize, our approach uses a Strict State Graph
to index intermediate results, while using Marked Frame
Sets to prune redundant ones. Then, queries are embedded
into a CNF query evaluation framework, utilizing indexing
structures [16] to improve efficiency further. Intermediate

Web UI
Front-end
Back-end

Object Detection
& Tracking Object Results

Parse Query

Query Evaluation

Query

Videos

Result

Figure 2: System Architecture

results can further be pruned based on the query evaluation
results. More details are available elsewhere [1].

3 SYSTEM ARCHITECTURE
The architecture of TQVS is shown in Figure 2. The system
consists of two main parts: the front-end, which assists users
to build their queries and displays execution results, and the
back-end, which is responsible for extracting objects from
videos, as well as parsing and evaluating queries.

Videos are registered to the back-end directly. State-of-the-
art object detection and tracking algorithms are implemented
as the Object Detection and Tracking (ODT) module to iden-
tify and assign an identifier to each unique object in videos.
The module is designed to be plug-and-play, which allows
new algorithms to be integrated in the future. Queries con-
structed by the user via the front-end are parsed first, and
then evaluated in the Query Evaluation module based on the
object results obtained from the ODT module.

4 DEMONSTRATION
The system user interface is shown in Figure 3, which con-
sists of three main panes: Video Pane (Area A), Query Pane
(Area B), and Result Pane (Area C). Video Pane provides a
list of video clips for users to choose from, which can be
previewed in the mini player after selection. Query Pane
accepts user input to form the query, including the CNF ex-
pression, the window size, and the duration threshold. Result
Pane shows the result after executing the query, where the
top area (Area C.a) presents the performance comparison
between a baseline method and our method, while the main
area (Area C.b) depicts the query result.
Two typical use cases that demo participants will be ex-

posed to are outlined below.
Use Case 1: The user would like to identify a frame se-

quence where more than two cars (the same cars) appear

jointly. Suppose we select the video clip v1 as the input video
and we wish to select video frames where two cars appear
jointly for at least 240 frames in a window size of 300 frames
(the number of frames are adjustable parameters). The user
can fill in the CNF expression, the window size, and the
duration threshold as shown in Figure 3. After clicking the
Execute button, the user will observe the result displayed on
the right.

Since the query is evaluated over windows, we use a slid-
ing window starting from the first frame, with its maximum
size set to the given window size. By default, results are dis-
played according to the frame where they are first generated.
Users can navigate between results from different windows
using the Window Selector (Area C.c). Two other options
are also available: “Show All” and “Union Results”. If the
“Show All” option is checked, all results will be displayed in
the table with the frame ID where they are first generated.
The “Union Results” option only works with “Show All” en-
abled; when selected, results from different windows will be
merged and displayed based on the entire video clip.
In the result table, each record represents a single result

that satisfies the query, and the size of the associated frame
set is displayed. Thus the results are a set of video sequences
(clips). Each record can be viewed in a video player (shown
in Figure 4) by clicking the view icon. Objects that contribute
to the query are marked in the video by their corresponding
bounding boxes. Selected frames are also highlighted in the
progress bar at the bottom. Users can choose to play only
the selected frames or the entire video clip.

Use Case 2: The user would like to select video frames
where there are at least two persons (the same persons) and
a car (the same car) appearing jointly for a number of frames.
The query condition can be expressed in CNF, count(person)
≥ 2 and count(car) ≥ 1. Assume the window size is limited to
200 frames and the duration threshold is set to 150 (adjustable
parameters). We can execute such a query and obtain the
evaluation result. Suppose we are more interested in the
object combinations that satisfy the above condition rather
than the selected frames. With both options “Show All” and
“Union Results” checked, all the possible object combinations
along with the frames in which they appear will be listed
in the result table. Similar to the above use case, we can
click the “View” icon associated with each result record to
visualize the result on the original video clip.

REFERENCES
[1] Yueting Chen, Xiaohui Yu, and Nick Koudas. [n.d.]. Evaluating Tem-

poral Queries over Video Streams. In Submission.
[2] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep

Learning. MIT Press.
[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017.

Mask R-CNN. In IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. 2980–2988.

Figure 3: User Interface

Figure 4: Result Player

[4] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram
Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons,
and Onur Mutlu. 2018. Focus: Querying Large Video Datasets with
Low Latency and Low Cost. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA, 269–286.

[5] Wall Street Journal. 2019. https://www.wsj.com/articles/a-billion-
surveillance-cameras-forecast-to-be-watching-within-two-years-
11575565402.

[6] D. Kang, P. Bailis, and M. Zaharia. [n.d.]. BlazeIT: Fast
Exploratory Video Queries Using Neural Networks. In
https://arxiv.org/abs/1805.01046.

[7] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. Challenges and
Opportunities in DNN-Based Video Analytics: A Demonstration of the
BlazeIt Video Query Engine. In CIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings.

[8] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. NoScope: Optimizing Neural Network Queries over
Video at Scale. Proc. VLDB Endow. 10, 11 (Aug. 2017), 1586–1597.

[9] Nick Koudas, Raymond Li, and Ioannis Xarchakos. 2020. Video Moni-
toring Queries. In Proceedings of IEEE ICDE.

[10] Sebastian Krebs, Bharanidhar Duraisamy, and Fabian Flohr. 2017. A
survey on leveraging deep neural networks for object tracking. In 20th
IEEE International Conference on Intelligent Transportation Systems,
ITSC 2017, Yokohama, Japan, October 16-19, 2017. 411–418.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097–1105.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. 2015. Deep
learning. Nature 521, 7553 (2015), 436–444.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-
cnn: Towards real-time object detection with region proposal networks.
In Advances in neural information processing systems. 91–99.

[14] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. CoRR
abs/1409.1556 (2014).

[15] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. 2015.
Visual Tracking with Fully Convolutional Networks. In 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. 3119–3127.

[16] Steven Euijong Whang, Hector Garcia-Molina, Chad Brower, Jayavel
Shanmugasundaram, Sergei Vassilvitskii, Erik Vee, and Ramana Yer-
neni. 2009. Indexing boolean expressions. Proceedings of the VLDB
Endowment 2, 1 (2009), 37–48.

[17] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online
and realtime tracking with a deep association metric. In 2017 IEEE
International Conference on Image Processing (ICIP). IEEE, 3645–3649.

[18] Ioannis Xarchakos and Nick Koudas. 2019. SVQ: Streaming Video
Queries. In Proceedings of ACM SIGMOD, Demo Track.

	Abstract
	1 Introduction
	2 Overview of the Approach
	3 System Architecture
	4 Demonstration
	References

