AtomicLifetime.mws

Atomic Lifetimes

A calculation of the lifetimes of excited atomic hydrogen levels associated with the spontaneous decay. The basics are explained in Liboff, some details are provided in Bethe-Salpeter.

First we need normalized hydrogen wavefunctions with separate radial and angular parts.

>    restart;

>    with(plots):

Warning, the name changecoords has been redefined

We define the radial wavefunctions for hydrogen and the corresponding radial integrals:

>    F:=(n,l,r)->simplify(add((-1)^i*((n+l)!)^2*r^i/(i!*(n-l-1-i)!*(2*l+1+i)!),i=0..n-l-1));

F := proc (n, l, r) options operator, arrow; simplify(add((-1)^i*(n+l)!^2*r^i/i!/(n-l-1-i)!/(2*l+1+i)!,i = 0 .. n-l-1)) end proc

>    F(1,0,r);

1

>    F(2,0,r);

4-2*r

>    F(2,1,r);

6

>    A:=(n,l)->sqrt((n-l-1)!/(2*n*((n+l)!)^3));

A := proc (n, l) options operator, arrow; sqrt(1/2*(n-l-1)!/n/(n+l)!^3) end proc

>    Z:='Z';

Z := 'Z'

>    #assume(Z>0);

>    R:=proc(n,l,r) local k,rho; global Z;

>    k:=Z/n; rho:=2*k*r;

>    A(n,l)*rho^l*exp(-rho/2)*F(n,l,rho)*(2*k)^(3/2); end:

>    R(1,0,r);

2*exp(-Z*r)*Z^(3/2)

>    int(%^2*r^2,r=0..infinity) assuming Z>0;

1

>    R(2,0,r);

>    int(%^2*r^2,r=0..infinity) assuming Z>0;

1/8*2^(1/2)*exp(-1/2*Z*r)*(4-2*Z*r)*Z^(3/2)

1

>    simplify(R(2,1,r));

1/12*6^(1/2)*Z^(5/2)*r*exp(-1/2*Z*r)

>    int(%^2*r^2,r=0..infinity) assuming Z>0;

1

>    plot([subs(Z=1,r*R(4,0,r)),subs(Z=1,r*R(4,1,r)),subs(Z=1,r*R(4,2,r)),subs(Z=1,r*R(4,3,r))],r=0..60);

[Maple Plot]

These radial functions are normalized. Are they orthogonal?

>    int(expand(R(2,0,r)*R(1,0,r)*r^2),r=0..infinity) assuming Z>0;

limit(1/3*Z^3*exp(-3/2*Z*r)*2^(1/2)*r^3,r = infinity)

Maple should not have trouble with this! For some reason maple9.03 or 9.5 doesn't figure this one out.

The angular parts of any central-force problem are spherical harmonics.

>    with(orthopoly);

[G, H, L, P, T, U]

>    Plm:=proc(theta,l::nonnegint,m::integer) local x,y,f;

>    x:=cos(theta);

>    if m>0 then f:=subs(y=x,diff(P(l,y),y$m));

>    else f:=subs(y=x,P(l,y)); fi;

>    (-1)^m*sin(theta)^m*f; end:

>    Plm(theta,3,2);

15*sin(theta)^2*cos(theta)

For the spherical harmonics we don't need the Plm's with negative argument.

>    Y:=proc(theta,phi,l::nonnegint,m::integer) local m1;

>    m1:=abs(m); if m1>l then RETURN("|m} has to be <= l for Y_lm"); fi;

>    exp(I*m*phi)*Plm(theta,l,m1)*(-1)^m*sqrt((2*l+1)*(l-m1)!/(4*Pi*(l+m1)!)); end:

>    Y(theta,phi,3,0);

1/2*(5/2*cos(theta)^3-3/2*cos(theta))*7^(1/2)/Pi^(1/2)

>    Y(theta,phi,3,1);

1/12*exp(phi*I)*sin(theta)*(15/2*cos(theta)^2-3/2)*21^(1/2)/Pi^(1/2)

>    No:=(l,m)->int(int(evalc(Y(theta,phi,l,m)*conjugate(Y(theta,phi,l,m))),phi=0..2*Pi)*sin(theta),theta=0..Pi);

No := proc (l, m) options operator, arrow; int(int(evalc(Y(theta,phi,l,m)*conjugate(Y(theta,phi,l,m))),phi = 0 .. 2*Pi)*sin(theta),theta = 0 .. Pi) end proc

>    No(1,0);

1

>    No(1,1);

1

Suppose I need to calculate the electrostatic potential for a wavefunction in a superposition of hydrogenic orbitals.

What is the angular dependence of the product terms?

>    IP:=(f,g)->int(int(evalc(g*conjugate(f)),phi=0..2*Pi)*sin(theta),theta=0..Pi);

IP := proc (f, g) options operator, arrow; int(int(evalc(g*conjugate(f)),phi = 0 .. 2*Pi)*sin(theta),theta = 0 .. Pi) end proc

>    IP(Y(theta,phi,1,0),Y(theta,phi,3,0));

0

The required matrix element involves as the operator the position vector [x, y, z]  expressed as  r*[sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)]

The radial part of the matrix element is defined first. We need to set the charge:

>    Z:=1;

Z := 1

>    RME:=(n,l,np,lp)->int(r^3*R(n,l,r)*R(np,lp,r),r=0..infinity);

RME := proc (n, l, np, lp) options operator, arrow; int(r^3*R(n,l,r)*R(np,lp,r),r = 0 .. infinity) end proc

>    RME(2,1,1,0);

128/243*6^(1/2)

Now the part where the polar and azimuthal angles theta and phi are integrated:

>    AME:=(l,m,lp,mp)->abs(IP(Y(theta,phi,l,m),sin(theta)*cos(phi)*Y(theta,phi,lp,mp)))^2+abs(IP(Y(theta,phi,l,m),sin(theta)*sin(phi)*Y(theta,phi,lp,mp)))^2+abs(IP(Y(theta,phi,l,m),cos(theta)*Y(theta,phi,lp,mp)))^2;

AME := proc (l, m, lp, mp) options operator, arrow; abs(IP(Y(theta,phi,l,m),sin(theta)*cos(phi)*Y(theta,phi,lp,mp)))^2+abs(IP(Y(theta,phi,l,m),sin(theta)*sin(phi)*Y(theta,phi,lp,mp)))^2+abs(IP(Y(theta,...

>    AME(1,0,0,0);

1/3

The phase-space factor omega^3  is defined now, where hbar*omega  is the photon energy calculated from the difference of electronic energy levels. We choose atomic units in which hbar=m=e=1 :

>    ED:=(n,np)->-Z^2/2*(1/n^2-1/np^2);

ED := proc (n, np) options operator, arrow; -1/2*Z^2*(1/(n^2)-1/(np^2)) end proc

>    c:=137.04: alpha:=1/c:

>    Acof:=(n,l,m,np,lp,mp)->evalf(RME(n,l,np,lp)^2*AME(l,m,lp,mp)*ED(n,np)^3*4/3*alpha/c^2,4);

Acof := proc (n, l, m, np, lp, mp) options operator, arrow; evalf(4/3*RME(n,l,np,lp)^2*AME(l,m,lp,mp)*ED(n,np)^3*alpha/c^2,4) end proc

>    Acof(2,1,0,1,0,0);

.1516e-7

This is the A coefficient in atomic units. To obtain the lifetime, we take the inverse, and convert to nanoseconds. The atomic time unit is approximately 2.4E-17 s?

In nanoseconds:

>    atu:=2.418884E-17; # the atomic time unit to 7 digits (it is known more accurately)

atu := .2418884e-16

>    evalf(1/Acof(2,1,0,1,0,0)*atu*1E9,3);

1.59

The special case of maximal angular momentum states which can only decay to the nearest neighbour:

>    C1:=n->evalf(1/Acof(n,n-1,n-1,n-1,n-2,n-2)*atu*1E9,4);

C1 := proc (n) options operator, arrow; evalf(1/Acof(n,n-1,n-1,n-1,n-2,n-2)*atu*.1e10,4) end proc

>    C1(2);

1.596

>    seq(C1(n),n=2..20);

1.596, 15.46, 72.45, 234.9, 607.4, 1349., 2683., 4908., 8411., .1368e5, .2131e5, .3200e5, .4664e5, .6618e5, .9178e5, .1247e6, .1666e6, .2189e6, .2837e6

These numbers look right when compared to an analytic evaluation of the integrals. In particular, they can be compared with the closed-form expression (31) in M Seidl and P O Lipas: Eur. J. Phys. 17, 25 (1996) for the lifetimes in nanoseconds:

>    C1a:=n->evalf(0.0622*3*n^4*(n-1)^2/(2*n-1)*(1+1/4/n/(n-1))^(2*n),4);

C1a := proc (n) options operator, arrow; evalf(.622e-1*3*n^4*(n-1)^2/(2*n-1)*(1+1/4*1/(n*(n-1)))^(2*n),4) end proc

>    seq(C1a(n),n=2..20);

1.594, 15.44, 72.42, 234.7, 607.0, 1348., 2682., 4905., 8406., .1368e5, .2131e5, .3200e5, .4665e5, .6615e5, .9178e5, .1246e6, .1666e6, .2189e6, .2838e6

For other initial states (non-maximal angular momentum), the situation is more complicated due to the presence of various decay channels. We begin by providing explicit expressions that sum over the allowed m -sublevels. The selection rules are: +/- 1  in l  (L), and 0, +/-1  in m . For the initial state we pick n,l,m . We need to know how Acof  responds for non-allowed cases.

>    Acof(2,1,0,2,2,0);

Error, (in A) numeric exception: division by zero

Thus, we need to protect the procedure from illegal calls.

>    AcofSp:=(n,l,m,np)->if l+1 < np then add(Acof(n,l,m,np,l+1,mp),mp=max(m-1,-l-1)..min(m+1,l+1)) else 0 fi;

AcofSp := proc (n, l, m, np) options operator, arrow; if l+1 < np then add(Acof(n,l,m,np,l+1,mp),mp = max(m-1,-l-1) .. min(m+1,l+1)) else 0 end if end proc

>    AcofSp(2,1,0,1);

0

>    AcofSp(4,1,1,3);

.84137e-11

>    AcofSp(4,1,1,2);

0

Why would the last one be forbidden? 4p1->2d final state does not exist.

Now look at lowering  l  (L) by one unit.

>    AcofSm:=(n,l,m,np)->if l-1 < np and l-1>=0 then add(Acof(n,l,m,np,l-1,mp),mp=max(m-1,-l+1)..min(m+1,l-1)) else 0 fi;

AcofSm := proc (n, l, m, np) options operator, arrow; if l-1 < np and 0 <= l-1 then add(Acof(n,l,m,np,l-1,mp),mp = max(m-1,1-l) .. min(m+1,l-1)) else 0 end if end proc

>    AcofSm(4,2,1,2),AcofSm(4,2,1,3);

.4994e-9, .17034e-9

This shows the phase-space factor effect. The Einstein coefficient provides a decay rate: the decay from n=4  is faster to n=2  than it is to n=3 .

Now let us demonstrate that the decay rate for the case when l  decreases beats the one for increasing l .

>    AcofSm(4,1,0,3),AcofSp(4,1,0,3);

.7422e-10, .8413e-11

There is almost an order-of-magnitude difference. The answer is independent of the initial magnetic quantum number (apart from inaccuracies).

>    AcofSm(4,1,-1,3),AcofSp(4,1,-1,3);

.7422e-10, .84137e-11

Exercise 1:

Calculate the transition rates to all possible final states for |3s>, |3p>, |3d>, and for |4s>, |4p>, |4d>, |4f> and compare them to a table (e.g., Radzig+Smirnov). Then calculate the total transition rates and lifetimes for these states.

>